

[image: image1.png]

Software Quality

Assurance
A technical report outlining representative publications on the subject

Sponsored by the

Computer Resources Support Improvement Program (CRSIP)

Revision 0.2

April 6, 2000

Software Quality Assurance

A technical report outlining representative publications on the subject

Table of Contents
iii

0.1 Abstract

0.2 Acknowledgments
iii

1. Introduction and Overview of Software Quality Assurance
1

1.1 Process Assurance
1

1.2 Product Assurance
1

1.3 Methods and supporting technologies
2

1.4 Case Study: Space Shuttle Flight Software
4

2. Summary of Representative Publications
7

2.1 Software Quality Assurance
7

2.2 Assessments and Standards - ISO, SEI CMM & IEEE
12

2.3 Inspection
19

3. Acronym List
25

4. Glossary
26

5. Annotated Bibliography of Public Domain Papers
30

5.1 Software Quality Assurance
30

5.2 Assessment and Standards
31

5.3 Inspection
32

Table of Figures

6

Figure 1. PASS FSW Process Improvement History

Figure 2. PASS FSW Product Error Rate
6

Abstract

Software Quality Assurance (SQA) is a group of related activities employed throughout the software life cycle to positively influence and quantify the quality of the delivered software.

This report provides an overview of SQA, outlining process and product assurance and the methods and technologies typically employed to accomplish them. These methods include audits, assessment activities (e.g., ISO 9000), analysis functions such as reliability prediction, and embedded defect detection methods such as formal inspection. The overview is intended to help the reader identify specific SQA activities for more in-depth study.

This report also describes several representative publications on the subject of software quality assurance, assessment standards, and inspection to help the reader find a reliable source for further research. It concludes with an annotated bibliography of public-domain papers on the subject of SQA.

0.1 Acknowledgments

This report was prepared by the following individuals at United Space Alliance, contractor to STSC: Lanette Holland, Julie Barnard, Johnnie Henderson, Quinn Larson, Earl Lee and Renne’ Peterson.

1. Introduction and Overview of Software Quality Assurance

Software Quality Assurance (SQA) is a group of related activities employed throughout the software life cycle to positively influence and quantify the quality of the delivered software. SQA is not exclusively associated with any major software development activity, but spans the entire software life cycle. It consists of both process and product assurance. Its methods include assessment activities such as ISO 9000 and CBA IPI (CMM-Based Appraisal for Internal Process Improvement), analysis functions such as reliability prediction and causal analysis, and direct application of defect detection methods such as formal inspection and testing.

1.1 Process Assurance

Schulmeyer defines software quality assurance as “. . . the set of systematic activities providing the evidence of the ability of the software process to produce a software product that is fit for use.”

SQA oversight provides management with unbiased feedback on process compliance so process lapses can be addressed in a timely fashion. It provides management with an early warning of risks to product quality and can provide recommendations to address the situation.

It is essential that the software quality assurance personnel have a reporting path which is independent of the management responsible for the activities audited and the associated daily conflicts generated by schedule and budget. Independent oversight, through various methods, encourages adherence to the official process. Locating an appropriate level of management where SQA will have frequent access, active support, and be above the conflicts of interest may be a difficult but necessary step.

The methods typically used to accomplish process assurance include SQA audit and reporting, assessment and statistical process control analysis.

1.2 Product Assurance

Assurance that the product performs as specified is the role of product assurance. This includes “in process,” or embedded, product assurance, as well as some methods that involve independent oversight.

The purpose of embedded SQA processes is product quality assurance. The activities are part of the development life cycle which will “build-in” the desired product quality. This focus allows identification and elimination of defects as early in the life cycle as possible, thus reducing maintenance and test costs. Embedded SQA methods include formal inspection, reviews, and testing.

Independent oversight functions can also be a part of product assurance. An independent test function, or testing which is witnessed by an independent entity such as SQA, is one method of providing product assurance. Other options include tests witnessed by customers, expert review of test results, or audits of the product.

1.3 Methods and supporting technologies

Many methods are used to perform the process and product assurance functions. Audits are used to examine the conformance of a development process to procedures and of products to standards. Embedded SQA activities, which have the purpose of detecting and removing errors, take a variety of forms, including inspection and testing. Assessment is another method of process assurance. Analysis techniques, such as causal analysis, reliability prediction and statistical process control, help ensure both process and product conformance.

1.3.1 Audit

Auditing is a method used in both process and product assurance. Audits are embedded into the software life cycle, as well as being performed as part of SQA.

An SQA audit is performed to “determine the adherence to established standards and procedures.”
 Evaluation of the sufficiency or effectiveness of the procedures or standards is occasionally part of an SQA audit. This type of audit examines records, as opposed to products, according to a sampling process to determine if procedures are being followed correctly. Such an audit is often performed by an external auditor who is not part of the software project.

In contrast, an embedded audit examines products to determine if the software products conform to standards and if project status is accurate. An independent auditor may perform this function or evaluate the records of such an audit that was performed by the development process. For documents, the audit is often performed manually. For code, it may be done manually or by an automated tool.

1.3.2 Embedded SQA Error Detection Methods

1.3.2.1 Formal Inspection

Formal inspection is an examination of the completed product of a particular stage of the development process (such as design or code), typically employing checklists, expert inspectors, and a trained inspection moderator. The objective is to identify defects in the product. There are many techniques of doing inspections, but many follow the methods developed by Michael Fagan over 20 years ago.

Certain projects which have an effectively performing inspection process report better than 80% defect detection rates.

1.3.2.2 Reviews

Reviews are also applied as an alternative to formal inspections as an SQA method. Informal design and code review methods are difficult to quantify since they are generally done at the discretion of the product author, do not follow a detailed process and are not reported at the project level. Informal review is a valuable alternative if the more effective formal inspection is not used.

The term “review” is also used to refer to project meetings (e.g., a product design review) which emphasize resolving issues and which have a primary objective of assessing the value of the product.

1.3.2.3 Walkthroughs

Walkthroughs are meetings in which the author of the product acts as presenter to proceed through the material in a stepwise manner. The objective is often raising and/or resolving design or implementation issues. Walkthroughs tend to be informal and lacking in “close procedural control.”

1.3.2.4 Testing

Testing is a dynamic analysis technique that has the primary objective of error detection. Testing of software is performed on individual components during intermediate stages of development, subsystems following integration, and entire software systems. It involves execution of the software and evaluation of its behavior in response to a set of input against documented, required behavior.

Testing is covered by STSC Technical Report, “Software Test Technologies Report,” August 1994.

1.3.3 Assessment

Assessment is determining the capability of a process through comparison with a standard. The exact methods used are dependent on the standard applied. Two standard assessment methods which are frequently employed are ISO 9000 and SEI SW-CMM®. Malcolm Baldrige is another assessment standard, but is not used as often by software projects.

The Software Engineering Institute (SEI) at Carnegie Mellon University was established by Congress in 1984 to improve the practice of software engineering. A key product developed by the SEI to aid in this mission is the Software Capability Maturity Model (SW-CMM.®.). The SW-CMM® is a model for software process improvement. The model establishes criteria describing the characteristics of a mature software organization and has staged software process maturity levels. There are 5 levels of process maturity, with level 1 being the lowest and level 5 being the highest. Within the maturity levels are groupings of software engineering topics called Key Process Areas (KPAs).

The ISO 9001 international standard was established to address quality requirements across diverse industries. As such, the requirements within the standard are written in a generic manner to accommodate the diversity of applications. The corresponding ISO 9000-3 document gives guidance for applying the standard to software. Note that, as of this writing, the ISO 9001 standard is under revision.

Use of assessments may involve individuals outside of the organization such as a CMM lead assessor or an ISO registrar, but many times the assessment is conducted using internal resources to identify areas for improvement or in preparation for a formal assessment. Assessment uses a combination of random auditing and interviewing to answer a list of questions which is tailored to fit the organization being assessed.

1.3.4 Analysis

1.3.4.1 Causal Analysis and Defect Prevention Processes

The purpose of these activities is to address the process weaknesses that allowed product defects to be inserted in order to prevent reoccurrence of similar types of defects. One method to accomplish this objective includes root cause analysis and process brainstorming. First the team of individuals, which may include developers and other analysts, determines the root cause of the defect insertion. If the cause is systemic and/or may be repeated, brainstorming for a remedy is performed to decrease the likelihood of reoccurrence of similar defects under similar circumstances. Ideas for process improvement are generated from the brainstorming session and passed on to a process management team. These activities may be performed at various stages of the software life cycle, but it is recommended that the elapsed time between defect discovery and this type of analysis be minimized.

1.3.4.2 Reliability Prediction

The IEEE Standard Glossary of Software Engineering Terminology definition of software reliability is: “The ability of the software to perform its required function under stated conditions for a stated period of time.”
 The ability to predict the reliability of a software system would enable project management to better perform product assurance and assess readiness for release. Three bases used in estimating reliability are failure record, behavior for a random sample of input points, or quantity of actual and “seeded” faults detected during testing.
 However, these methods are imperfect; software reliability prediction is still a science under development.
 Furthermore, this technique requires an extensive error history database.

