Part 3: Management GSAM V

Chapter 14

The Management
Challenge

ersion

Chapter 14: The Management Challenge GSAM Version 3.0

Contents
14.1 Chapler OVEIVIEWcccceviieiiiiieeeiieeeesiiee et e e sieee et e et e s nnse e s nnseeeenes 14-3
14.2 Seize the OPPOITUNITYoeviiiiiie e 14-4
14.2.1 Embrace the Software Vision: Make It Work for Youc.cc........ 14-4
14.2.2 Make the Commitment to EXCElENCecoeviieviiiiiiiiee e, 14-6
14.3 Program Management Challenge.........ccoccveiiiei e 14-7
14.3.1 Managing a New-Start Programccccoecveeeeiieeeenieee e 14-7
14.3.1.1 LeSSONSLEAINEd......cuuiiiiiiiieeiiie et 14-7
14.3.1.2 Earned Value Management System (EVMS).......ccccevviieveiiinennns 14-9
14.3.2 Managing an On-going Prograimcccceeeeeeirieeesneeeesneeeesseeeeenns 14-11
14.3.3 Managing a PDSS Programcccoeeeeeeiiieee e 14-12
14.3.4 Determining If Your Program IsIn Trouble...........cccoceviiieriiiinnnee. 14-12
14.3.4.1 What to Do With aTroubled Programcccccoeceveiiienennnen. 14-17
14.3.4.1.1 TakeaHIAUScvveveiiiiieciiie e 14-18
14.3.4.1.2 Increase Your Schedulecocoeeiiieiiiiii e 14-18
14.3.4.1.3 Reduce the Number of Requirements to be Satisfied........ 14-18
14.3.4.1.4 IMProve YOUr PIrOCESScccuveeiereeeeerieeeeeeeeeeeeeeeeeeeeeeeeeens 14-19
14.3.4.2 What To Do With a Program Catastrophe?cccccoevveveennen. 14-19
14.3.4.2.1 Abandoning the Catastrophe...........cccccoeciveeeeiiiiiieeeeeenee, 14-20
14.4. The Continuous Improvement Challenge..........cccooeiiinininiiieee 14-20
14.4.1 MEBSUMEIMENTuueiiiiiiiiee e e e e e e e e e e e eaeas 14-20
14.4.2 BASEIINEScei ettt sttt sttt e e e 14-21
14.4.3 BENChMAIKSoooiiiiiee e 14-21
14.5 Your Management Challengecocoeeeiiiiiiiiiie e 14-22
14.6 RETEIEINCES ..oiiieiiee ettt sb e eneee e 14-24

14-2

Chapter 14: The Management Challenge GSAM Version 3.0

14.1 Chapter Overview

In this chapter, you will learn that, in addition to detailed technical insight, a high-level, big
picture perspective is needed for successful software acquisition management. Closely tied to
the technical competence needed for good management is the confidence that you are being
supported. From the governing documents, sources for schools and tools, through the white
papers and acquisition program exampl es, to the guidelines and phil osophical insights on selected
subjects found in the Appendices of these guidelines, you have awealth of practical information
to assimilate and digest. The Vision for Software expressed here encompasses the promise that
you have a software infrastructure to support your management activities. Your challengeisto
make use of these resources (e.g., tools, schools, repositories, programs, technol ogy, professional
workforce) to ensure the success of your program as it supports the DoD mission.

There are three categories of acquisition management which apply to DoD software programs.
If you are managing a new-start program, your challengeis to follow the advice found in these
Guidelines with the objective of attaining customer satisfaction, quality, economy, efficiency,
and process improvement. If your program is a smooth running on-going effort, your goal isto
improveyour process. Thisisaccomplished through rigorous self-assessment and the introduction
of new processes, tools, improved methods, and advanced technol ogies.

If your on-going program is in trouble, you must first assess the extent of your problems. The
cure for atroubled program can only be achieved by identifying the causes of your problems,
removing them, and preventing their recurrence. While you are focusing on a cure, there are
some band-aid efforts you can employ to get back on track until the sources of problems are
identified and remedied. AsBenjamin Disraeli, former British prime minister, proclaimed, “He
who gainstime gainseverything.” Increasing your schedulewill gain you time, productivity, and
decrease defects, aswill reducing the number of requirementsto be satisfied. If you determine,
however, that your program is beyond repair through detailed cost/benefit analyses, do not think
twice, stop it dead in its tracks!

Throughout these Guidelinesthe underlying theme has been quality through processimprovement.
Your program is never so successful that it cannot be made better. Processimprovement means
there is a definable, measurable process to improve. The bottom line for improving software
development ismeasurement. You must be able to determine where you stand today to determine
how to improve for tomorrow. This includes establishing a baseline and measuring progress
from that point in time. Measurement should include all facets of your process for which
improvement is possible, and for which metrics can be applied as a normal part of everyday
activities. Benchmarks are useful for comparing your effort with other successful programs, and
for setting realistic goals for improvement.

These Guidelines are your opportunity for success. They provide you with information you can
use to enhance and support your management efforts. You will find no secrets here — only
better ways of doing business, based on common sense and |learning from our mistakes. Remember
that success can only be obtained through simultaneous efforts. Your challengeis to take what
you have learned here and direct it to your given program. With sustained constancy and sound
management decisions, you will help achieve the Vision for Software.

14-3

Chapter 14: The Management Challenge GSAM Version 3.0

14.2 Seize the Opportunity

In an interview with the Washington Post, General Colin L. Powell described how to achieve
SUCCESS.

“There are no secrets to success; don’t waste your time looking for them...Success is the result of
perfection, hard work, learning from failure, loyalty to those for whom you work, and persistence.
You must be ready for opportunity when it comes.” [POWELL89]

As a software-intensive system acquisition manager, these Guidelines provide you with a
significantly improved opportunity for success. Managers must aggressively look for better ways
to increase productivity, reduce costs, and improve product quality. This motivation comes by
learning from failure, loyalty to those for whom you work (and those who work for you), a
determination to achieve quality through persistent work, and a desire for perfection. Software
engineering isthe basis upon which this opportunity resides. The proven paradigms and methods
presented in these Guidelines allow you to take full advantage of this technol ogy.

A software acquisition infrastructure has been established to provide aframework for applying
software engineering technology to your program. Thisinfrastructure was designed to beflexible,
to take advantage of software state-of-the-art and from management practices that work and will
provide you the greatest opportunity for success. However, as M osemann explains,

““Software problems will not be solved purely by policies, by standards, or even by education. An
integrated DoD software technology strategy that includes both software management and
technology initiatives will make a much larger difference in resolving DoD’s current and future
software problems.” [MOSEMANNO93]

M osemann warns that institutional changes simply do not happen by mandate; there has to be
buy-in at every level. Your commitment to turn around software acquisition problems is the
most important buy-in of all! To do this, all of you who are affected by the infrastructure must
participate in its evolution. Incentives must be provided to our industrial partners, along with
education and training for our managers, practitioners, and team members. Measurement is an
integral part of the framework, as cost/benefits must be understood and quantified. Ways to
exploit our valuable cache of legacy software assets through reuse and re-engineering must be
explored. Our systems must be open and have well-defined generic architectures so they can
evolve and endure. Our customers must be enlightened and our suppliers must be certified. If
you are ready for success, the opportunity is yours!

