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	Every time these Guidelines go to press [this is our third version], we like to reflect on where the software community was when we started this project.  With this publication, we again realize it marks another significant milestone in improving how we acquire and manage our major software-intensive systems.  Indeed, we have come a long way from the speech I made in 1990 to a gathering of software professionals.  At that time I declared that the 1980s were a lost decade from the perspective of software development progress.  The question I posed was:  “Will there be a breakthrough in the 1990s?”  I went on to say:  “It won’t happen automatically; people are too satisfied with our unsatisfactory ways.  We dare not make the mistake of complacency a la the automobile industry; we must push awareness and resource commitment to get ahead of the power curve of demand.  Some believe that we only tap about 5% of the information that will be tapped and exploited by 2010!  Demands on systems, especially management information systems, will be overwhelming; we must be able to feed and satisfy this monster or it will devour us.  The challenge, then, is how to make the software world of the year 2000 a better place to be.  If we succeed, the 1990s will be known as a banner decade for software.  Should we fail, however, we will be hindered by the continuance of the software crisis and of the craft technologies of the 1970s and 1980s, even if we implement their products on gigahertz processors.  Worse, because such methods of developing software are so costly and unreliable, there will be few resources left over for the technology transition task, and new technologies and techniques will lag unaided into practice at the same glacial rate they do today.”

	In 1994, I closed the annual Software Technology Conference at Salt Lake City, Utah with the observation that the underlying need within the defense community is for predictability.  “From a Pentagon perspective, it is not the fact that software costs are growing annually and consuming more and more of our defense dollars that worries us.  Nor is it the fact that our weapon systems and commanders are becoming more and more reliant on software to perform their mission.  Our inability to predict how much a software system will cost, when it will be operational, and whether or not it will satisfy user requirements, is the major concern.  What our senior managers and DoD leaders want most from us, is to deliver on our promises.  They want systems that are on-time, within budget, that satisfy user requirements, and are reliable.”  I told the audience that the these Guidelines represent the most comprehensive source document on how to achieve these goals.  They are now required reading by every major defense university, used by industry as they prepare for competitive software procurements, and widely followed by software engineers in the field, the private sector, and among the services.  With this publication, they continue to represent the most substantive compilation of lessons-learned and best practices gathered from recognized software practitioners and experts available anywhere — government and industry-wide.

	So, as we go to press, “Where are we today and where will we be tomorrow?”  Although we have come a long way, as a reminder that we have not arrived, we are reprinting as the Foreword to this document the September 1994 Scientific American article entitled, “Software’s Chronic Crisis,” by Wayt Gibbs.  We have not arrived, but we have largely moved, at least conceptually, beyond the day when entrepreneurs (i.e., brilliant programmers) were relied upon to develop and deliver satisfactory software systems.  At the midpoint of the 1990s, software engineering and associated elements of software process maturity have come to be more the norm.  There are many good Level 3 contractors.  In our acquisitions we are now looking, not just to see if a contractor is a Level 3, but also at how close he is to a Level 4!  Contractors and program offices are generating metrics and using them for management.  We now have the means to progress into an era of predictable development of large-scale software-intensive systems.

	Back in 1990, I said that if the 1990s reveal a silver bullet, that bullet will be reuse.  That was perhaps naive.  Reuse, as a concept, has been discussed and cussed almost continually since then; and yet, it is still not practiced on any major scale.  In retrospect, the practice of software engineering discipline and process maturity discussed here probably were prerequisites.  Has the time now come?  Will major benefits from reuse yet arise before the end of this decade?  I believe the potential is very real.  The question is whether you, as program managers, move toward it with purpose, as in Where are we going? or with malaise, as in Whither are we drifting?