1.3.4.3 Statistical Process Control

Statistical process control is the use of statistical methods to assure both process and product quality.
 These methods include Pareto analysis, Shewhart control charts, histograms, and scatter diagrams.
 This technique can be used to evaluate if a process is out of statistical control, thus indicating process defects and/or potential for increased product defects.
1.4 Case Study: Space Shuttle Flight Software

The Space Shuttle Primary Avionics Software System Flight Software (PASS FSW) project, United Space Alliance, produces highly reliable software for NASA’s Space Shuttle onboard computers. It is a prime example of the effective implementation of software quality assurance. It has twice received NASA’s Quality and Excellence Award (the George M. Low Trophy). While with IBM, the project also received the IBM Market Driven Quality Award for Best Software Laboratory. It has also been assessed at SEI-CMM(Level 5.

To achieve the level of quality control desired, the PASS FSW project has mainly relied on embedded SQA activities. Because of the NASA customer’s focus on the delivery of error-free software, the FSW management team felt that this could only be achieved by making every individual on the project responsible for the quality of the delivered software. This decision led to embedding within the development process activities designed to identify and remove errors from the software product and to also remove the cause of those errors from the process.

Beginning in the mid-1970s, the project built on a foundation that included competent and controlled software project management techniques and effective configuration management (reference Figure 1. PASS FSW Process Improvement History). The project started a practice that is still performed today: an error oversight analysis process which entailed counting errors found, analyzing those errors, correcting them and implementing process improvements to prevent the recurrence of those errors. When this process began, errors in the released product were examined. Focusing on those errors led to the realization of how expensive it was to remove errors found late in the development life cycle.

Formal design and code inspections were introduced in the late 1970s to enhance the possibility for early discovery of errors, when it was cheapest to correct those errors. When the number of errors in the released software decreased to such low numbers that error trends were not evident, errors found during inspections were also subjected to the same kind of oversight analysis. This led to improvements in the inspection process and later a change in focus of development unit testing to mirror expected customer usage of the software.

Formalization of the independent verification and validation process through documenting verification techniques was performed in the early 1980s. Inspections of the verifiers’ test procedures were added shortly thereafter, and the NASA customer was invited to participate. Further enhancements in verification included improved software interface analysis and the institution of functional test teams to improve technical education.

Continued error analysis identified requirements as a major source of errors. The next major enhancement was a formalization of the requirements analysis process to provide better requirements from which the developers and testers could work. Formal requirements inspections soon followed in 1986. The developers and verifiers participated with the requirements analysts in the inspections to help produce requirements that were viable for both implementation and testing. The requirements author and NASA customer were also invited to provide insights into requirements intent and from the customer’s viewpoint. Later, these inspections were enhanced to include the requirements author’s description of potential software usage scenarios for major capabilities. All of these measures resulted in a significant decrease in software errors due to requirements problems.

Even an organizational change driven by the NASA customer’s direction to reduce personnel on the project was done in a way that resulted in further error reduction. The same personnel who performed the requirements analysis at the beginning of the software life cycle were given the responsibility for completing the system performance verification at the end of the development cycle. Their involvement in both the beginning and the end of the life cycle provided additional insights for error detection.

As each process change had visible effects in reducing the errors in the delivered product, continued process improvement was seen to be the vehicle through which the goal of error-free software could someday be realized. Process teams made up of participants in the processes were created to own the processes and proactively look for process improvements. These teams still function and are the major source for process improvement ideas.

Independent SQA oversight has also played a role in the success of the PASS FSW project. In the late 1980s, NASA customer requirements instituted an SQA role that was detached from project management. This organization has primarily used audit methods to ensure process compliance.

Internal and external assessments have also positively influenced the project’s software quality management, as well as confirmed the value of the embedded SQA. These have included a 1984 IBM assessment by a team working under Watts Humphrey; the assessment tool and methodology used later evolved in the SEI-CMM(. A similar assessment was done in 1988 by a team from NASA, JPL and SEI affiliates; the project was assessed at the highest maturity level using the SEI-CMM(criteria. In the 1990s, the project received ISO 9001 certification. The project was also evaluated according to criteria of NASA’s Quality and Excellence Award (the George M. Low Trophy), and the IBM Market Driven Quality Award, which is based on the Malcolm Baldrige criteria. All of these appraisals have aided PASS FSW in identifying areas for improvement and obtaining an industry perspective.

The results of the focus on process improvement is demonstrated in Figure 2. PASS FSW Product Error Rate, which shows the decrease in released errors since 1984. The error rate goes from 1.8 per thousand lines of changed source code in 1985 to zero in the latest release. The software currently in use to support shuttle missions has no errors attributable to the latest software release.

Process improvements continue to be made. Improvements in support tool developments such as tools which aid in analysis of software interfaces, and tools to provide improved testing capabilities, also contribute to significant reductions in error rates. Embedded SQA activities in all phases of the development life cycle, management support of quality initiatives, employees empowered to own and improve processes, and error cause analysis have all enabled the PASS FSW project to meet its customer requirements for delivery of error-free software.

Figure 1. PASS FSW Process Improvement History

Figure 2. PASS FSW Product Error Rate

2. Summary of Representative Publications

This section contains summaries of books on the topics of software quality assurance, assessments and their associated standards, and inspection. It is not intended to be an exhaustive list of available publications, but rather a sample of reliable sources.

Each book summary includes an abstract of the book, a description of the appropriate audience, the scope, a list of main topics, an indication of the depth at which the topics are covered, and any case studies or examples.

2.1 Software Quality Assurance

2.1.1 Dobbins, James H. Software Quality Assurance and Evaluation. Milwaukee: ASQC Quality Press, 1990. (ISBN 0-87389-059-0, 207 pages)

Abstract. This book provides guidance on how software quality assurance (SQA) should be performed on contracts where government standards (e.g., Dod-STD-2167A, DoD-STD-2168, MIL-STD-483A) have been levied as part of the contractual requirements. Some of the information provided is also applicable to performing SQA in any environment.
Audience. The primary audience for this book is software quality professionals. Secondary audience includes software engineering management and software engineering professionals.
Scope. The author discusses all of the contract activities in which the SQA professional should be involved. He begins at the proposal stage and covers all project activities through delivery of the product to the customer. He discusses the responsibilities of the prime contractor’s SQA function and also includes discussions of the responsibilities of subcontractor SQA functions and government quality assurance (DCAS), detailing their interfaces with the prime contractor’s SQA function.
Main Topics. The topics covered include:

· SQA planning and costing

· SQA participation in the contract activities during the proposal phase, software development phase, and software testing phase

· document inspections

· SQA objective evidence

· SQA activities related to configuration control, software procurement, and monitoring subcontractor’s SQA functions

· subcontractor SQA responsibilities, identifying the interactions among all parties

· government quality assurance functions, identifying the interactions among all parties

· standards referenced in the text (government, military, industry)
Depth. In-depth discussions of all major tasks that should be performed as part of the SQA function are provided, and identification of the activities required to complete those tasks. Appendices provide sample work product templates and include a sample Table of Contents for an SQA manual, sample budgeting process worksheet, example of an applicability matrix, and examples of SQA audit checklists.
Case Studies or Illustrative Applications. No case studies are provided but examples are cited in many places to illustrate concepts presented.

2.1.2 Horch, John W. Practical Guide to Software Quality Management. Boston/London: Artech House, Inc., 1996. (ISBN 0-89006-865-8, 259 pages)

Abstract. This book describes how a software quality practitioner can implement an effective software quality program. It describes the linkage and relationship between eight software quality elements and provides samples of the various documents required for a complete software quality program. One of the main themes throughout the book is the importance of keeping management informed of any improvements, issues and/or risks throughout the software development life cycle. Subsequently, by having management informed, they will maintain their commitment and dedication to the Software Quality Program.

Audience. Anyone who has been assigned the responsibility of establishing and implementing a total quality system in their software development organization. This book is not intended to be a reference for the experienced software quality expert.

Scope. As stated, this book is a guide to implement a complete software quality program. The approach is built on eight major software quality elements. It addresses how to build quality into the software from the beginning of the software development project and to continue throughout the software development life cycle. It gives examples of metrics, required plans, standards, charters and necessary documentation to create a software quality system.

 Main Topics. The first chapter introduces the eight elements of the Software Quality System. The remaining chapters are dedicated to these eight elements:

· standards

· reviews

· testing

· defect analysis

· configuration management

· security

· education

· vendor management

It is important to note the last chapter has the “Quality system implementation” tasks, which describes how to plan the quality system, change the project’s organizational culture and considerations, and implement strategies and improvements using assessment, certification and awards.

Depth. The book is a high level account of software quality system elements identified specifically for developing a complete software quality system. It provides an overview of the quality elements and is easily understood and read by a novice quality practitioner. For further explanation and details, each chapter contains “The next step,” which lists texts of interest.

Case Studies or Illustrative Applications. There was no specific project or case study used throughout this book, but the chapter on “Defect analysis” has illustrations of quality tools that can be applied for collection of measurements and use of metrics. Appendices A and B have sample outlines of a software development plan, SQA plan, configuration management plan, software requirements specification, software preliminary design specification, software detailed design specification, test plan (system), test case, test report, and quality management charter. These samples are skeletons to use as a base to begin developing a software quality system.

2.1.3 Jarvis, Alka and Vern Crandall. Inroads to Software Quality “How To” Guide and Toolkit. Upper Saddle River, NJ: Prentice Hall PTR, 1997. (ISBN 0-13-238403-5, 412 pages)

Abstract. This book describes software quality methodologies and gives a smorgasbord of techniques that can be integrated into existing or even to create a new software quality program. It demonstrates approaches with proven technology that have been implemented by quality leaders in the software industry throughout the world. It guides the reader through an improvement process program which increases the quality of software, lower software costs, reduce cycle time, and improve customer satisfaction. It takes you through all aspects of managing the software development life cycle and developing a software quality program.