14.2.1 Embrace the Software Vision: Make It Work for You

Although we have turned the tide of failure and experienced some success, we must never be
satisfied with the status quo. We must be dedi cated to never-ending software processimprovement.
The Vision is to continuously improve software quality and predictability through diligent
application of engineering discipline. The way we plan to achieve this Vision is a twofold
approach of which you are an integral part. One facet of the Vision encompasses the
institutionalization of software engineering practice throughout all software development programs
DoD-wide. Having read these Guidelines, you have asolid foundation from which to make your

14-4

Chapter 14: The Management Challenge GSAM Version 3.0

contribution to this Vision by institutionalizing the practice of software engineering within your
program. Because education and training are key to achieving the Vision, you, as a software
manager, must place high priority on keeping your software professional s trained and educated
in software engineering discipline.

The other facet of the Vision is the establishment of a software engineering infrastructure. As
illustrated on Figure 14-1, thisinfrastructureis based on a concept created by the Japanese some
20 years ago — the house-of-quality. Used asatotal quality management (TQM) communication
tool, the structure shows how all the pieces of a system are needed to build and provide support
to thewhole. Theimportance of the pillarsto each other in supporting the ceiling (theVision) is
aninterrelated and co-related set of methods, techniques, technol ogies, and organizations. Your
side of the equation — using software engineering discipline to build your pillar — needs parall el
bal ance and support from the infrastructure to achieve the Vision for thewhole. Here, the purpose
isultimately to help you and other software professionals by actively addressing software issues
surfacing within your programs. Part of the infrastructure is the gathering of a software work
force within which communication, learning, and education are cultivated and where exchange
of corporate knowledge flows freely through technology transfer and the sharing of lessons-
learned. Infrastructure resources are dedicated to continuous improvement through working
groups and agent (software organizations) support. The infrastructure also brings consistency,
repeatability, and currency to software development through the implementation of software
policies and management plans.

VISION

C""Sistently building higher quality s/t ware

[tosupport DoD needs
SOFTWARE SO DARE
ENGNEERW?/ STRUCTURE
el w

o[1222 0l |n|B|o)s
Sonl=ZlelE | ﬂfZLIJ—ﬂ-O
olale|®E oli|o|=(2
n:o>-l|_u|'” LLOU)<09
o|5|ow|E v|<|28|E|g
FIoIZS|z|2 ¥ |ulale
" = == w0 Zz
L loo|o [¢] | W O
ol |e|hlzu S|, < |Z|O
Ol |P|W|E Qlzrg|w
FARIME: —Z | F || |E
'—UDJizﬂfo Z'—'—OO§
Yo oul | < /0|52 >
2 |gla < ¥ P20
Z<jo] |V L I

PROCESS IMPROVEMENT

DEVELOPER
MATURITY

‘ SYSTEM LIFE CYCLE

‘ PROGRAM MANAGEMENT (SPO) ‘ PRODUCTIVITY ‘

Figure 14-1. Vision for Software

14-5

Chapter 14: The Management Challenge GSAM Version 3.0

You must realize that the software engineering for which you are responsible is a relatively
young discipline. At first it may seem little more than a hodge podge of rules, methods, and
disparate piecesof information. The Vision providesthe unifying themethat bringstheingredients
for success into a single software engineering framework. The separate pieces, such as metrics,
reuse, models, tools, prototyping, open systems, re-engineering, risk management, and architecture
areinterrelated and merged into an integrating foundation permitting usto build quality into our
software through the application of technology and practical know-how. Thisdiscipline provides
an understanding of what it iswe are trying to do, and how to go about doing it.

At thefoundation of the Vision, holding it all together and making it work, isprocessimprovement.
The commitment and contribution to this concept must come from your program office, your
contractors, your colleagues’ programs, and your counterparts within the softwareinfrastructure.
The Vision is to select those contractors who have in hand a predictable, mature, software
development process with demonstrable, built-in mechanisms for its continuous improvement.

“Nothing is of greater importance in time of war than knowing how to make the best use of a fair
opportunity when it is offered.” — Niccolo Machiavelli [MACHIAVELLI21]

Inthe heat of fighting your daily management battles, remember the Vision. Asyou are engineering
your software, a software infrastructure provides you the opportunity to do your job better, to
help you succeed. Thisinfrastructureiscomprised of policiesto keep you intunewith initiatives
to improve the way we develop our software and manage our acquisitions. DoD and Service
policies and instructions are there to make sure we build uniformity and predictability into our
systems. Organizations within the infrastructure are there to assist in implementing reuse and
metrics, to evaluate our tools and our contractors, and to research new technologiesto improve
the way we do our jobs. Training programs and software courses provide the opportunity to
advance our skills, and to increase our understanding of the software engineering discipline.
Make use of the tools, the repositories, the education, the programs, the technol ogy, the agents
(labs, institutes, and centers), and the software work force discussed throughout these Guidelines.
They are offered as your fair opportunity; use them to your best advantage. Remember, you are
not on a solo mission — an extensive team is there to back you up.

14.2.2 Make the Commitment to Excellence

Embracing the Vision also means making a commitment to excellence — excellence in
management and excellencein your product. People are conditioned to believe defectsin software
areinevitable. For theforeseeablefuture, softwarewill continueto be built by humans; however,
humans are believed to have a built-in defect factor. Most commercial software development
organizations allow 20% of salesfor scrap, rework, warranty repairs, complaint handling, service,
test, and inspection. [SCHULMEY ER92] Human errors cause thiswaste. To eliminate waste
in software devel opment, we must concentrate on preventing the errors and defects that plague
us. There must be acommitment to defect reduction for all programs.

In hisbook, Quality is Free, Cosby explainsthat adefect whichisprevented hasno cost. It needs
no repair, no examination, no explanation. [COSBY 79] Defect prevention techniques caninclude
peer inspections, process action teams, Cleanroom engineering, software quality assurance (SQA),
early testing, commercial-off-the-shelf (COTS), reuse, prototyping, and demonstrations. A serious

14-6

Chapter 14: The Management Challenge GSAM Version 3.0

defect prevention program is comprised of combinations of techniques, each chosen for its ability
to prevent adifferent class of defects.

14.3 Program Management Challenge

We are aware that all our readers are not at the same stage in their acquisition programs. The
issues with which you are challenged and how you deal with them will, therefore, differ. Your
program may be a new start, may be many years into along acquisition cycle, may be running
smoothly, or plagued with the problems common to software acqui sition and devel opment projects.
You might be tasked with the maintenance of newly delivered software, or software that has been
inusefor 20 yearsor more. Or you might be supporting acombination of new Adasoftware that
has to run with older non-Ada applications, or a combination of COTS or non-developmental
item (NDI). These different management challenges are addressed in the following sections, or
in the chapters cited, and are listed as the following:

* Managing anew-start program,
* Managing an on-going program,
* Managing a PDSS program, and
* Managing atroubled program.