	Reuse is a software technology term.  I am convinced that software technology alone, will not bring any more reuse than we are seeing today.  To promote reuse, we must think in terms of architecture-�based product-lines.  In these Guidelines you will learn about DoD’s Technical Architecture for Information Management (TAFIM), and more specifically building codes, which are the prerequisites for architecture.  The Air Force experience with a Cleanroom-centered product-line at Space Command, established under the STARS program, has shown spectacular results.  Productivity has increased from 175 lines-of-code (LOC) per month to 1,875 LOC per month.  Defects have decreased from 3+ defects per KLOC to 0.35 defects per KLOC, and costs have been reduced from $130 to about $50 per LOC.  Perhaps even more important is the reduction in cycle time.  A new application was recently completed in approximately 6 months.  This application involved the production of 240,000 LOC, of which 60% were from reuse, 30% were CASE tool generated, and 10% were handwritten.  The Army and Navy STARS product-lines have demonstrated similar results.

	Product-lines go beyond software technology in that management must understand the wisdom of making capital investment in the product-line — hiring an architect, architecture creation, reusable component development and pre-certification of commercial-off-the-shelf (COTS) software components.  Both government and industry must move away from paradigms which focus on specific requirements and funding/management which is single system oriented.  As product-lines are established and evolve, I believe they will gather momentum quickly.  The contractor with an effective product-line will win competitions “hands down” because of lower cost, higher quality, quicker delivery, and above all, their predictable performance track record.

	Our reflections are not complete without a word about Ada.  Ada has arrived.  Even as DoD moves from mandating Ada to preferring Ada (the first choice is good, existing COTS), any company would be foolish to establish a product-line based on any other language now known.  The special features of Ada, such as tasking and exception handling, make it mandatory for any application involving safety of life; hence, Boeing’s choice for its fly-by-wire 777, and the almost unanimous choice for running European railways.  Ada was designed with reuse in mind.  Ada was an object-oriented language before the term object-oriented was even coined.  Why else were Ada projects chosen best in show at the last three Object Worlds?  Even without a product-line, 30% reuse is the norm when developing Ada programs with a mature software engineering environment, such as Rational’s Apex.

	COTS is the stated DoD desire, and COTS is the epitome of product-line reuse.  We need COTS; but, the answer is to write COTS in Ada.  Smart companies, whether currently in the COTS business, or considering entering the COTS world in the context of architecture-based product-line establishment, will make independent, and objective, evaluation of Ada against the alternatives, with the same zeal that they make cost trade-off studies when considering a new plant site or other capital investment. 

	By the time you read these Guidelines, I will have retired from my position as Deputy Assistant Secretary of the Air Force for Communications, Computers, and Support Systems.  I feel confident we will make the strides during the last half of the 1990s that we have made in the first half; and the guidance found in this book is a positive step in that direction.  Read, digest, and act upon the sound management principles and methodologies discussed here, and you will be instrumental in making the 90’s the banner decade for software — where software becomes cheap, fast, and predictable.







LLOYD K. MOSEMANN, II

Deputy Assistant Secretary of the Air Force

(Communications, Computers, & Support Systems) 
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Software’s Chronic Crisis�tc "<>Software’s Chronic Crisis"�

Originally published in Scientific American magazine, September 1994.  [Reprinted with Permission.  Copyright ©1994 by Scientific American, Inc.  All rights reserved.]



W. Wayt Gibbs�tc "<Head 3 (14)>W. Wayt Gibbs"�

Scientific American Staff Writer�tc "<Head 3 (14)>Scientific American Staff Writer"�



ATTENTION!	Copyright restrictions do not allow electronic distribution of this article, therefore, it is omitted from this document.  The article sets the theme for Chapter 1, Software Acquisition Overview, and gives an excellent, timely overview of the software management challenge.  It is highly recommended you either read it in the hardcopy of these Guidelines or obtain a copy of Scientific American, September 1994.
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	A central theme of each edition of these Guidelines is how to turn an adverse situation into a success — how to turn a challenge into a victory.  The most important ingredients in achieving these goals, the most crucial resources required to produce a quality product, are the people selected to do the job.  The skills, experience, creative abilities (or lack thereof) of the team are key determinants of success or failure in the software world.