Audience. This book appeals to various facets of a software development audience, from testers to software project managers, who want to implement a software quality assurance program. The reader should have a base knowledge of software quality since this book is technical and requires this knowledge to capitalize on the methodologies and approaches. This book is not for a novice.

Scope. As stated, this book has detail explanations of all software quality methodologies. It goes into different approaches to capitalize on testing programs, a measurement program with Deming methodologies, and process assurance guidelines to achieve quality software. It gives proven techniques and examples of implementation and continuous improvement in various areas of a quality program, especially in building software. It captures an overview of past and existing quality programs and speaks of quality methodologies, acknowledging the quality experts who developed the techniques. It gives examples of metrics, checklists, templates and program theorems. It also provides figures which map out processes and tables that are applied to software program standards.

 Main Topics. Each chapter has a wealth of information that takes the reader through software quality programs. It describes:

· Process Assurance - techniques, activities and common causes of failure

· Product Assurance - techniques and activities

· Software Quality Assurance - required components; creating a SQA Plan; cost-effectiveness of software testing; and building an effective, independent quality assurance organization

· Software Quality Standards - from six sigma, cycle time reduction, product delivery process, components of specifications, to when a product should be released

· Overview of Testing - objectives of testing, testing techniques, test plans and automated test tools

· Software Quality Reviews - code inspections, walk-throughs, business reviews, management reviews and associated roles and guidelines

· Metrics - the benefits, cost savings, dangers and commonly used measurements

· Process Improvement Roadmap - seven improvement implementation steps

· Standards and Process Assessment - ISO and SEI CMM

· Total Quality Management

· Checklists and Templates (appendix)

Throughout the book the author introduces a variety of methods which can lead to new ways of thinking about SQE.

Depth. This book is a comprehensive technical account of software quality assurance program components. It specifically addresses techniques not only for computer science personnel but for their management. It gives a variety of information to improve the audience’s existing processes and an overview to implement quality assurance program components. For those who have substantial experience in software development, the book is easily understood and can be used as a guide for implementation of a software quality assurance program.

A diskette in the back of the book has templates for forms and checklists which can be used to implement a software quality program.

Case Studies or Illustrative Applications. Throughout this document case studies are included from Digital Technology International, IBM, Motorola and Texas Instruments. They provide illustrative examples of the theory in the text of the book.

2.1.4 Schulmeyer, G. Gordon (ed.), et al. The Handbook of Software Quality Assurance. Upper Saddle River, NJ: Prentice Hall, 1998. (ISBN 0-13-010470-1, 712 pages)

Abstract. This is a collection of articles on various aspects of software quality assurance written by sixteen of the leading experts in the field. It covers the history of software quality assurance as a discipline and presents an overview of many different philosophies and practices in use today across the software industry.
Audience. The intended audience is software quality assurance professionals. It would also be of interest to software managers and software practitioners interested in software quality and software quality improvement.
Scope. Many of the key areas of software quality assurance are presented from the perspective of each author through his own personal experiences and insights. As described by the editors, the Handbook is loosely organized into three general areas:

1) fundamental concepts, historical developments, SQA organizational structure and personnel requirements (Chapters 1 - 8)

2) software quality assurance techniques (e.g., inspections, role of software configuration management, use of the Pareto principle to direct activities, process assessments (e.g., CMM CPA IPI), tool support), (Chapters 9 - 14)
3) practical applications of software quality assurance techniques for mission-critical software, commercial software and information services software.
Main Topics. Each chapter of the Handbook focuses on one specific topic. There are twenty-one chapters which address the following topics:

· Chapter 1 - definition of basic SQA terminology and fundamental concepts.
· Chapter 2 - adoption of the specific focus of SQA activities to accommodate the special needs for different kinds of software development efforts (e.g., operating systems, mission-critical, real-time, business software).
· Chapter 3 - overview of the contributions made by key figures in software quality assurance.
· Chapter 4 - history of process standardization through the development of various military and commercial SQA standards.
· Chapter 5 - organizational role of SQA in the overall software quality program for different sized organizations.
· Chapter 6 - personnel requirements for a functioning software quality assurance organization.
· Chapter 7 - discussion of the American Society for Quality Software Quality Engineer Certification Program.
· Chapter 8 - methodology for computation of the cost of quality.
· Chapter 9 - use of inspections as an up-front quality technique.
· Chapter 10 - role of software configuration management in ensuring a quality product
· Chapter 11 - use of the Pareto Principle as an effective method of detecting quality trends during software development.
· Chapter 12 - use of the Capability Maturity Model (CMM) to develop software process maturity.
· Chapter 13 - case history of the CMM Level 5 Boeing Space Transportation System Software organization.
· Chapter 14 - use of SQA CASE (Computer Aided Software Engineering) tools.
· Chapter 15 - use of SQA metrics to lead process improvement through several real world examples.
· Chapter 16 - application of SQA concepts for mission-critical software.
· Chapter 17 - application of SQA concepts for commercial software.
· Chapter 18 - application of SQA concepts for information services software.
· Chapter 19 - use of statistical methods to effect software quality control
· Chapter 20 - definition of software reliability concepts
· Chapter 21 - discussion of software safety as it relates to SQA
Depth. Because of the wide variety of topics covered, none are discussed in great depth. However, extensive bibliographies are provided at the end of each chapter. They provide sources for more detailed information, if it is desired.
Case Studies or Illustrative Applications. Many different real world examples are scattered throughout the Handbook to illustrate the concepts presented.
2.2 Assessments and Standards - ISO, SEI CMM & IEEE

2.2.1 Tingey, Michael O. Comparing ISO 9000, Malcolm Baldridge, and the SEI CMM for Software: A Reference and Selection Guide. Upper Saddle River, NJ: Prentice Hall, 1996. (ISBN 0-13-376260-2, 312 pages)

Abstract. This book compares and contrasts three quality management system (QMS) assessment methods for software projects: Malcolm Baldrige National Quality Award (MB), ISO 9000 and SEI Capability Maturity Model (CMM). It describes each of the methods and then explains how they overlap and differ. Finally, it provides a framework for comparing QMS assessment methodologies in general, extrapolating beyond the set of three that are the focus.
Audience. The primary audience is any software practitioner who is interested in applying the assessment methods and who needs to determine which of then would be most appropriate for their project
Scope. As mentioned above, the book focuses on the Malcolm Baldrige, ISO 9000 and SEI CMM. Other assessment methods are briefly described at a high level, including the Deming Prize and the European Quality Award. Several government quality awards are listed, but no details are given.
Main Topics. The book is divided into five parts so that the reader can easily find the information that is relevant according to his interest and experience level:

· Part I: Introduction - The four chapters in this part explain the purposes of the book, gives an overview of total quality management (TQM), specifying the “Core Values and Concepts” of ISO and MB systems and describing types of assessments, along with their rationale.

· Part II: Quality Management System Assessment Methodologies - The first three chapters of this section give an overview of each of the three QMSs. The final chapter briefly discusses other assessment methods.

· Part III: Comparing QMS Assessment Methodologies - This is the main part of the book, as it compares MB, ISO 9000 and CMM. In addition to identifying the common areas of the methodologies, the book also describes how they differ in perspective from each.

· Part IV: Framework for Comparing QMS Assessment Methodologies - This part describes the framework and approach used to compare the assessment methodologies, as well as describing the generalized comparison framework.

· Part V - The Appendices give the detailed requirements and framework property matrices for all three methods.
Depth. The book goes into a great deal of depth in comparing each of the assessment methodologies to the others. Detail of each of the methodologies is provided in appendices.
Case Studies or Illustrative Applications. No specific case studies or applications are cited.
2.2.2 Caputo, Kim. CMM Implementation Guide: Choreographing Software Process Improvement. Reading, MA: Addison Wesley Longman, Inc., 1998. (ISBN 0-201-37938-4, 319 pages)

Abstract. Using analogies from dance and choreography to explain underlying human dynamics at work, the author provides guidance on how to lead an organization from a CMM Level 1 state to CMM Level 5 and beyond. The book includes worksheets, checklists, questionnaires and other artifacts used by Unisys Corporation in its software process improvement efforts.
Audience. This book is written “by an SEPG member for SEPG members” to help them to be more effective in their software process improvement efforts. It is also intended for “process improvement champions” where organizations do not have an SEPG (Software Engineering Process Group) or plans to staff one.
Scope. This book covers all of the phases of process improvement, beginning with understanding the organizational culture, through intermediate phases, and reaching the ideal of a continuously optimizing system. The author distills process improvement to three repeating steps of envisioning, “we see what we are doing now and what we need to be doing;” encoding, “we decide what to do and document how to do it;” and enacting, “we do it, and we improve our performance.”
Main Topics. The author discusses:

· Software Process Improvement - models, the SEPG, infrastructure and steps.

· Assumptions - how the improvement process is helped or hindered by underlying, unspoken assumptions.

· Assessments - perspective of CMM levels, techniques of assessment.

· Improvement Cycles - organizational issues.

· Action Plans - moving through the steps of improvement.

· Process Documents - collaboration and getting started.

· Process Implementation - adoption techniques, measuring progress and institutionalization.