14.3.1 Managing a New-Start Program

Every new program can benefit from the lessons |learned on previous programs. Additionally, it
isimportant to set up ameansto accurately determine program progress. The meansrequired by
DoD 5000.2-R for major projects is the Earned Value Management System .

14.3.1.1 Lessons Learned

If you are managing a new development, follow these Guidelines as completely and fully as
possible. Your challenge is to apply proven software engineering practices and streamlined
procurement methods to your acquisition program. They should reflect the concept that we are
interested in not only buying product, but process. We have attempted to assemble a variety of
lessons-learned to give you insight into what works and what does not. Thefollowing are lessons
learned that deal with software acquisition and development from various sources. Don'’t repeat
history. Take the time to review these lessons periodically. See how they may apply to your
project. Then take the steps necessary to avoid the problems they describe. The descriptions
below contain the outlines only, take time to download and read the entire documents.

James H. Dobbins, a Professor of System Management at the Defense Systems M anagement
College and Course Director for the Management of Software Acquisition Course, wrote an
article titled “ Software Acquisition Management in a Nutshell” for the January-February 1994
issue of Program Manager magazine (available at www.dsmc.dsm.mil/pubs/pdf/pmpdf9o4/
dobbins.pdf). Though the Mil-STDscited are out of date, the remainder of the articleisasvalid
today as when it was written. In it, Mr. Dobbins discusses eight cost-proposal blinders that
prevent the program manager from recognizing software risks. He then covers twenty-three
sources of software risk and uncertainty. These are followed by twenty-nine rules for managing

14-7

Chapter 14: The Management Challenge GSAM Version 3.0

software acquisition. He also includes seventeen rulesto keep software contracting from “ biting”
you. Software metrics is the next area covered, including eleven implications of the software
complexity metric. Dobbins concludes by describing theimportance of managing software testing.

The Software Program Managers Network (SPMN) reported twenty-four categories of L essons
Learned — Current Problems in their SPMN Software Development Bulletin Number 3, 31
December 1998. It isavailable at www.spmn.com. The categories are:

* Systems Engineering

* Safety and Security

¢ Continuous Risk M anagement
* Requirements Management

e Planning and Tracking

* Products Required for Delivery
e Interface Management

* Vighility

e Cost Estimation

¢ Schedule Compression

e Rework

e Reuse

e Architecture
e Quality

* Retaining Technical Staff

e Approach to Achieving Higher SEI Rating

* Integrated Product Teams

e Configuration Management

e Test

* Maetrics

* Cost of Maintenance

* Software Development Environment/Tools
¢ Contract/RFP Management

e Commercial-off-the-Shelf (COTS) Products.

The SPMN also identified 16 Critical Software Practices for Performance-Based M anagement
(available at www.spmn.com/critical_software_practices.ntml), categorized inthreeareas. They
are:

* Project Integrity
- Adopt Continuous Project Management
- Estimate Cost and Schedule Empirically
- UseMetricsto Manage
- Track Earned Value
- Track Defects Against Targets
- Treat People as the Most Important Resource

14-8

www.spmn.com
www.spmn.com/critical_software_practices.html

Chapter 14: The Management Challenge GSAM Version 3.0

e Construction Integrity
- Adopt Life Cycle Configuration Management
- Manage and Trace Requirements
- Use System-Based Software Design
- Ensure Data and Database I nteroperability
- Define and Control Interfaces
- Design Twice, Code Once
- Assess Reuse Risks and Costs

* Product Stability and Integrity
- Inspect Requirements and Design
- Manage Testing as a Continuous Process
- Compile and Smoke Test Frequently.

It is also sound advice to research lessons-learned from programs similar to yours within your
domain to arm yourself with as much knowledge as possible. Never forget, software acquisition
is one of the toughest management battles you will ever fight. Be armed, prepared, and well-
trained. You must always plan, measure, track, and control with quality as your number one
goal.

Another major issue to addressin your new acquisition isto make sure the new softwareyou are
building today is not a maintenance nightmare tomorrow. Well-engineered software must be
reliable, understandable, and modifiable. The mai ntenance burden of tomorrow’ slegacy software
will be lightened by the success of your efforts today.

14.3.1.2 Earned Value Management System (EVMS)

DoD 5000.2-R discussesthe EV M Sin the section on Cost Performance (3.3.5.3), and in Appendix
V1. Oneof the stated purposes of EVMSisto “ Provide an adequate basisfor responsible decision
making by both contractor management and DoD Component personnel by requiring that
contractors' internal management control systems produce datathat: (a) indicate work progress,
(b) properly relate cost, schedule, and technical accomplishment; (c) are valid, timely, and able
to be audited; and (d) provide DoD Component managerswith information at apractical level of
summarization.”

The EVM S is more than the formulas often associated with earned value. It includes thirty-two
mandatory procedures grouped in five categories:

e Organization

e Planning, Scheduling, and Budgeting
e Accounting Considerations

* Anaysisand Management Reports

* Revisions and Data Management

Use of the EVMS is required on significant contracts and subcontracts within all acquisition

programs. Significant contracts include research, development, test, and evaluation contracts
and subcontracts with avalue of $70 million or more or procurement contracts and subcontracts

14-9

Chapter 14: The Management Challenge GSAM Version 3.0

with avalue of $300 million or more (in FY 1996 constant dollars). Compliance with EVMS
criteriais not required on firm fixed price contracts, time and materials contracts, and contracts
which consist mostly of level-of-effort work. However, all program managers may want to review
the EV M Scriteriaand select for implementation the proceduresthat areimportant to their program.

The Defense Systems Management College (DSMC) Earned Value Management Gold Card,
shown as Figure 14-2, covers what several individuals usually characterize as the EVMS.
Additional EVMS information is available on the DoD EVMS home page at www.acq.osd.mil/
pm/.

