

�

Department of the Air Force

Software Technology Support Center

GUIDELINES for SUCCESSFUL

ACQUISITION and MANAGEMENT of

SOFTWARE-INTENSIVE SYSTEMS:

Weapon Systems

Command and Control Systems

Management Information Systems

JUNE 1996

Volume 1�

Preface�tc "Preface"��
�tc "<>"�

Preface�tc "<>PREFACE"�

	Every time these Guidelines go to press [this is our third version], we like to reflect on where the software community was when we started this project. With this publication, we again realize it marks another significant milestone in improving how we acquire and manage our major software-intensive systems. Indeed, we have come a long way from the speech I made in 1990 to a gathering of software professionals. At that time I declared that the 1980s were a lost decade from the perspective of software development progress. The question I posed was: “Will there be a breakthrough in the 1990s?” I went on to say: “It won’t happen automatically; people are too satisfied with our unsatisfactory ways. We dare not make the mistake of complacency a la the automobile industry; we must push awareness and resource commitment to get ahead of the power curve of demand. Some believe that we only tap about 5% of the information that will be tapped and exploited by 2010! Demands on systems, especially management information systems, will be overwhelming; we must be able to feed and satisfy this monster or it will devour us. The challenge, then, is how to make the software world of the year 2000 a better place to be. If we succeed, the 1990s will be known as a banner decade for software. Should we fail, however, we will be hindered by the continuance of the software crisis and of the craft technologies of the 1970s and 1980s, even if we implement their products on gigahertz processors. Worse, because such methods of developing software are so costly and unreliable, there will be few resources left over for the technology transition task, and new technologies and techniques will lag unaided into practice at the same glacial rate they do today.”

	In 1994, I closed the annual Software Technology Conference at Salt Lake City, Utah with the observation that the underlying need within the defense community is for predictability. “From a Pentagon perspective, it is not the fact that software costs are growing annually and consuming more and more of our defense dollars that worries us. Nor is it the fact that our weapon systems and commanders are becoming more and more reliant on software to perform their mission. Our inability to predict how much a software system will cost, when it will be operational, and whether or not it will satisfy user requirements, is the major concern. What our senior managers and DoD leaders want most from us, is to deliver on our promises. They want systems that are on-time, within budget, that satisfy user requirements, and are reliable.” I told the audience that the these Guidelines represent the most comprehensive source document on how to achieve these goals. They are now required reading by every major defense university, used by industry as they prepare for competitive software procurements, and widely followed by software engineers in the field, the private sector, and among the services. With this publication, they continue to represent the most substantive compilation of lessons-learned and best practices gathered from recognized software practitioners and experts available anywhere — government and industry-wide.

	So, as we go to press, “Where are we today and where will we be tomorrow?” Although we have come a long way, as a reminder that we have not arrived, we are reprinting as the Foreword to this document the September 1994 Scientific American article entitled, “Software’s Chronic Crisis,” by Wayt Gibbs. We have not arrived, but we have largely moved, at least conceptually, beyond the day when entrepreneurs (i.e., brilliant programmers) were relied upon to develop and deliver satisfactory software systems. At the midpoint of the 1990s, software engineering and associated elements of software process maturity have come to be more the norm. There are many good Level 3 contractors. In our acquisitions we are now looking, not just to see if a contractor is a Level 3, but also at how close he is to a Level 4! Contractors and program offices are generating metrics and using them for management. We now have the means to progress into an era of predictable development of large-scale software-intensive systems.

	Back in 1990, I said that if the 1990s reveal a silver bullet, that bullet will be reuse. That was perhaps naive. Reuse, as a concept, has been discussed and cussed almost continually since then; and yet, it is still not practiced on any major scale. In retrospect, the practice of software engineering discipline and process maturity discussed here probably were prerequisites. Has the time now come? Will major benefits from reuse yet arise before the end of this decade? I believe the potential is very real. The question is whether you, as program managers, move toward it with purpose, as in Where are we going? or with malaise, as in Whither are we drifting?

	Reuse is a software technology term. I am convinced that software technology alone, will not bring any more reuse than we are seeing today. To promote reuse, we must think in terms of architecture-�based product-lines. In these Guidelines you will learn about DoD’s Technical Architecture for Information Management (TAFIM), and more specifically building codes, which are the prerequisites for architecture. The Air Force experience with a Cleanroom-centered product-line at Space Command, established under the STARS program, has shown spectacular results. Productivity has increased from 175 lines-of-code (LOC) per month to 1,875 LOC per month. Defects have decreased from 3+ defects per KLOC to 0.35 defects per KLOC, and costs have been reduced from $130 to about $50 per LOC. Perhaps even more important is the reduction in cycle time. A new application was recently completed in approximately 6 months. This application involved the production of 240,000 LOC, of which 60% were from reuse, 30% were CASE tool generated, and 10% were handwritten. The Army and Navy STARS product-lines have demonstrated similar results.