· Teamwork

Depth. Theoretical and practical guidance is supported by appendices which contain worksheets (e.g., Assumptions Worksheet, Great Performance Worksheet, Simple Action Plan), CMM Overview Workshop presentation materials, questionnaires (e.g., Project Manager Interviews, Is this Project Worthwhile?), sample processes (e.g., Sample Processes for Level 2), and template samples (e.g., Project Notebook Table of Contents, Process Definition Templates, Risk Management Tracking templates).
Case Studies or Illustrative Applications. Although a specific case study is not used, examples are cited from actual experiences encountered in the Unisys process improvement effort to support the ideas presented. Both successful and not-so-successful examples are shown, with explanations provided for each success or failure.
2.2.3 Dymond, Kenneth M., Detta Dymond (ed.) and Louis Faassen (Illus.). Guide to the CMM: Understanding the Capability Maturity Model for Software. Annapolis, MD: Process Transition International, Inc., 1998. (ISBN 0-9646008-0-3, 203 pages)

Abstract. This book was developed out of the author’s experience conducting workshops on the CMM. It is an informal handbook that gives an overview of the CMM and describes its concepts and KPAs using “pictograms” and accompanying descriptive text. Its objective is to make the CMM KPAs easier to understand so that the reader can make his own interpretation of the CMM and apply it to his software project. The book can be used in conjunction with a workshop or for independent study; exercises are included for readers with various levels of experience.

Audience. The audience is anyone studying or using the CMM, but is particularly targeted toward CMM novices.

Scope. The book covers all KPAs at all CMM maturity levels, as well as “other common features” (i.e., commitment to perform, ability to perform, measurement and analysis, verifying implementation and activities performed). It does not cover in detail how to apply the CMM to a project, nor CMM history.

Main Topics. The book is organized into the following chapters:

· Basic Concepts and Structure of the CMM

· Maturity Level 2: The Repeatable Process

· Maturity Level 3: The Defined Process

· Maturity Level 4: The Managed Process

· Maturity Level 5: The Optimizing Process

The chapters which are dedicated to explaining maturity levels 2 through 5 use “pictograms,” which the author describes as “diagram[s] made up of picture elements or symbols” (p. I-2), to depict the KPAs and other topics. Each KPA is explained in “Goals View” and “Goal-Activities View” pictograms, along with accompanying descriptive text. At the end of each of these chapters are summary views.

Depth. The book broadly covers all KPAs for each of the maturity levels, but does not go into detail for all of the activities for each of the KPAs.

Case Studies or Illustrative Applications. No specific case studies or applications are cited; however, exercises are provided to enable the user to synthesize the material.

2.2.4 Paulk, Mark C., et al. The Capability Maturity Model: Guidelines for Improving the Software Process (The SEI Series in Software Engineering). Reading, MA: Addison Wesley Longman, Inc., 1995. (ISBN 0-201-54664-7, 441 pages)

Abstract. A key product developed by the Software Engineering Institute (SEI) to help improve the practice of software engineering is the Software Capability Maturity Model (SW-CMM.®.) The SW-CMM® is a model for software process improvement. The model establishes criteria describing the characteristics of a mature software organization. This book introduces the SW-CMM®, its fundamental concepts, and interpretation of its practices.

Audience. This book is designed for anyone interested in improving the software process, including software practitioners, software managers, software engineering process groups, and assessors.
Scope. The SW-CMM® is a model for improving the capability of software organizations. The model represents a consensus by a broad-based software community of good engineering and management practices. The practices are intended to apply to a wide variety of organizations. The software organization may be of any size and may use any type of software life cycle model. The model applies to the full scope of software life cycle activities.

Main Topics. The book is organized into two major parts. The first part introduces the key concepts of software process maturity, the structure of the model, characteristics of each maturity level, the interpretation of the model, and guidance for using the model (reference CMU/SEI-93-TR-24
).

The second part of the book contains the key practices of the model (which is the text as written in M.C. Paulk, B. Curtis, M.B. Chrissis, and C.V. Weber, Capability Maturity Model for Software, Version 1.1, Software Engineering Institute, CMU/SEI-93-TR-25, DTIC Number ADA263432, February 1993.
)

Within the staged maturity levels are groupings of software engineering topics called Key Process Areas (KPAs). Across maturity levels 2 through 5 there are 18 different KPAs as follows:

· Level 2 - Requirements Management, Software Project Planning, Software Project Tracking and Oversight, Software Subcontract Management, Software Quality Assurance, Software Configuration Management

· Level 3 - Organization Process Focus, Organization Process Definition, Training Program, Integrated Software Management, Software Product Engineering, Intergroup Coordination, Peer Reviews

· Level 4 - Quantitative Process Management, Software Quality Management

· Level 5 - Defect Prevention, Technology Change Management, Process Change Management

Each of the KPAs contains detailed practices pertaining to the topic of the KPA.

Depth. In addition to the complete set of practices contained in the model, the book offers a chapter on interpreting the model. This interpretation covers the structure of the model, the common features, roles, and terminology (reference CMU/SEI-93-TR-24).

The book also provides a comparison of ISO 9001 (1994) and the SW-CMM® (reference CMU/SEI-94-TR-12
) by describing the related practices in the KPAs for each of the 20 ISO 9001 elements with similarities and differences. A KPA profile is included to display the overlap between requirements in ISO 9001 and practices in the SW-CMM®. This profile is from the viewpoint of an ISO 9001-compliant organization to assist them in determining the primary areas of the SW-CMM® that are not addressed by the ISO 9001 standard.

The book includes an overview of the SPICE project, which is an international effort to develop standards for software process improvement.

The book includes a mapping of the practices to the goals for the KPAs, which is used for appraisals based on the SW-CMM®.

Case Studies or Illustrative Applications. The book includes a case study of the mature software process instituted on the Space Shuttle Onboard Software project. Background information is supplied on project characteristics, improvement history, example metric data, lessons learned, and specific implementation approaches to a subset of the KPAs.

2.2.5 Kehoe, Raymond and Alka Jarvis. ISO 9000-3: A Tool for Software Product and Process Improvement. New York: Springer, 1995. (ISBN 0-387-94568-7, 229 pages)

Abstract. This book provides an understanding of the ISO 9000-3 guidelines, which give direction for applying the ISO 9001 standard to software. There are three main themes throughout the book that makes up the ISO 9000-3 guideline: the purchaser and supplier management; the engineering process; and the support engineering development, test and documentation processes. These processes are in support of the ISO 9000-3 methodology to enable a software project to become ISO 9001 certified.

Audience. The audience is any senior software engineer, software manager and non-software manager assigned the responsibility for creating an engineering environment within their company or organization. This book is also for software organizations who have the responsibility and ownership for the specification of the software product, and for those who will audit such organizations.

Scope. As stated, this book is a guide to implement an ISO 9000-3 program; it addresses the fact that the ISO 9000-3 is just a guideline. The approach builds on eight major software quality elements. It breaks down the three main themes (purchaser/supplier management; the engineering process; and the support engineering development, test and documentation) in a standard format: general description, comment, reason, and means to ensure. This gives a pattern to follow for implementation for each of the ISO categories. The book also discusses purchaser requirements, configuration management process, and the software process handbook as a quality manual. This handbook includes the different phases of implementation and a checklist for certification.

 Main Topics. The book includes the following topics:

· Introduction to ISO 9000-3

· Overview of Software Engineering - engineering a software product; a case for plans, specifications, processes and procedures; configuration control; and reviews, inspections and walkthroughs.

· ISO 9000-3’s Theory, Concepts, Themes, Interpretation, Critique and Warnings

· ISO 9000-3 Scope & Overview - Scope, definitions, framework, and life-cycle and supporting activities.

· Supplier and Purchaser - management responsibilities, supplier’s quality system, contracts, and purchaser requirements and acceptance.

· Development Planning

· Design and Implementation

· Testing & Validation

· Software Maintenance

· Configuration Management

· Document Control

· Quality Records

· Measurement, Rules and Tools

· Purchasing and Including Third-Party Products

· Training

· The Audit Process

· The Software Process Handbook as the Quality Manual - Product Specification and Preliminary Planning, Engineering Specification and Detailed Planning, Product Design, Product Implementation, System Test, Product Evaluation, Product Release and Maintenance. Each of the phases document sections in a consistent format: purpose, deliverables, exit criteria, description and steps.

Depth. This book gives an overview of the ISO 9000-3 guideline in sufficient detail to be used as a roadmap and tool to pass a certification audit.

Case Studies or Illustrative Applications. There was no specific project or case study used throughout this book. Key templates for marketing requirements, software requirements specification, software design document, system test specification, document plan, project development, alpha/beta evaluation plans and a version description document are located in the book’s attachments.

2.2.6 Radice, Ronald . ISO 9001 Interpreted for Software Organizations. Andover, MA: Paradoxicon Publishing, 1995. (ISBN 0-9645913-0-8, 352 pages)

Abstract. The ISO 9001 international standard was established to address quality requirements across diverse industries. As such, the requirements within the standard are written in a generic manner to accommodate the diversity of applications. This book addresses the interpretation of the ISO 9001 requirements as they apply to the software industry. Included in the book are the requirements from the ISO 9001 standard, the corresponding ISO 9000-3 guidance for applying the standard to software, and the author’s interpretation of these standards and guidelines.

Audience. This book is designed for anyone interested in understanding how the ISO 9001 standard applies to a software environment. The primary target audience is software developers and managers who are tasked with implementing ISO 9001 within their organization. The software organization may be of any size and may use any type of software life cycle model. Knowledge of the ISO 9001 standard and/or the ISO 9000-3 guideline is helpful, but is not a prerequisite to understanding this book.
Scope. The book addresses the application of the 1994 ISO 9001 standard and 1991 ISO 9000-3 guidelines to a software organization. The standard and related guidance applies to the full scope of software life cycle activities.