Defense Systems Management College
Earned Value Management Gold Card

— EAC Frofit / Fees
. e
I—I—\
| FMB | ‘ Managernent Re serve |
e
[conmitecams | [hsrbted B |
| Work Packages | ‘ Aanning Packages ‘

TERMINOLOGY

HOC - Megotided Contract Cost (Combact price fess profitfes(s))
AW - uthorized Unprced I ok Wk sppvioed, bat not yet negotisted]
: " . " GBB - Cirtract Budyet Base (e of NOC and ALWD
VARIANCES (ranvattelspositus Untcestiels nagie) o OTB - Crer Taret Bassline et of CEB and rsoognizesd ovevain)
* Gost Yariance CV¥ = BUWP- ACWP Cvih= —— TAB - Total Mlocated Budiget (S of it brickyets v work on tomead-NCE, CBGor OT8)
BUWP BAC —Buudget 0t Completion [Tots! bukgetfor o1l mombact thyur 2oy given level)
S PHB - Peifo 12 1t Comtract tire-phased
‘Sohedule Varance S = BCWP - BCWS e e erimanoe heasirene (Coniacttime pfased ueget plar)
+Yariance at Complktion 1AC = BAC-FAC MR -Management Ressne (Berdoret withheld by comteactor P dor arknownsfisk mgt)
UB - Uhdistributed Budget (el defined activiies not vet distibuted & CAs)
. . CA - Cortrol Becount (Lowest CWES el sssigned o 2 single foos!
PERFORMANCE INDICES (Fasieis> 11, tfaurse i< 1.0 it opan and cone? e seopessched el
+ Gost Efficiency oA = ACHP W ok Package [Neartermy, detaiplanned adiuities witiin 2 CA)
- re ~Plarning Packawe [Far-terrn A activities not yet defined into WPs)
BCWS - Budgeted Cost of ok Scheduled (Yalve of work planned & be dome) — ALAN
. H - RCWP BGWP - EBudgeted Cost of Work Performed (Valie of wow aooonplished] — EARNED VALLE
Schedule Pffciency = —ws ACWP - ctual Cost of Watk Parommeed Gt of work sommigtished) - ACTUAL COST
EAG -Estirmte At Corrpletion st of ot most— For ktd oompead thrweany given leved|
OVERALL STATUS EVM POLICY (as defined in DOD 5000.2-R)
*Percent Complete - T EVHS Ciiteria Approach [iManagement ool sistem must rved Criteriat
REmlredfurnunFFP cortract exceeding $700 RDTAE or $5000 in procurement (Cy 963
+Pement Spent - ACWPam e mayhe icer benefits, risk and citicality.
BAC for EAC) Chmradurrmsi establish, maintain, and use a system that meets the intert of the 32 Gritera
* Cost Perforrmance: Report [CPR] is deliwred asa COFEL item
*5 Formats (WES, Chyanization, Saseline, Siaffing, and Explanations)
TO COMPLETE PERFORMAMNCE INDEX {TCPI} CSSR Approach (Manayernent Gontd syster ot recuiredto mest Citeriz):
_ = Reouired for non FFP contract exceeding B6hd (CY968 and 12 morths in lencth.
+TCH = WORK REMANING = BAC - BUWP cuw =Cortrackor systern with reasorably ohjective eamed valee methods is adequate.
Eh COST REMAIMNG EAU - ACWP cum *CotASchedie Stabis Report (G55R) is deliversid as a CORL ftem
*2 Forrrats [WBS and Explanations)
ESTIMATE AT COMPLETION EAC= AP +Estimate fer Rermaining Work] EVH Home Page — titp:tw.ace os miljamn /
G BCHE DSMC EV E-Hail Address — EVME@DEMS. DSM.MIL
- BAC -) DSHC EY Phone No. — (FOZ) $05-2842/296% (D3N 655)
‘EAC,, = *EAC, = ACWP v
U Pl Compole o CP! cum) » [P cor) Det 1997

Figure 14-2. DSMC Earned Value Management Gold Card

One caution about using Actual Cost of Work Performed (ACWP), Budgeted Cost of Work
Performed (BCWP), and Budgeted Cost of Work Scheduled (BCWS) to determine program
status. The summary earned value metrics can be misleading. They may indicateaprogramisat
the half-way point when it is only at the 10 percent point on the critical path. Critical path only
earned value metrics must be examined. Earned value metrics can also be misleading at the start
of aprogram, suggesting that the same variance seen on an early process block or work breakdown
structure element will reoccur for every remaining process block. Some organizations have
modified their tracking to account for these problems.

14-10

www.acq.osd.mil/pm/
www.acq.osd.mil/pm/

Chapter 14: The Management Challenge GSAM Version 3.0

14.3.2 Managing an On-going Program

Today, there are very few major new-start software-intensive acquisitions in DoD. Therefore,
most of the readers of these Guidelines are either managing on-going programs, or programsin
post-deployment software support (PDSS) [discussed in Chapter 12, Software Support]. If your
program ison track, do not be tempted to sit back and rest on your laurels. AsBrigadier General
Marshall explained:

*“Success is disarming. Tension is the normal state of mind and body in combat. When the tension
suddenly relaxes through the winning of the first objective, troops are apt to be pervaded by a
sense of extreme well-being and there is apt to ensue laxness in all of its forms and with all of its
dangers.” [MARSHALLA47]

No one has ever reached a state of perfection in software development. If your program has
successfully achieved itsfirst objectives, do not become disarmed by success. Thereisdanger in
relaxing your management efforts through a sense of well-being. Your challengeisto relentlessly
improve your process through an investment in resources and effort to increase and mature your
development capabilities.

Old habits, doing things the way they have always been done, are major inhibitorsto innovation,
growth, and progress. You must relentlessly improve your process and your management skills.
Thetimeto initiate improvement is not when things are broken, but when they are working well.
Robert J. Kriegel, a performance psychology pioneer explains:

* Toridethe wave of change, move before the wave hits you.
* Always messwith success.

* Speed kills quality, performance, and innovation.

e The best time to change is when you don’t have to.

e Playingit safe is dangerous.

e Get in the habit of breaking your habits.

* Round up your sacred cows and put them out to pasture.

e Stokethefire, don’t soak it; and,

e |Ifitain't broke, BREAK IT! [DRAKE93]

Transitioning asoftware devel opment program into amature, software production requires sound
management practices, an unremitting obsession for process improvement, and a wise use of
technology. Elevating your program’s software quality and productivity is neither smple nor
cheap, but well worth the investment. New methods can include transitioning to Ada, adding
new tools, or altering development methods and practices. As you have learned throughout
these Guidelines, there are many practices, processes, methods, tools, and technol ogiesthat offer
improvements. Thesetransitions are not always free and may involve someinitial schedule and
cost impact. You and your contractor(s) should evaluate together the relative merits of the
improved practicesthat seem to offer the greatest potential for reducing overall cost and schedule
risk. They must also be assessed for their ability to decrease defects and increase the quality of
your product. Software technology transitions are an opportunity for significant gainsin quality
and productivity, but poorly planned and executed transitions can result in serious program
setbacks.

14-11

Chapter 14: The Management Challenge GSAM Version 3.0

Successful implementation of ““new ways of doing business’ in on-going programs cannot bethe
exclusive province of either the contractor or the government program manager. Since these
best practices were not foreseen at contract award, contract documentswill not reflect their use
and may (or may not) need to be modified. Generally, contractors will need to absorb some
initial unplanned cost, and the Government will need to concede to some schedule delays.
However, if technology transition planning is performed successfully, cost and schedule
investments will reap substantial dividends.

The key is to enlighten your customer — educate your contractor — gain a consensus about
“what to do”” and ““how to do it.”” Be sure they read these Guidelines! Take advantage of the
infrastructure of support organizations that are doing a lot of the homework for you. They are
there to evaluate your needs and advise you on how to proceed. Remember the Vision; make it
work for you and keep on pressing!