	Product-lines go beyond software technology in that management must understand the wisdom of making capital investment in the product-line — hiring an architect, architecture creation, reusable component development and pre-certification of commercial-off-the-shelf (COTS) software components. Both government and industry must move away from paradigms which focus on specific requirements and funding/management which is single system oriented. As product-lines are established and evolve, I believe they will gather momentum quickly. The contractor with an effective product-line will win competitions “hands down” because of lower cost, higher quality, quicker delivery, and above all, their predictable performance track record.

	Our reflections are not complete without a word about Ada. Ada has arrived. Even as DoD moves from mandating Ada to preferring Ada (the first choice is good, existing COTS), any company would be foolish to establish a product-line based on any other language now known. The special features of Ada, such as tasking and exception handling, make it mandatory for any application involving safety of life; hence, Boeing’s choice for its fly-by-wire 777, and the almost unanimous choice for running European railways. Ada was designed with reuse in mind. Ada was an object-oriented language before the term object-oriented was even coined. Why else were Ada projects chosen best in show at the last three Object Worlds? Even without a product-line, 30% reuse is the norm when developing Ada programs with a mature software engineering environment, such as Rational’s Apex.

	COTS is the stated DoD desire, and COTS is the epitome of product-line reuse. We need COTS; but, the answer is to write COTS in Ada. Smart companies, whether currently in the COTS business, or considering entering the COTS world in the context of architecture-based product-line establishment, will make independent, and objective, evaluation of Ada against the alternatives, with the same zeal that they make cost trade-off studies when considering a new plant site or other capital investment.

	By the time you read these Guidelines, I will have retired from my position as Deputy Assistant Secretary of the Air Force for Communications, Computers, and Support Systems. I feel confident we will make the strides during the last half of the 1990s that we have made in the first half; and the guidance found in this book is a positive step in that direction. Read, digest, and act upon the sound management principles and methodologies discussed here, and you will be instrumental in making the 90’s the banner decade for software — where software becomes cheap, fast, and predictable.

LLOYD K. MOSEMANN, II

Deputy Assistant Secretary of the Air Force

(Communications, Computers, & Support Systems)

�

Foreword

�
�
tc "
Foreword"
�
Foreword
�
tc "
<>FOREWORD"
�

�tc "<Head 3 (14)>"�

Software’s Chronic Crisis�tc "<>Software’s Chronic Crisis"�

Originally published in Scientific American magazine, September 1994. [Reprinted with Permission. Copyright ©1994 by Scientific American, Inc. All rights reserved.]

W. Wayt Gibbs�tc "<Head 3 (14)>W. Wayt Gibbs"�

Scientific American Staff Writer�tc "<Head 3 (14)>Scientific American Staff Writer"�

ATTENTION!	Copyright restrictions do not allow electronic distribution of this article, therefore, it is omitted from this document. The article sets the theme for Chapter 1, Software Acquisition Overview, and gives an excellent, timely overview of the software management challenge. It is highly recommended you either read it in the hardcopy of these Guidelines or obtain a copy of Scientific American, September 1994.

�

Acknowledgments

�

Acknowledgments�tc "<>Acknowledgments"�

�tc "<>"�

	A central theme of each edition of these Guidelines is how to turn an adverse situation into a success — how to turn a challenge into a victory. The most important ingredients in achieving these goals, the most crucial resources required to produce a quality product, are the people selected to do the job. The skills, experience, creative abilities (or lack thereof) of the team are key determinants of success or failure in the software world.

	The development and production of this book mirrors many of the challenges discussed between these pages. Lt. General W.G. Pagonis (USA, retired) talked about Moving Mountains during the Gulf War. This document represents the “scaling of a Mount Everest” by a very small team of highly-skilled, professional, and dedicated people. Representing over four continuous years of effort, these Guidelines were written with limited resources, a limited staff, lots of hard work, and lots of talent!

	We would like to thank Major Joseph J. Stanko (SAF/AQRE) for overall coordination, editorial oversight, and the technical currency and accuracy of this update (Version 2.0). We would also like to convey a very special thanks to Susan Tinch Johnson, who has been with this document since its inception, for research, writing, editing, graphics, publication support, and software engineering, acquisition, and management insight and substance.

Stay Current�tc "<>Stay Current"�

	If you find these Guidelines profitable and useful, stay current with the latest developments in software engineering at no cost. CrossTalk is the DoD Journal of Software Engineering published by the Air Force Software Technology Support Center. If you do not already receive monthly issues of CrossTalk, you are missing out on a wealth of information and news about what’s happening in the software development arena. To order CrossTalk, free-of-charge, contact:

Customer Service

OO-ALC/TISE

7278 Fourth Street

Hill AFB, Utah 84056-5205

(801) 777-8045

Internet: custserv@software.hill.af.mil.