Main Topics. The book introduces the key concepts of ISO (e.g., quality systems, registration, audits, compliance) through several chapters in a question and answer format for commonly asked questions regarding ISO.

The majority of the book is devoted to the interpretation of ISO 9001 requirements for a software organization. The book includes one chapter for each of the twenty elements of the ISO 9001 standard (e.g., Management Responsibility, Quality System, Contract Review.) Each of these twenty chapters is organized with the same interpretation structure that covers the following:

· Focus - a brief description of the essence of the ISO element

· ISO 9001 Clause - the exact words as written in the requirement clauses for ANSI/ISO/ASQC Q9001-1994 American National Standard Quality Systems- Model for Quality Assurance in Design, Development, Production, Installation, and Servicing
· Interpretation - an introductory level discussion of the ISO 9001 requirements

· Explanation of Requirements - discussion of the ISO 9001 requirements from a software perspective

· Risk of Not Doing - discussion of the risks associated with not satisfying the ISO 9001 requirements

· Relationship to ISO 9000-3 - the guidance words written in ISO 9000-3 First Edition 1991-06-01 Quality Management and Quality Assurance Standards- Part 3: Guidelines for the application of ISO 9001 to the development, supply, and maintenance of software along with discussion of the guidance provided therein

· Relationship to First Version of ISO 9001 - identification of the requirements differences between the first version (1987) of ISO 9001 and the second version (1994) of ISO 9001

The book also includes in summary list form a subset of requirements extracted from ISO 9001. These checklists are grouped in the categories of quality records, quality documents, and audits/reviews and specify the associated ISO clause.

Depth. In addition to guidelines for the basic implementation of the ISO requirements within a software environment, the book offers recommendations for a software organization to move beyond the minimum requirements of ISO 9001 to a more Total Quality Management (TQM) approach to quality.

Case Studies or Illustrative Applications. The book includes two sample templates for use by a software organization in applying ISO 9001. One of the templates is a checklist that includes example types of questions asked during an ISO audit. The second template is an example nonconformance record for documenting noncompliances to the ISO 9001 standard.
2.2.7 Software Engineering Standards Committee of the IEEE Computer Society. IEEE Standard for Software Quality Assurance Plans, IEEE Std 730-1998. The Institute of Electrical and Electronics Engineers, Inc.

Abstract. This standard provides requirements for the preparation, content and approval of Software Quality Assurance Plans (SQAPs) which are to be applied to the development and maintenance of critical software.
Audience. The intended audience for this standard is preparers of Software Quality Assurance Plans.
Scope. The standard defines the document organizational structure of the SQAP, and content of each section of the SQAP.
Main Topics. This document includes three sections: Introduction, Standard, and Annex.

· Introduction - identifies participants in the development of the standard, and delineates to whom the standard applies.
· IEEE Standard for Software Quality Assurance Plans - defines the SQAP document organizational structure and the content of each section of the SQAP.
· Annex A Guidelines for compliance with IEEE/EIA 12207.1 - 1997 - shows the relationship between this standard and the IEEE adaptation of the international standard ISO/IEC 12207 (IEEE/EIA 12207.1 - 1997), identifying what needs to be added to the requirements specified in this standard to comply with both standards.
Depth. Detailed descriptions are provided for each required section of the SQAP. Definition of terms used in the standard is also provided.

Annex A contains a table mapping the generic content requirements of IEEE/EIA 12207.1 against the requirements of IEEE Std 780-1998.
Case Studies or Illustrative Applications. No specific case studies or applications are cited.
2.2.8 Software Engineering Standards Committee of the IEEE Computer Society. IEEE Guide for Software Quality Assurance Planning, IEEE Std 730.1-1995. The Institute of Electrical and Electronics Engineers, Inc.

Abstract. This document provides approaches to software quality assurance practices that may be used in support of IEEE Std 730-1989, IEEE Standard for Software Quality Assurance Plans.
Audience. The intended audience for this standard is software quality assurance professionals, and managers of software development projects interested in initiating SQA procedures.
Scope. The document provides clarification of the requirements specified in IEEE Std 730-1989.
Main Topics. This document includes three sections: Introduction, Standard, and Annex.

· Introduction - identifies participants in the development of the guide and explains the purpose for which the guide was written.
· IEEE Guide for Software Quality Assurance Planning - For each section of the Software Quality Assurance Plan (SQAP) as defined in IEEE Std 730-1989, detailed explanations are provided to address what would be required to satisfy the requirements of the standard. Guidance is also given on how to implement the SQAP, and how to evaluate the effectiveness of the SQAP. Finally, it provides guidance on determination of the need to modify the SQAP and a methodology to accomplish this plan revision.
· Annex A Summary of the SQAP and related standards - details requirements specified in IEEE Std 730-1989 and IEEE Std 730.1-1995, and maps them against related IEEE and ISO standards.
Depth. Detailed guidance is provided for each required section of the SQAP, implementation of the SQAP, and evaluation and modification of the SQAP, as needed.

Case Studies or Illustrative Applications. No specific case studies or applications are cited.
2.3 Inspection

2.3.1 Ebenau, Robert G. and Susan H. Strauss. Software Inspection Process. New York: McGraw-Hill, 1994. (ISBN 0-07-062166-7, 362 pages)

Abstract. This book addresses formal inspections of software to uncover defects in the product. It details how to implement and manage an inspection process, including training, data collection and analysis, and a template for a procedures manual. This process is an enhanced version of that defined by Michael Fagan; it evolved through experience at Bell Laboratories.
Audience. Anyone interested in software in-process inspections, although the primary audience is managers and coordinators on projects which are not currently using an inspection process. Knowledge of statistical methods is not a prerequisite.
Scope. As mentioned, this book addresses formal inspections of software which have the primary objective of identifying defects. It does not cover informal walkthroughs. However, a chapter covers reviews, which emphasize resolving issues and have a primary objective of assessment of the value of the product.

Additionally, the authors purport that their inspection process definition is general enough to be used for documentation, hardware development and training development; they outline how to apply it to these domains.
Main Topics. The book covers the following topics:

· Process Management and Quality Control - how inspections play a role in quality control and presenting a case for the advantages of software inspections

· Inspection Process Implementation and Management

· Education and Support

· Data Collection and Analysis

· Inspection Procedures Manual Template

· Inspection in Other Development Processes - the extrapolation of the process for use in documentation, hardware and training development.

· Various Types of “Reviews” - overviews, technical reviews, inspections management reviews and informal reviews

· Inspection Data System (appendix) - a computerized data system to maintain and report data from inspections
Depth. The book goes in-depth into inspection performance, implementation, management and data collection and analysis. The details of performing inspections include phases, roles and their tasks within each phase, and data reporting. Information on how to implement an inspection program on a project includes resources, inspection coordination, defining the process and procedures, training and establishing data reporting and management. Another chapter addresses management issues such as resources and ensuring evaluation of the inspection process. The book also gets into the details of data collection and analysis and provides a template for a procedures manual, including checklists.
Case Studies or Illustrative Applications. Although a specific project is not used throughout the book as a case study, several specific examples are used from Bell Labs experience to illustrate the text.
2.3.2 Freedman, Daniel P. and Gerald M. Weinberg. Handbook of Walkthroughs, Inspections and Technical Reviews. New York: Dorset House Publishing, 1990. (ISBN 0-932633-19-6, 450 pages)

Abstract. Written in a question-and-answer format, this book addresses practical aspects of various types of inspections and reviews of software and other products. These concepts evolved through the authors’ experience with various clients and through logging the questions and answers encountered in those experiences.
Audience. Although the primary audience is managers, coordinators, or even programmers, who are beginning an inspection process on their project, those interested in improving their project’s inspection process may find the book useful as well. Knowledge of statistical methods is not a prerequisite.
Scope. This book provides information about inspections in general which can be applied to various types of formal and informal reviews, inspections and walkthroughs. Technical reviews which are early in the development process and which have the primary objective of identifying defects are the focus. The authors cover a variety of reviews for software, but also include reviews for documentation, test plans, tools, training materials, procedures and standards and operations and maintenance. They briefly address reviews in an academic environment as well.

The authors define the terms “inspection” and “review” in almost an opposite manner as in the other books on inspection in this section:

· Inspections - “. . . a method of rapidly evaluating material by confining attention to a few selected aspects, one at a time.” These are often used to evaluate the feasibility of the product (p. 239).

· Formal Review - Use of a qualified team of personnel to uncover defects in a product, authenticate the parts of the product which does not need improvement and effect an increased uniformity of product quality (pp. 7-8). The formality is determined by: a written report available to the entire project, team participation according to customs and written procedures, and team responsibility for the quality of the review (pp. 10-11).

Main Topics. The focus of the book is the practical implementation and installation of reviews on a software project. The following topics are covered:

· Review environment - This includes how to select reviewers and set up the logistics of time and facilities, as well as the role of management. Recommendations for how many participants, aspects of team composition, time and length of reviews, meeting rooms and telephone reviews are covered. The authors also offer advice on getting a review program started on a project, such as dealing with management problems, size of review materials and beginning with formal versus informal reviews.

· Implementing reviews - This section covers roles within a review, and the rules and customs governing them. The section on the review leader gives tips on handling problems with participants, including lateness, lack of preparation and non-productive behaviors during the meeting. The recorder role is also detailed and differentiated from the review leader role. Principles and customs which are helpful for reviewers, such as “be prepared” and “avoid discussions of style,” are delineated.