14.3.3 Managing a PDSS Program

If you are managing a PDSS program, you employ the same tactics as new-start and on-going
programs. Follow the software engineering discipline discussed in these Guidelines with the
ceaseless goal of improving your process. This can include re-engineering part or all of your
code to Ada, incorporating reuse and COTS for enhanced functionality, or restructuring your
code so it is more maintai nable and modifiable.

14.3.4 Determining If Your Program Is In Trouble

You most likely already know if your program is in trouble! Your developer is not providing
orderly documentation, the software development plan is inadequate, or not being followed.
Your program is over budget, behind schedule, and the user-discovered defect rate in delivered
modulesis above the acceptable range. These are not uncommon problemswhere aprogramis
on its way to a near disastrous situation. Programs in trouble can run into delays and budget
overruns of 200% to 300%, and, in some cases, must be abandoned. [BENNATAN92]

Most software engineering methodol ogies focus on preventing (not correcting) these types of
problems. Preventing problemsisalways easier and less costly than solving them. Asyou have
learned throughout these Guidelines, problems become more expensive the further into the
development they are discovered. Once neglected, problems propagate into other areas of the
development process, making them more difficult and costly to reverse. Your challengeis to
determineif your program can be salvaged by enacting aradical change that adoptstheingredients
for success found in these Guidelines.

NOTE: If you are not sure whether your program is in trouble, look at management
metrics variances. If the current set looks “abnormal,” you are in trouble!

Before you can make adecision about acure, you must first determine the cause of your program’s
sickness and the severity of the disease. You must determine whether your program isso sick it
should either be terminated, started over from scratch, or whether upgrading your technology
and improving your process will provide sufficient remedy. To make this assessment, apply the

14-12

Chapter 14: The Management Challenge GSAM Version 3.0

same software engineering discipline used to prevent problems. The best way to identify and
assess the severity of your problems is to go looking for them. There are afew basic sources of
problems common to aimost all DoD software programsin trouble. These include:

* Software sinherent complexity,

e Our inability to estimate cost, schedule, and size,

e Unstable requirements, and

* Poor problem-solving/decision making (which includes reliance on Silver Bullets).

Colonel Lyons noted some addition problems:

* Failureto recognize or accept that a software challenge exists,
e Questionable developer capability, capacity, and tools,

* Inadequate development process discipline; and,

e Failure to manage subcontracts. [LY ONS91]

Cost, schedule, and quality problems associated with software products are merely symptoms of
problemsin the processthat produced them. Defects, design errors, and major scheduleslipsare
not the causes of problems — they are the symptoms. Behind the symptoms, something was
done by someone during the creation or evolution of that activity that caused the problem. By
analyzing the cause (e.g., of design errors) and concentrating your resources on the software
process, you can determine what must be done to improve that process, and thus, to solve your
problems. [ARTHUR93] To determine where in your development process the cause of your
problemslie, you have to quantify it. To accomplish this, you must:

e Define your process,

e Measure your process and product,

* Analyze the metricsto determine deficienciesin your process and the quality of your product;
and,

* Institute the software engineering practi ces and methods discussed in these Guidelines.

Process improvement implies there is some definable and measurable process to improve. In
software engineering, all processes at each development phase are targets for improvement.
There are also ancillary processes, such as configuration management, software quality, test and
integration, in-process reviews, and formal peer inspections. Each of these ancillary processes
supports your overall development process, and each can be improved.

To quantify your process, and thusimproveit, you must haveabaseline. Thisbaselineisused as
the measured starting point for each phase of problem solving. You must, therefore, become
sufficiently organized to have adefinable, quantifiable process that can be measured. [REIFER92]
Once measurement data is collected, it must be pondered, analyzed, placed in alarger context,
and woven into the fabric of where you have been and where you are going. Measurement
information must be transformed into ““insight™ for it to be meaningful.

The following Software Program Managers Network “Breathalyzer” questions will give you a
quick-look into the status of your program’ shealth. If at any time you cannot answer any of these
questions or must answer one or more with a““no,”” you should schedule an immediate program
review.

14-13

Chapter 14: The Management Challenge GSAM Version 3.0

Design Code
Woalkthrough ~ Walkthrough

Procedural Coding Unit

Design Test

Requirements Preliminary i +

Review Design Validatior
» ot " I
Analysis and Architectural Test
Specification and Data Integration
Desig T

\ : \
.. . +« —HE—IN
.
o L 4
. * -
@ = Milestone Test Test Testing ¢
Planning Procedure Review

Figure 14-3. Activity Network Example

1. Do you have acurrent, credible activity network supported by a work breakdown structure
(WBS)? Asillustrated on Figure 14-3, an activity network is the primary means to organize
and allocate work.

- Haveyou identified your critical path items?

- What explicit provisions have you made for work that is not on your WBS?

- Doestheactivity network clearly organize, define, and graphically display thework to be
accomplished?

- Does the top-level activity network graphically define the program from start to finish,
including dependencies?

- Doesthelowest-level WBS show work packages with measurabl e tasks of short duration?

- Areprogram objectives fully supported by lower-level objectives?

- Does each task on the network have awell-defined deliverable?

- Is each work package under budget control (expressed in labor hours, dollars, or other
numerical units)?

NOTE: A well-constructed activity network is essential for accurate estimates of program
time, cost, and personnel needs, because estimates should begin with specific work
packages.

14-14

Chapter 14: The Management Challenge GSAM Version 3.0

2. Doyou have acurrent, credible schedule?

I's the schedule based on a program activity network supported by the WBS?

Isthe schedule based on realistic historical, quantitative performance estimates?
Does the schedul e provide time for education, holidays, vacations, sick leave, etc.?
Doesthe schedule provide time for quality assurance activities?

Does the schedule alow for all interdependencies?

Does the schedul e account for resource overlap?

Isthe schedule for the next 3-6 months as detailed as possible?

Isthe schedule consistently updated at all levels on Gantt, PERT, and critical path charts
every two weeks?

Isthe budget clearly based on the schedule and required resources over time?

Can you perform to the schedule and budget?

3. Do you know what you have to deliver?

Are system operational requirements clearly specified?

Are definitions of what the software must do to support system operational requirements
clearly specified?

Are system interfaces clearly specified, and, if appropriate, prototyped?

I sthe selection of software architecture and design method traceabl e to system operational
characteristics?

Are descriptions of the system environment and rel ationships of the software application
to the system architecture specified clearly?

Are specific development requirements expertly defined?

Are specific acceptance and delivery requirements expertly defined?

Are user requirements agreed to by joint teams of developers and users?

Are system requirements traceabl e through the software design?

4. Do you have alist of your Top Ten risk items? If so, what are they? [See Chapter 6, Risk
Management, for more information on the Top Ten List.]

Has a Risk Officer been assigned to the program?

Are risks determined through established processes for risk identification, assessment,
and mitigation?

I's there a database that includes all non-negligible risks in terms of probability, earliest
expected visible symptom, and estimated and actual schedule and cost effects?

Are all program personnel encouraged to become risk identifiers?