	The development and production of this book mirrors many of the challenges discussed between these pages.  Lt. General W.G. Pagonis (USA, retired) talked about Moving Mountains during the Gulf War.  This document represents the “scaling of a Mount Everest” by a very small team of highly-skilled, professional, and dedicated people.  Representing over four continuous years of effort, these Guidelines were written with limited resources, a limited staff, lots of hard work, and lots of talent!

	We would like to thank Major Joseph J. Stanko (SAF/AQRE) for overall coordination, editorial oversight, and the technical currency and accuracy of this update (Version 2.0).  We would also like to convey a very special thanks to Susan Tinch Johnson, who has been with this document since its inception, for research, writing, editing, graphics, publication support, and software engineering, acquisition, and management insight and substance.
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	If you find these Guidelines profitable and useful, stay current with the latest developments in software engineering at no cost.  CrossTalk is the DoD Journal of Software Engineering published by the Air Force Software Technology Support Center.  If you do not already receive monthly issues of CrossTalk, you are missing out on a wealth of information and news about what’s happening in the software development arena.  To order CrossTalk, free-of-charge, contact:  



Customer Service

OO-ALC/TISE

7278 Fourth Street

Hill AFB, Utah 84056-5205

(801) 777-8045

Internet:  custserv@software.hill.af.mil.
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GUIDELINES SCOPE:  Why are they so thick?�tc "<Head 2 (14)>GUIDELINES SCOPE\:  					Why are they so thick?"�

	These Guidelines cover the gamut of software-intensive systems acquisition and management activities, from pre-program strategic planning to post-deployment software support.  They are divided into three essential areas for program success.  Part I, Introduction, lays the groundwork.  To be successful in software, you must have a basic understanding of why major software acquisitions fail and succeed, the unique DoD software acquisition environment, and software-intensive life cycles and methodologies.  Part II, Engineering, provides the meat.  World-class software must be engineered, which involves implementing a series of interrelated, interdependent concepts, disciplines, and activities.  These include risk management, Ada, software development maturity, measurement and metrics, reuse, software tools, and software support.  Part III, Management, brings it all together.  To successfully manage a major software-intensive systems acquisition, you must be an informed buyer.  You must understand the software development process, software quality assurance, contract management techniques, and insist on continuous process improvement throughout the system’s life.  To step up to this challenge, you and your program will benefit by following the comprehensive software acquisition and management guidance found between these pages.

GUIDELINES AUDIENCE:  Who should read them?�tc "<Head 2 (14)>GUIDELINES AUDIENCE\:				Who should read them?"�

	These Guidelines should be read by all levels of managers involved in the development and acquisition of major DoD software-intensive systems.  Program Executive Officers (PEOs), Designated Acquisition Commanders (DACs), program managers, software maintainers and developers, engineers, action officers, technical, government, contractor, and academic personnel will all benefit from the guidance provided herein.

THESE ARE YOUR GUIDELINES:  Give us your input!�tc "<Head 2 (14)>THESE ARE YOUR GUIDELINES\: 			Give us your input!"�

	For these Guidelines to remain current and meaningful they must be continuously updated and improved.  Your help in citing areas for improvement and in providing practical insights and current lessons-learned from the field is vital to their usefulness and to the success of your colleagues who follow.  Forward your comments and requests for additional copies of the Guidelines to:



Software Technology Support Center�tc "<Head 5 (10)>Software Technology Support Center"�

Ogden ALC/TISE�tc "<Head 5 (10)>Ogden ALC/TISE"�

7278 Fourth Street�tc "<Head 5 (10)>7278 Fourth Street"�

Hill AFB, Utah 84056-5205�tc "<Head 5 (10)>Hill AFB, Utah 84056-5205"�

(801) 777-8045�tc "<Head 5 (10)>(801) 777-8045"�

E-mail:  custserv@software.hill.af.mil�tc "<Head 5 (10)>E-mail\:  custserv@software.hill.af.mil"�
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