· Reporting results - The book discusses recording issues and reporting the results of reviews. The purpose of the technical report is argued and sample reports and issues are included. Guidelines for effectively writing issues are also recommended.

· Different types of review disciplines - The differences between reviews, inspections and walkthroughs are given. Also, techniques and tactics for reviews are discussed, as are the use of informal reviews.

· Types of materials reviewed - The book further describes the various types of materials that can be reviewed: functional specifications, design, code documentation, test plan, tools, training materials, procedures and standards, and operations and maintenance. These are covered in some detail, including sample checklists from companies such as IBM and Boeing Computer Services Corp. Finally, the book concludes with a reprint of an article discussing walkthroughs in an academic environment.
Depth. Using a question-and-answer format, the book addresses the pragmatic details of beginning a review program with a great deal of recommendations.

Case Studies or Illustrative Applications. No specific case studies or applications are cited.
2.3.3 Gilb, Tom and Dorothy Graham. Software Inspection. Wokingham, England: Addison-Wesley Publishing, 1993. (ISBN 0-201-63181-4, 471 pages)

Abstract. This book addresses formal inspections of software and subsequent development and inspection process improvement. This process is an enhanced version of that defined by Michael Fagan; it evolved through the authors’ experience with various international clients.
Audience. The primary audience is managers and coordinators interested in beginning or improving their project’s inspection process. Knowledge of statistical methods is not a prerequisite.
Scope. This book addresses formal inspections of software which are early in the development process and which have the primary objective of identifying defects. Except by way of contrast with inspections, the book does not cover informal walkthroughs or other types of reviews which are used for raising and/or resolving design or implementation issues.

Additionally, the authors purport that their inspection process definition is general enough to be used for documentation; they present examples of how it can be applied in that domain.
Main Topics. The book covers:

· The benefits and costs of inspection.

· Implementation and management of an inspection process, including installation, training, metrics collection and analysis, process improvement and overcoming difficulties.

· Several case studies to provide realistic experience on the subject (see “Case Studies” below).

· A one-page sample inspection handbook, as well as sample procedures and forms.
Depth. The book gives a lot of detail of inspection implementation and improvement. The details of performing inspections include phases, roles and their tasks within each phase, and data reporting. The authors give a great deal of attention to the rates of checking and logging defects before and during the inspection meeting. The book also stresses process improvement through defect prevention and recommends specific methods. Although installation of an inspection program on a project and training are covered, it is done so with only a moderate amount of detail. A one-page sample inspection handbook, as well as template and sample procedures and forms are included.
Case Studies or Illustrative Applications. The book dedicates several chapters to case studies from various companies around the globe. They provide a perspective from real-world experience in the area of inspections. A broad range of environments and experiences are presented, from small to large projects, from experience beginning with inspections to a presentation on implementing a defect prevention program.

2.3.4 Software Engineering Standards Committee of the IEEE Computer Society. IEEE Standard for Software Reviews, IEEE Std 1028-1997. The Institute of Electrical and Electronics Engineers, Inc.

Abstract. This standard provides requirements for five different types of software reviews: management reviews, technical reviews, inspections, walk-throughs, and audits. If does not define procedures for determining the necessity of a review or the disposition of results of the review.
Audience. The intended audience for this standard is software professionals (e.g., developers, testers) and managers of software projects.
Scope. The standard defines the requirements for systematic software reviews, where “systematic” includes the following attributes:

· Team participation
· Documented results of the review
· Documented procedures for conducting the review.
It is applicable to any life cycle phase or activity where software review activity is performed.
Main Topics. This document includes three sections: Introduction, Standard, and Annex.

· Introduction - identifies participants in the development of the standard, and delineates to whom the standard applies.
· IEEE Standard for Software Reviews - for each type of review defined, guidance and descriptive information is provided in the following areas:
1. Introduction - purpose of the review and an overview of the review procedures.
2. Responsibilities - roles of review participants and their responsibilities.
3. Inputs - materials that must be available to perform the specified review.
4. Entry criteria - conditions that must be satisfied before the review can be conducted
5. Procedures - activities to be performed that constitute the review being defined
6. Exit criteria - conditions that must be satisfied before the review can be considered to be complete.
7. Output - deliverables produced by the review.
For inspections and walk-throughs, guidance and descriptive information is provided in two additional areas:
1. Data collection recommendations - data that should be collected to assess the effectiveness of the review and quality of review products.
2. Improvements - recommendations for use of data collected on review process.
· Annex section contains three appendices:
1. Annex A - Relationship of this standard to the life cycle processes of other standards - maps terminology of this standard to other related standards
2. Annex B - Comparison of review types - comparison of features of the identified types of reviews

3. Bibliography - identifies standards that may be used in development of products that will be reviewed using the review process

Depth. Detailed descriptions are provided for each identified review type. Definition of terms used in the standard is also provided.

Case Studies or Illustrative Applications. No specific case studies or applications are cited.

2.3.5 Wheeler, David A., Bill Brykczynski and Reginald N. Meeson (eds.). Software Inspection: An Industry Best Practice for Defect Detection and Removal. IEEE Computer Society Press, 1996. (ISBN 0-8186-7340-0, 293 pages)

Abstract. This book addresses formal inspections of software. It is an annotated anthology of various papers on the subject, including Michael Fagan’s groundbreaking paper in an IBM Systems Journal in 1976. It includes the basics of the inspection process, experience reports, a discussion of process measurement data and a description of inspections of non-code products.
Audience. The primary audience is software developers, project managers and who are interested in implementing or improving an inspection process on their software project. Knowledge of statistical methods is not a prerequisite.
Scope. The focus of the book is formal inspections of software early in the development process which have the primary objective of identifying defects. However, it briefly covers other types of inspections, such as informal peer reviews and walkthroughs. The book also touches on inspections of non-code products, such as requirements, design and a software standard.
Main Topics. The book covers the following topics:

· The Basics of the Inspection Process - how to implement and install inspections on a software project.

· Experience Reports

· Process Measurement Data - types of data that can be collected on inspections and how the data can be used to manage the product and improve the development and inspection processes.

· Inspections of Non-Code Products - requirements, high-level design and a software standard.

· Miscellaneous Inspection-Related Topics - cognitive analysis in inspection, peer review processes, improving software quality through formal review, inspection meetings and a two-person inspection method.

Depth. The “Introduction to Software Inspection” section of the book includes not only Michael Fagan’s original article on software inspections, but also a follow-on article, written ten years later, on advances in inspections. The articles go in-depth into the benefits, costs and objectives of inspection. They cover the basics of inspection implementation, such as process steps and roles, in only moderate detail, but include sample forms.

The experience reports included give a broad spectrum of illustrations on the implementation of software inspections. The articles provide insight into inspection process adoption, data collection, problems and pitfalls. See “Case Studies” below.

The section on inspection process measurement outlines the use of specific data to:

· manage the software project, including tracking project status, managing resources, determining the quality of the inspected product, and gauging the effectiveness of inspections; and

· improve the development and inspection processes through additional data collection, defect prevention and statistical quality control.
The three articles which describe inspections of non-code products, such as requirements, high-level design and a software standard, primarily focus on the benefits of inspections of those products and make some recommendations, but do not provide much detail on the actual implementation.
Case Studies or Illustrative Applications. Seven experience reports offer a broad spectrum of illustrations on the implementation of software inspections. The experiences range from pilot projects to large development and maintenance projects at companies such as AT&T, Hewlett-Packard and Bell-Northern Research. The articles provide insight into how inspections were integrated into projects, data collection, the relationship of inspection to testing and quality, and problems and pitfalls. This includes an article that focuses on an unsuccessful experience of implementing inspections, with lessons learned.
3. Acronym List

CBA IPI
CMM-Based Appraisal for Internal Process Improvement

CMM
Capability Maturity Model

IEEE
Institute of Electrical and Electronics Engineers

ISO
International Organization for Standardization

ISO SPICE
International Organization for Standardization Software Process Improvement and Capability dEtermination

KPA
Key Process Areas

SEI
Software Engineering Institute

SEPG
Software Engineering Process Group

SQA
Software Quality Assurance

SQAP
Software Quality Assurance Plan

SW-CMM(
Software Capability Maturity Model

TQM
Total Quality Management

All acronym definitions are from Schulmeyer, pp. 681-688, except where noted.

4. Glossary

The following definitions are for use in this report, in the context of software quality assurance. Definitions are quoted verbatim from the IEEE Standard Glossary of Software Engineering Terminology, IEEE-STD-610.12-1990, unless otherwise indicated.

Assessment An appraisal by a trained team of software professionals to determine the state of an organization’s current software process, to determine the high-priority software process-related issues facing an organization, and to obtain the organizational support for software process improvement.

Audit An independent examination of a work product or set of work products to assess compliance with specifications, standards, contractual agreements, or other criteria.
Capability Maturity Model A description of the stages through which software organizations evolve as they define, implement, measure, control and improve their software processes.

Causal analysis The analysis of defects to determine their underlying root cause.

Compliance Adherence to a standard or set of rules or specifications.

Continuous Improvement a discipline applying technical and administrative direction and surveillance to identify and document the functional and physical characteristics of a configuration item, control changes to those characteristics, record and report change processing and implementation status, and verify compliance with specified requirements.
Defect Improper program conditions that are generally the result of an error. Not all errors produce program defects, as with incorrect comments or some documentation errors.

Defect prevention The activities involved in identifying defects or potential defects and preventing them from being introduced into a product.