I sthere an anonymous communi cations channel for transmitting and receiving bad news?
Are correction plans written, followed-up, and reported?

| s the database of top-ten risk lists updated regularly?

Aretransfers of all deliverables/products controlled?

Are user requirements reasonably stable?

How are risks changing over time?

14-15

Chapter 14: The Management Challenge GSAM Version 3.0

5. Do you know your schedule compression? (Schedule compression is an indication of the
percent by which this program is expected to outperform the statistical norm for programs of
itssize and class.)

i
ScheduleCompressionPercentage = { L00- &

Has the schedule been constructed bottom up from quantitative estimates, not by
predetermined end dates?

Has the schedul e been modified when major modifications in the software take place?
Have programmers and test personnel received training in the principal domain area, the
hardware, support software, and tool s?

Havevery detailed unit-level and interface design specifications been created for maximum
parallel programmer effort?

Doesthe program avoid extreme dependence on specific individual s?

Are people working abnormal hours?

Do you know the historical schedule compression percentage on similar programs, and
the results of those programs?

Isany part of the schedule compression based on the use of new technologies?

Has the percent of software functionality been decreased in proportion to the percent of
schedule compression?

éCalendarTimeScheduled ol

: 100
] & NormalExpectedTime E%

(Nominal Expected Timeisafunction of total effort expressed in person months.)

For example, Boehm found that for a class of DoD programs of 500 person months or more:

Nominal Expected Time— 2.14 « [Expected Person Months]-*

(Nominal Expected timewas measured from System Requirements Review to System Acceptance
Test.) [BOEHM81]

NOTE: Attempts to compress a schedule to less than 80% of its nominal schedule aren’t
usually successful. New technologies offer additional risk in time and cost.

6. What is the estimated size of your software deliverable? How was it derived?

Has the program scope been clearly established?

Were measurements from previous programs used as a basis for size estimates?
Were source lines-of-code (SLOC) used as a basis for estimates?

Were function points used as a basis for estimates?

What estimating tools were used?

Are the devel opers who do the estimating experienced in the domain area?
Were estimates of program size corroborated by estimate verification?

Are estimates regularly updated to reflect software development realities?

NOTE: Software size estimation is a process that should continue as the program
proceeds.

14-16

Chapter 14: The Management Challenge GSAM Version 3.0

7. Do you know the percentage of external interfaces that are not under your control?

Has each external interface been identified?

Have critical dependencies of each external interface been documented?

Has each external interface been ranked based on potential program impact?

Have procedures been established to monitor external interfacesuntil therisk iseliminated
or substantially reduced?

Have agreements with the external interface controlling organizations been reached and
documented?

8. Doesyour staff have sufficient expertise in the key program domains?

Do you know what the user needs, wants, and expects?

Does the staffing plan include alist of the key expertise areas and estimated number of
personnel needed?

Doesmost of the program staff have experience with the specific type of system (business,
personnel, weapon, etc.) being devel oped?

Does most of the program staff have extensive experiencein the software language to be
used?

Arethe devel opers able to proceed without undue requests for additional time and cost to
help resolve technical problems?

Do the devel opers understand their program role and are they committed to its success?
Arethe devel opers knowledgeabl e in domain engineering — the process of choosing the
best model for the program and using it throughout design, code, and test?

Isthere adomain area expert assigned to each domain?

9. Haveyou identified adequate staff to allocate to the scheduled tasks at the scheduled time?

Do you have sufficient staff to support the tasks identified in the activity network?

I's the staffing plan based on historical data of level of effort, or staff months on similar
programs?

Do you have staffing for the current tasks and all the tasks scheduled to occur in the next
two months?

Have alternative staff buildup approaches been planned?

Doesthe staff buildup rate match the rate at which the program leadersidentify unsolved
problems?

Is there sufficient range and coverage of skills on the program?

Isthere adequate time allocated for staff vacations, sick leave, training and education?

14.3.4.1 What to Do With a Troubled Program

The following sections offer suggestions on how to deal with atroubled program. If you decide,
after you have thoroughly analyzed your process and identified the root causes of your problems,
that your program is salvageabl e, you might consider a3-6 month hiatus to institute the guidance
found in thisbook and get your housein order. In addition, there are some quick-fix strategies (as
opposed to long-term cures) you can employ if you are truly desperate. Quick-fix strategies
include the following:

e Increase your schedule, and
* Reduce the number of requirements to be satisfied.

14-17

Chapter 14: The Management Challenge GSAM Version 3.0

Improving your acquisition or devel opment process can hel p to bring your project under control.
Using a hiatus or quick fixes may bring immediate relief. But if these tactics work, you must,
must implement software engineering discipline to sustain any permanent improvement.
Remember, if quick-fixes work in the short-term, whatever in your process was causing your
problemsin thefirst place must be identified and rectified to sustain long-term improvement. |f
the root causes are not dealt with, your processwill revert back to the problemsyou identified in
your initial process assessment, on an order of magnitude worse. Of course, improving your
processistheideal solution.

14.3.4.1.1 Take a Hiatus

By following the software engineering practices discussed here, there isasignificant probability
you will gain back some or all of the hiatus time you invest in rescuing your program. The Air
Traffic Control System in Canada is an excellent example. The program was in trouble. The
contractor brought in a new manager whose first action was to educate the customer. Then, it
was agreed that a hiatus would occur. It lasted 8 months. During this time many changes were
made, including the adoption of the Rome L aboratory Software Quality Framework, acquisition
of the Universal Network Architecture Services (UNAYS) tool and the Rational Environment, ™
and training of the software development team to anew mindset. Asof thiswriting, the program
ison schedule, at cost, and expects to recover most, if not all, of the hiatus time.

14.3.4.1.2 Increase Your Schedule

“More software programs have gone awry for lack of calendar time than for all other causes
combined. Why is this cause of disaster so common?”” — Frederick P. Brooks, Jr. [BROOKS75]

When you set your schedul e to the minimum development time, effort is at its maximum to meet
deadlines, but the number of defects is also correspondingly high. For the troubled (but
salvageable) program, the temptation is to throw additional manpower at the problem and hold
the schedule. This will not work! Instead of adding manpower in a desperate attempt to meet
unrealistic schedul es, extend the devel opment time— without increasing or decreasing manpower.
This can substantially reduce the effort (and associated cost) compared to what it would have
taken to accomplish the task on the compressed schedule. In addition, the number of defectswill
drop. Regrettably, thisis often not possible once the program iswell underway. If your program
isin the 12th month of a12-month schedule, it isjust too | ate to decide you should have planned
in terms of a 17-month schedule. [PUTNAMO92] Therefore, the sooner you decide to extend
your schedule, the morelikely it will be viewed as a credible move by those above you.