Development process The process by which user needs are translated into a software product. The process involves translating user needs into software requirements, transforming the software requirements into design, implementing the design in code, testing the code, and sometimes, installing and checking out the software for operational use. Note: These activities may overlap or be performed iteratively.
Embedded SQA Activities which are part of the development stage and which will “build in” the desired product quality.
Error (1) The difference between a computed, observed, or measured value or condition and the true, specified, or theoretically correct value or condition. For example, a difference of 30 meters between a computed result and the correct result.

(2) An incorrect step, process, or data definition. For example, an incorrect instruction in a computer program.

(3) An incorrect result. For example, a computed result of 12 when the correct result is 10.
(4) A human action that produces an incorrect result. For example, an incorrect action on the part of a programmer or operator.
Note: While all four definitions are commonly used, one distinction assigns definition 1 to the word “error,” definition 2 to the word “fault,” definition 3 to the word “failure,” and definition 4 to the word “mistake.”

Inspection A static analysis technique that relies on visual examination of development products to detect errors, violations of development standards, and other problems. Types include code inspection; design inspection.
ISO SPICE A major international initiative to support the development of an International Standard for Software Process Assessment (draft ISO 15504). The project has three principal goals: to develop a working draft for a standard for software process assessment, to conduct industry trials of the emerging standard, and to promote the technology transfer of software process assessment into the software industry world-wide.

ISO 9001 Quality systems: Model for quality assurance in design/development, production, installation, and servicing – 1994.

ISO 9000-3 [A] guideline for application of ISO 9001 to the development, supply, and maintenance of software – 1991.

Key process area (KPA) A cluster of related activities that, when performed collectively, achieve a set of goals considered to be important for establishing process capability. The key process areas have been defined to reside at a single maturity level [in the SEI SW-CMM(]. They are the areas identified by the SEI to be the principal building blocks to help determine the software process capability of an organization and understand the improvements needed to advance to higher maturity levels.

Life cycle The period of time that begins when a software product is conceived and ends when the software is no longer available for use. The software life cycle typically includes a concept phase, requirements phase, design phase, implementation [code] phase, test phase, installation and checkout phase, operation and maintenance phase, and, sometimes, retirement phase. Note: These phases may overlap or be performed iteratively.
Measure A standard or unit of measurement; the extent, dimensions, capacity, etc., of anything, especially as determined by a standard; an act or process of measuring; a result of measurement.

Metric A quantitative measure of the degree to which a system, component, or process possesses a given attribute.

Process A sequence of steps performed for a given purpose; for example, the software development process.
Process assurance The set of systematic activities providing the evidence of the ability of the software process to produce a software product that is fit for use.

Process improvement A deliberate, planned methodology following standardized documentation practices to capture on paper (and in practice) the activities, methods, practices, and transformations that people use to develop and maintain software and the associated products. As each activity, method, practice and transformation is documented, each is analyzed against the standard of value added to the organization.

Process management The direction, control, and coordination or work performed to develop a product or perform a service. Example is quality assurance.
Process maturity The extent to which a specific process is explicitly defined, managed, measured, controlled, and effective. Maturity implies a potential for growth in capability and indicates both the richness of an organization’s software process and the consistency with which it is applied in projects throughout the organization.

Product assurance A planned and systematic pattern of all actions necessary to provide adequate confidence that an item or product conforms to established technical requirements.
Quality management system The organizational structure, responsibilities, procedures, processes, and resources needed to implement quality management . . . fully integrating TQM principles especially continuous improvement.

Review A process or meeting during which a work product, or set of work products, is presented to project personnel, managers, users, customers, user representatives, or other interested parties for comment or approval. Types include code review, design review, formal qualification review, requirements review, test readiness review.
SEI SW-CMM(See Capability Maturity Model.
Six sigma A strategy to reduce the number of errors in a software system to less than 3.4 defects per million lines of code. It relates to being six “standard deviations” away from the mean in a “normal distribution.”

Software engineering process group A group of specialists who facilitate the definition, maintenance, and improvement of the software process used by the organization.

Software quality assurance (1) A planned and systematic pattern of all actions necessary to provide adequate confidence that an item or product conforms to established technical requirements.

(2) A set of activities designed to evaluate the process by which products are developed or manufactured.
Software quality assurance plan [A document specifying] goals, the SQA tasks to be performed, the standards against which the development work is to be measured, and the procedures and organizational structure.

Software quality program The overall approach to influence and determine the level of quality achieved in a software product. It consists of the activities necessary to establish requirements for the quality of a software product; establish, implement, and enforce methodologies, processes, and procedures to develop, operate, and maintain the software; establish and implement methodologies, processes, and procedures to evaluate the quality of a software product and to evaluate associated documentation, processes, and activities that impact the quality of the product.

Software reliability The ability of [the software] to perform its required functions under stated conditions for a specified period of time.
Statistical process control The application of statistical principles and techniques in all stages of production, maintenance, and service, directed toward the economic satisfaction of demand.
.
Testing (1) The process of operating a system or component under specified conditions, observing or recording the results, and making an evaluation of some aspect of the system or component.

(2) (IEEE Std 829-1983 [5]) The process of analyzing a software item to detect the differences between existing and required conditions (that is, [errors]) and to evaluate the features of the software items.
Total quality management The application of quantitative methods and human resources to improve the material and services supplied to an organization, all the processes within an organization, and the degree to which the needs of the customer are met, now and in the future.

Validation The process of evaluating a system or component during or at the end of the development process to determine whether it satisfies specified customer requirements.
Verification (1) The process of evaluating a system or component to determine whether the products of a given development phase satisfy the conditions imposed at the start of that phase.

(2) Formal proof of program correctness.
Walk-through A static analysis techniques in which a designer or programmer leads members of the development team another interested parties through a segment of documentation or code, and the participants ask questions and make comments about possible errors, violation of development standards, and other problems.
5. Annotated Bibliography of Public Domain Papers

Below is a selected bibliography of papers in the public domain that address the subjects of this technical report. Inclusion in this list should not be construed as an endorsement of the content of either the papers nor the Internet sites. Abstracts and descriptions are included verbatim.

5.1 Software Quality Assurance

Bazzana , Gualtiero, G. Ru , S. Scotto di Vettimo, and Massimo Giunchi. “Improving Software Quality through Quantitative Evaluation of Products and Processes.” http://www.iscn.ie/news/iscn95/doc-16.html.

Description:

This paper presents pragmatic approaches and experiences aiming at software product quality improvement based on quantitative measures. Starting from the knowledge matured in the SCOPE Project, the paper presents the fundamentals of measurement-based SW product quality improvement and two case studies from the telecom application domain. The former focuses on the improvement in maintainability reached by a data collection and analysis campaign adopting source code static analysis techniques. The latter describes the improvement in efficiency derived from a simple yet profitable statistical analysis of the operational profile of the systems installed in field. Last but not least, the paper gives hints on the relationship between process quality and product quality, in terms of:

· impact of process improvement practices on the quality of SW products, as derived from an European-wide survey;

· a method for tracking the net contribution of process improvement on product quality and business goals.

Ippolito, Laura M. and Dolores R. Wallace. “A Study on Hazard Analysis in High Integrity Software Standards and Guidelines.” http://hissa.ncsl.nist.gov/HHRFdata/Artifacts/ITLdoc/5589/, 1995.

Abstract:

This report presents the results of a study on hazard analysis, especially software hazard analysis, in high integrity software standards and guidelines. It describes types of system hazard analysis (that influence software), types of software hazard analysis, techniques for conducting hazard analysis (along with some of their advantages and disadvantages), and other practices and processes that should be employed in order to ensure the safety of software.

NASA Goddard Space Flight Center. “SOFTWARE QUALITY ASSURANCE AUDITS GUIDEBOOK.” http://satc.gsfc.nasa.gov/audit/audgb.txt.

Description:

The NASA Software Assurance Guidebook [NASA-GB-A201] classifies the software quality assurance (SQA) audit as a fundamental quality assurance technique. It is the intent of this guidebook to further define audits, describe the audit process, and provide a sample checklist that can be tailored for use in an audit. The guidebook is written for quality assurance practitioners who will perform audits, software developers who will be audited, and for software project managers and acquirers who have to decide the extent of auditing to be done.

Peng, Wendy W. and Dolores R. Wallace. “ Software Error Analysis.” http://hissa.ncsl.nist.gov/HHRFdata/Artifacts/ITLdoc/209/error.htm.

Abstract:

This document provides guidance on software error analysis. Software error analysis includes error detection, analysis, and resolution. Error detection techniques considered in the study are those used in software development, software quality assurance, and software verification, validation and testing activities. These techniques are those frequently cited in technical literature and software engineering standards or those representing new approaches to support error detection. The study includes statistical process control techniques and relates them to their use as a software quality assurance technique for both product and process improvement. Finally, the report describes several software reliability models.

Rosenberg, Linda, Ted Hammer, and Jack Shaw. “Software Metrics and Reliability.” http://satc.gsfc.nasa.gov/support/ISSRE_NOV98/software_metrics_and_reliability.html.

Abstract:

The IEEE defines reliability as "The ability of a system or component to perform its required functions under stated conditions for a specified period of time." To most project and software development managers, reliability is equated to correctness, that is, they look to testing and the number of "bugs" found and fixed. While finding and fixing bugs discovered in testing is necessary to assure reliability, a better way is to develop a robust, high quality product through all of the stages of the software lifecycle. That is, the reliability of the delivered code is related to the quality of all of the processes and products of software development; the requirements documentation, the code, test plans, and testing.