BEWARE! Adding extra staff to reduce schedule has often not worked. In fact, studies
show that it can increase your schedule and increase your defects. Brooks’ well-known
observation rings true: “Adding manpower to a late software program makes it later.”
[BROOKS75]

14.3.4.1.3 Reduce the Number of Requirements to be Satisfied

If your program is in trouble, reducing the number of requirements to be satisfied will reduce
development time, effort, the number of defects, and improve programmer productivity by reducing
the size of the software to be developed. Software size can be reduced by paring the less essential
functions from your software, or by deferring the development of separate functions not needed

14-18

Chapter 14: The Management Challenge GSAM Version 3.0

forimmediatedelivery [i.e., strip the product (with the user’ sinvolvement) to the greatest number
of essential functions that can be delivered in the time available].

14.3.4.1.4 Improve Your Process

Improving your process will reduce effort, cost, development time, and the number of defects.
This is the ideal solution because all management indicators improve. Remember, improving
your process takes time and should not be considered a quick-fix. It takes along-term strategic
commitment. The software development process must be measured for improvements that are
both obj ective and management-oriented. Through measurement, you can determine which are
the best strategies to employ for improvement. Choosing a strategy that is, indeed, better will
result in software developed in less time, with less effort and money, and increased quality.
Improvement requires the ability to answer questions such as:

* When in the software life cycle do errors/defects occur?

e When and how are errors/defects detected?

e What can be done to detect errors/defects earlier?

e When are errors/defects corrected and at what cost?

* What causes the errors/defects, and what can prevent the errors/defects that do occur?

Solving software development problemsis not just the application of a set of tools, methods, or
motivational campaigns. It requires commitment and a dedication to astandard-of-excellence.
It is instituting a cultural change, and changing how your team members think and work. It
involves understanding and enhancing the human process that underlies software development
at all levels. Improvements can be achieved by changes in procedures, training of personnel,
addition of tools, increased automation, and simulated faultsinsertion. [KENETT92] However,
changing the way people think — cultural change — is the greatest challenge, and the key to
your success with process changes.

Improvements only occur when rigorous software engineering discipline is applied to improve
the human process. The human process must be organized around improvement objectives,
properly supported by technology. Whatever it takes to cure your program, there must be no
turning back to the old ways of doing business! DoD has seen its share of software fiascoes.
Your challenge is not to let a fiasco turn into a catastrophe, which occurs when we have not
learned from our collective mistakes. [REIFER92] There are many techniques and lessons-
learned for solving software problems. A few have been introduced here. Others are being
discovered daily. Your challengeis to find out what will work for you and implement them!
Remember Vince Lombardi’ s advice,

“The greatest accomplishment is not in never falling, but in rising again after you fall.”
[LOMBARDIG68]

14.3.4.2 What To Do With a Program Catastrophe?

A program catastrophe occurs when the only viable solution is program termination. Examples
of circumstances leading to program termination are:

14-19

Chapter 14: The Management Challenge GSAM Version 3.0

* The program appears to be technically infeasible; i.e., the work cannot be completed given
the current state of technology.

* The costs to complete the program far exceed the utility of the final system, or the software
will be so costly to operate that the user is better off never implementing it.

* The software will never be completed by a critical date, after which it will not be needed
(e.g., an old system will be made to make-do).

* The performance quality or maintainability of the softwareis so bad that the software will be
usel ess when compl eted — the best way to correct the problem isto start over.

* The software development processis so chaotic, and/or its personnel are so lacking in talent,
as to provide no expectation of improvement within areasonable time, at a reasonable cost.

14.3.4.2.1 Abandoning the Catastrophe

If your program is a catastrophe, you must recognize the problem as soon as possible! The
nature of the catastrophe must be identified, and you should treat all efforts and costs expended
to date as sunk. This decision is based on a cost/benefit analysis of completing the program,
versus restarting it, versus canceling it. Contracting officials should be called in to see if any
penalties or restitution to the Government ispossible. Sunk costs must be completely disregarded
on the common sense principle of don’t throw good money after bad. [ROETZHEIM88]

NOTE: If you have to abandon your program, you should be praised for having the
wisdom and fortitude to do so! But, remember, we are all still learning. So by all means,
document your lessons-learned and send them to us at the address in the Foreword and
last page of this Volume. The benefits of your insights may more than offset present
financial losses by helping others to better understand the software management
challenge.

14.4. The Continuous Improvement Challenge

Asdiscussed throughout these Guidelines, to achieve continuousimprovement you must establish
asoftware improvement culture within your program. Everyone on theteam (not just the software
devel opers) must be committed to attai ning the standard-of-excellence you set for your program.
Because maintai ning high standards requires persistent correction, process improvement should
be aregular topic of discussion at all in-process reviews and peer inspections. It should also be
on the agendaof working group and management meetingsheld at all levels. Processimprovement
metrics should be published, discussed, and assessed, the same as budget and schedul e status
metrics. Y our management guidance must support a ““software process first”” philosophy. Itis
your responsibility to allocate the necessary resources to make improvement happen.

14.4.1 Measurement

The most critical factor in the process improvement equation is the collection of metrics. Software
quality metrics must be collected and analyzed throughout software development. Once you
specify adesired standard-of-quality for each element of importance to your program, achieved
levels of quality must be measured at all predefined development milestones. These periodic
measures will allow you to assess current quality status, predict the quality level of the final

14-20

Chapter 14: The Management Challenge GSAM Version 3.0

product, and determine where quality isbelow desired levels. They giveyou the ability to zeroin
on problem areas on which process improvement activities can concentrate.

NOTE: See Chapter 13, Software Estimation, Measurement and Metrics, for a discussion
on how to set up a measurement program.

14.4.2 Baselines

A key element in a measurement program is the baseline. It gives you a quantitative view of
where you are today. It provides a framework for comparing your development program with
historical data, and a context for improvement and innovation. It identifies strengths and
weaknesses of the existing process, and helps to communicate them to all stakeholders.
[HETZEL93] Baselines are usually established at key milestone points. A meaningful baseline
for processimprovement must go beyond productivity and quality measures. A complete baseline
involves all measurable and improvable facets of the process. These include human resources,
organizational structure, user environment, software engineering environment (tools, procedures,
technology infrastructure), cost, schedule, funding, management practices — all those things
that impact your process. [RUBIN93]

14.4.3 Benchmarks

Software benchmarking is a concept borrowed from the hardware manufacturing industry.
M easurements (e.g., failurerates, specifications, time-to-market, cost to produce) are compared
with those of competitors. Using these measures, understanding that your production process
takes, for instance, 30% more time, costs 20% more, or produces 14% more latent defects than
your competitors, makesyou realize you are doing something wrong. Thesefiguresalone do not
tell you what iswrong, they just tell you that you are doing something different that affects your
competitive marketpl ace position.

“Benchmarking is a method for establishing baselines by which your development process can be
compared and rated against recognized industry leaders. This comparison is used to establish
targets and priorities for improving your process to achieve benchmarked levels of performance
and quality.” — Walter J. Utz, Jr. [UTZ92]

The quality approach isto fix the process causing the problem rather than fixing the product over
and over again. Optimizing your development process can be accomplished by assessing the
maturity of your software development capabilities [discussed in Chapter 10, Software
Development Maturity]. Each time your capabilities are assessed, you will gain insight into
those problem areas where you can concentrate your effortsin each subsequent round of process
improvement activities. Studies show that process improvement goals continually mature your
process, increase quality and productivity, and lower cost. Process improvement and control
continues until it is finally time to abandon the process by making a technology transition to a
superior process. [UTZ92]

14-21

Chapter 14: The Management Challenge GSAM Version 3.0

BEWARE! Studies show that programs operating at low levels of maturity tend to
abandon long-term improvement plans when faced with short-term crises.

Quantifiableimprovement of software devel opment capabilitiesrequiresbuy-in by all stakeholders
in the product and by the owners of all aspects of the process. Improvement activities must be
continued and sustained over the entire softwarelife cycle. Improvements should beimplemented
on all DoD programsin aphased-in, incremental, well-planned manner. Incentivesand rewards
should be budgeted and granted for improving software capabilities. Your continuous
improvement efforts should be sustained until the methods and procedures for improvement
become so ingrained in your program’s culture that they are performed routinely, as an integral
part of every day activities.

14.5 Your Management Challenge

Frederick Brooksisone of the true pioneers of software engineering. In anow classic collection
of essays, Brooksincludesalinedrawing of aprehistorictar pit, where great, now extinct creatures
are struggling to pull themselves from the gooey abyss. He explains:

Thetar pit of software engineering will continue to be sticky for along time to come. One can
expect the human race to continue attempting systems just within or just beyond our reach; and
software systems are perhaps the most intricate and complex of man’s handiwork. The
management of this complex craft will demand our best use of new languages and systems, our
best adoption of proven engineering management methods, liberal doses of common sense, and
a God-given humility to recognize our fallibility and limitations. [BROOK S75]

Your challenge as a software manager is to use the information found in these Guidelines, take
control of your acquisition, and devel op software with predictable cost, schedule, performance,
and quality.

Lloyd K. Mosemann, 11, while Deputy Assistant Secretary of the Air Force for Communications,
Computers and Support Systems, challenged the software community with eight tasks. He
remarked that the number eight isinadvertently prophetic in that the number eight isthe number
for new beginnings. There are seven days in a week and on the eighth day you start all over.
Your generation of software managersisat aturning point in history asyou have the opportunity
to start all over with anew order of successful software management. The software community’s
eight management tasks are:

To stimulate infrastructure investment,

To accelerate the pace of technology advance,

To adopt an architecture mentality,

To encourage functional managersto become moreinvolved, and to address the fundamental s
of how they do their business,

To advocate technology transition,

To make greater use of meaningful metrics,

To reduce the overhead burdens associated with software devel opment, and

To have defined processes and to institutionalize engineering discipline.

PWONPE

©NOo O

14-22

Chapter 14: The Management Challenge GSAM Version 3.0

Oliver Cromwell, afamous English statesman and soldier, was on the side of Parliament during
the English Civil War. He created the New Model Army (the first professional army in British
history), defeated the Scots and the Irish, destroyed the monarchy, executed King Charles|, and
ruled England. Thisillustrious military |leader’ s motto was:

“Not only strike while the iron is hot, but make it hot by striking.” [CROMWELLA47]
Theironishot! You are equipped with the tools, the repositories, the education, the programs,

the technology, the agents (labs, institutes, and centers), and the software infrastructure to help
you do your job smarter and better. They are your opportunity to make the iron hot by striking!

14-23

Chapter 14: The Management Challenge GSAM Version 3.0

14.6 References

[ARTHUR93] Arthur, Lowell Jay, Improving Software Quality: An Insider’s Guide to TQM, John Wiley
& Sons, Inc., New York, 1993

[BENNATAN92] Bennatan, E.M., On Time, Within Budget: Software Project Management Practices and
Techniques, QED Publishing Group, Wellesley, Massachusetts, 1992

[BOEHM81] Boehm, Barry W., Software Engineering Economics, Prentice-Hall, Inc, Upper Saddle River,
New Jersey, 1981

[BROOKS75] Brooks, Frederick P, Jr., The Mythical Man-Month: Essays on Software Engineering,
Addison-Wedley, Reading, Massachusetts, 1975

[COSBY79] Cosby, Philip B., Quality Is Free, New American Library, Inc., New York, 1979

[CROMWELL47] Cromwell, Oliver, Writings and Speeches of Oliver Cromwell, Harvard University
Press, Cambridge, Massachusetts, 1947

[DRAKE93] Drake, Dick, review of the book If It Ain't Broke, Break It! by Robert JKriegel, August 18,
1993

[HETZEL93] Hetzel, Bill, Making Software Measurement Work: Building an Effective Measurement
Program, QED Publishing Group, Boston, 1993

[KENETT92] Kenett, Ron S,, “Understanding the Software Process,” G. Gordon Schulmeyer and James|.
McManus, eds., Total Quality Management for Software, Van Nostrand Reinhold, New York, 1992

[LOMBARDI68] Lombardi, Vince, as quoted by Jerry Kramer, Instant Replay, 1968

[LYONS91] Lyons, Lt Col Robert P., Jr., “Acquisition Perspectives: F-22 Advanced Tactica Fighter,”
briefing presented to Boldstroke Senior Executive Forum on Software Management, October 16, 1991

[MACHIAVELLI21] Machiavelli, Niccolo, from 1421 writings, The Art of War, The Robbs-Merill Co.,
Inc., Indianapolis, 1965

[MARSHALLA47] Marshall, BGEN S.L.A., Men Against Fire, 1947

[MOSEMANNS93] Mosemann, LIoyd K., I1, asquoted in Ada Information Clearinghouse Newsletter, Val.
X1, No. 2, August 1993

[POWELL89] Powell, GEN Colin L., as quoted in the Washington Post, January 14, 1989

[PUTNAM92] Putnam, Lawrence H., and Ware Myers, Measures for Excellence: Reliable Software on
Time, Within Budget, Y ourdon Press, Englewood Cliffs, New Jersey, 1992

[REIFER92] Reifer, Donald J., " Software Reusefor TQM,” G. Gordon Schulmeyer and James|. McManus,
eds., Total Quality Management for Software, Van Nostrand Reinhold, New York, 1992

[ROETZHEIMS88] Roetzheim, William H., Structured Computer Project Management, Prentice Hall,
Englewood Cliffs, New Jersey, 1988

[RUBIN93] Rubin, Howard, “Putting a Measurement Program in Place,” Jessica Keyes, ed., Software
Engineering Productivity Handbook, Windcrest/McGraw-Hill, New York, 1993

[SCHULMEYER92] Schulmeyer, G. Gordon, “Zero Defect Software Development,” G. Gordon Schulmeyer
and James |. McManus, eds., Total Quality Management for Software, Van Nostrand Reinhold, New
York, 1992

[UTZ92] Utz, Walter J., Jr., Software Technology Transitions. Making the Transition to Software
Engineering, Prentise Hall, Englewood Cliffs, New Jersey, 1992

14-24

	Chapter 14 The Management Challenge
	Contents