Software reliability is not as well defined as hardware reliability, but the Software Assurance Technology Center (SATC) at NASA is striving to identify and apply metrics to software products that promote and assess reliability. This paper discusses how NASA projects, in conjunction with the SATC, are applying software metrics to improve the quality and reliability of software products. Reliability is a by-product of quality, and software quality can be measured. We will demonstrate how these quality metrics assist in the evaluation of software reliability. We conclude with a brief discussion of the metrics being applied by the SATC to evaluate the reliability .

Stewart , Ronald, Peter Holt, and Robert John. “Leading Indicators Of Rework: A Method of Preventing Software Defects.” http://www.mda.ca/incose/incose98/INCOSE98.htm.

Abstract:

At Raytheon Systems Canada Ltd. (RSCL) , it has been found that certain software metrics provide early warning signs of future rework. By using leading indicators early in the software development cycle to identify high risk units, substantial rework can be saved later in the cycle. It is expected that this finding can be replicated on any project with a software review and testing process, development environment, and metrics program similar to that of a RSCL project.

5.2 Assessment and Standards

Baumert, John H. and Mark S. McWhinney. “Software Measures and the Capability Maturity Model.” http://www.sei.cmu.edu/sema/pdf/baumert.pdf.
Abstract:

This document describes a set of software measures that are compatible with the measurement practices described in the Capability Maturity Model for Software. These measures, in the form of software indicators, cover thirteen different categories that include progress, effort, cost, and quality. Each indicator category contains example figures which illustrate behavior that may occur on a project. The text provides users with tips on how to use these figures or similar ones on their projects. Project software managers and software engineering process groups can use these indicators during the software development life cycle to gain insight into the software development process and software process improvement activities. The indicators chosen have been successfully used on projects in the software industry.

Paulk, Mark C., Charles V. Weber, Suzanne M. Garcia, Mary Beth Chrissis, and Marilyn Bush. “Key Practices of the Capability Maturity Model, Version 1.1.” http://www.sei.cmu.edu/pub/documents/93.reports/pdf/tr25.93.pdf.

Description:

[The] first chapter gives an overview of the CMM and of the document. . . [It includes:]

· an overview of the CMM and its constituent parts,

· a description of how to use the format of the key practices, and

· a description of ways to use and interpret the key practices.

Following the overview, the key practices for the key process areas of the CMM are described. For those who want to get a quick sense of the key practices, without the rigor that is needed in applying them, an abridgment of the key practices is provided in Appendix C.

Wallace, Dolores R., Wendy W. Peng, and Laura M. Ippolito. “Software Quality Assurance: Documentation and Reviews.” http://hissa.ncsl.nist.gov/publications/nistir4909/.

Abstract:

This study examines the contents of a software quality assurance standard for nuclear applications. The study includes recommendations for the documentation of software systems. Background information on the standard, documentation, and the review process is provided. The report includes an analysis of the applicability, content, and omissions of the standard and compares it with a general software quality assurance standard produced by the Institute for Electrical and Electronics Engineers. Information is provided for the content of the different types of documentation. This report describes information for use in safety evaluation reviews. Many recommendations in this report are applicable for software quality assurance in general.

5.3 Inspection

Macdonald, F., J Miller, A Brooks, M Roper and M Wood. “A Review of Tool Support for Software Inspection.” http://www.cs.strath.ac.uk/research/EFOCS/abstracts.html.

Abstract:

Inspection is widely believed to be the most cost-effective method for detecting defects in documents produced during the software lifecycle. However, it is by its very nature a labour intensive process. This has led to work on computer support for the process which should increase the efficiency and effectiveness beyond what is currently possible with a purely manual process. In this paper we describe the scope for tool support for the inspection process and review currently available products. We conclude that no single tool available fills all the identified needs of inspection.

Macdonald, F., J Miller, A Brooks, M Roper, and M Wood. “Automating the Software Inspection Process.” http://www.cs.strath.ac.uk/research/EFOCS/abstracts.html.

Abstract:

Inspection is widely believed to be the most cost-effective method for detecting defects in documents produced during the software development lifecycle. However, it is by its very nature a labour intensive process. This has led to work on computer support for the process which should increase the efficiency and effectiveness beyond what is currently possible with a solely manual process. In this paper, we first of all describe current approaches to automation of the inspection process. There are four main areas of inspection which have been the target for computer support: document handling, individual preparation, meeting support and metrics collection. We then describe five tools which have been developed to support the inspection process and compare the capabilities of these tools. This is followed by a fuller discussion of the features which could be provided by computer support for inspection and the gains that may be achieved by using such support.

Miller, J. “Estimating the number of remaining defects after inspection.” http://www.cs.strath.ac.uk/research/EFOCS/abstracts.html.

Abstract:

An essential component of all software inspection processes is a well-founded decision about continuing or stopping the current process. This decision should be based upon directly relevant quantitative information - the number of defects remaining in the artefact. This quantity can be estimated by the use of capture-recapture methods. Several Software Engineering papers have explored this topic, but the questions: how applicable is this approach, and which capture-recapture technique is best, still remain unresolved. This paper attempts to shed further light upon these questions. After reviewing, the relevant capture-recapture models and the attempts at evaluating them within a Software Engineering context, the paper proceeds to evaluate the models by using data collected from subject-based experiments on software inspection. The experiments used artefacts where the number of defects are known and hence the paper produces a direct measure of the accuracy of the various capture-recapture techniques. The paper reports that the heterogeneity models are, in general, better - especially the Jackknife estimator. But also reports that further work is required, to correct the limitations of the current models, if reliable estimates are to be achieved.

.�.�.�.�.�.�..�.�.

� G. Gordon Schulmeyer, et al, The Handbook of Software Quality Assurance (Upper Saddle River, NJ: Prentice Hall PTR, 1998), p. 9.

� Watts S. Humphrey, Managing the Software Process (The SEI Series in Software Engineering) (Reading, MA: Addison-Wesley Publishing, Inc., 1990), p. 140.

� Ibid., p. 143.

� Wendy W. Peng and Dolores R. Wallace, “Software Error Analysis, NIST Special Publication 500-209” (Gaithersburg, MD: National Institute of Standards and Technology, March 1993), pp. 7-8, 9-10 (sections 2.1, 3.1).

� Humphrey, p. 142.

� NASA Goddard Space Flight Center, “Software Quality Assurance Audits Guidebook” (http://satc.gsfc.nasa.gov/audit/audgb.txt, November 1990), p. 2.

� Ibid., pp. 2, 5.

� Ibid., pp. 6-7.

� Tom Gilb and Dorothy Graham, Software Inspection (Wokingham, England: Addison-Wesley Publishing, 1993), pp. 18-19.

� Robert G. Ebenau and Susan H. Strauss, Software Inspection Process (New York: McGraw-Hill, 1994), pp.283-285.

� Ibid., p. 4.

� Paulk, pp.29-32.

� Gilb and Graham, pp. 114-122.

� Standards Coordinating Committee of the IEEE Computer Society, IEEE Standard Glossary of Software Engineering Terminology, IEEE-STD-610.12-1990 (New York: IEEE, 1991).

� Schulmeyer., p. 11.

� Ibid., p. 658.

� Peng and Wallace, p. 20 (section 5).

� Ibid.

� Schulmeyer, p. 65.

� An updated version of Figure 6.4 in Paulk, p. 99.

� PASS FSW releases occur approximately every twelve months.

� Currently out of print

� Capability Maturity Model for Software, Version 1.1 http://www.sei.cmu.edu/pub/documents/93.reports/pdf/tr24.93.pdf

� http://www.sei.cmu.edu/pub/documents/93.reports/pdf/tr25.93.pdf

� A Comparison of ISO 9001 and the Capability Maturity Model for Software

http://www.sei.cmu.edu/pub/documents/94.reports/pdf/tr12.94.pdf

� Johnnie Henderson and Bryce Ragland, “Book Review: A Rigorous Approach to Quality,” CrossTalk, November/December 1995, p. 27.

� Paulk, p. 350.

� Humphrey, p. 147.

� Paulk, p. 365.

� Ibid., p. 353.

� Ibid., p. 354.

� Humphrey, p. 311.

� Paulk, p. 356.

� Software Quality Institute, Griffith University, Australia, http://www-sqi.cit.gu.edu.au/spice/.

� Ronald Radice, ISO 9001 Interpreted for Software Organizations (Andover, MA: Paradoxicon Publishing, 1995), p. 4.

� Ibid.

� Paulk, p. 358.

� Bryce Ragland, “Measure, Metric, or Indicator: What’s the Difference?” CrossTalk, Vol. 8, No. 3 (March 1995), p. 29.

� Schulmeyer, p. 9.

� David Szymanski and Thomas Neff, “Defining Software Process Improvement,” CrossTalk, Vol. 9, No.2 (February 1996), pp. 29-30.

� Paulk, pp. 365-366.

� Radice, p. 339.

� Alka Jarvis and Vern Crandall, Inroads to Software Quality: “How To” Guide and Toolkit (Upper Saddle River, NJ: Prentice Hall PTR, 1997), p. 105.

� Paulk, p. 364.

� Humphrey, p. 147.

� Schulmeyer, p. 116.

� W. Edwards Deming, “My View of Quality Control in Japan,” Reports of Statistical Application Research, JUSE, Vol. 22, No. 2 (June 1975), p. 77.

� Paulk, p. 368.

4
33

_1016512516.unknown