�

About These Guidelines�tc "<>About These Guidelines"�

GUIDELINES SCOPE: Why are they so thick?�tc "<Head 2 (14)>GUIDELINES SCOPE\: 					Why are they so thick?"�

	These Guidelines cover the gamut of software-intensive systems acquisition and management activities, from pre-program strategic planning to post-deployment software support. They are divided into three essential areas for program success. Part I, Introduction, lays the groundwork. To be successful in software, you must have a basic understanding of why major software acquisitions fail and succeed, the unique DoD software acquisition environment, and software-intensive life cycles and methodologies. Part II, Engineering, provides the meat. World-class software must be engineered, which involves implementing a series of interrelated, interdependent concepts, disciplines, and activities. These include risk management, Ada, software development maturity, measurement and metrics, reuse, software tools, and software support. Part III, Management, brings it all together. To successfully manage a major software-intensive systems acquisition, you must be an informed buyer. You must understand the software development process, software quality assurance, contract management techniques, and insist on continuous process improvement throughout the system’s life. To step up to this challenge, you and your program will benefit by following the comprehensive software acquisition and management guidance found between these pages.

GUIDELINES AUDIENCE: Who should read them?�tc "<Head 2 (14)>GUIDELINES AUDIENCE\:				Who should read them?"�

	These Guidelines should be read by all levels of managers involved in the development and acquisition of major DoD software-intensive systems. Program Executive Officers (PEOs), Designated Acquisition Commanders (DACs), program managers, software maintainers and developers, engineers, action officers, technical, government, contractor, and academic personnel will all benefit from the guidance provided herein.

THESE ARE YOUR GUIDELINES: Give us your input!�tc "<Head 2 (14)>THESE ARE YOUR GUIDELINES\: 			Give us your input!"�

	For these Guidelines to remain current and meaningful they must be continuously updated and improved. Your help in citing areas for improvement and in providing practical insights and current lessons-learned from the field is vital to their usefulness and to the success of your colleagues who follow. Forward your comments and requests for additional copies of the Guidelines to:

Software Technology Support Center�tc "<Head 5 (10)>Software Technology Support Center"�

Ogden ALC/TISE�tc "<Head 5 (10)>Ogden ALC/TISE"�

7278 Fourth Street�tc "<Head 5 (10)>7278 Fourth Street"�

Hill AFB, Utah 84056-5205�tc "<Head 5 (10)>Hill AFB, Utah 84056-5205"�

(801) 777-8045�tc "<Head 5 (10)>(801) 777-8045"�

E-mail: custserv@software.hill.af.mil�tc "<Head 5 (10)>E-mail\: custserv@software.hill.af.mil"�

�

Table of Contents

�

VOLUME

 1

Table of Contents�tc "<>Table of Contents"�

NOTE: 	This Table of Contents reflects Guideline’s hardcopy version page numbers.

�tc "<>"�

PREFACE�tc "<>PREFACE"�

FOREWORD “Software’s Chronic Crisis”	�tc "<>FOREWORD “Software’s Chronic Crisis”	"�

�tc "<>"�

PART I Introduction �tc "<>PART I Introduction "�

�tc "<>"�

CHAPTER 1 �tc "<>CHAPTER 1 "�

Software Acquisition Overview�tc "<>Software Acquisition Overview"�

CHAPTER OVERVIEW	1-1

SOFTWARE VICTORY: The Exception or The Rule?	1-3

	Software: The Highest Risk System Component	1-5

	False Steps on the Battlefield	1-7

		General Accounting Office (GAO) Reports	1-7

		Scientific American Article	1-10

	Battle Damage Assessments	1-11

		The Parnas Papers	1-11

		Fred Brooks’ “No Silver Bullet”	1-13

		1987 Defense Science Board Report on Military Software	1-15

		1992 Software Process Action Team Report	1-16

		1994 Defense Science Board Report on Acquiring Defense Software Commercially	1-17

Why Software Acquisitions Fail	1-18

	Complexity	1-20

	Inadequate Estimates	1-20

		Size and Complexity Estimates	1-21

		Cost/Schedule Estimates	1-21

		Optimistic Estimates	1-22

	Unstable Requirements	1-23

		User Involvement	1-23

		Communication	1-26

		Intangibility	1-28

		Complexity	1-28

		Changing Threat	1-28

	Poor Problem Solving/Decision-Making	1-30

		Silver Bullets	1-30

	Comparison of Military Software Problems with Commercial Software Problems	1-32

Software Acquisition: The Bright Side	1-33

	Software Success Stories	1-34

	F-22 Advanced Tactical Fighter	1-35

	Boeing 777 Transport	1-40

	Software Best Practices	1-43

Software ACQUISITION: Your Management Challenge	1-44

Software Acquisition Bottom Line	1-46

	Process-Driven Acquisition Strategy	1-46

MANAGEMENT BOTTOM LINE	1-53

	Leadership As Well As Management	1-53

		Being a Good Leader Means Being a Good Customer	1-54

	Teamwork: A New Total Force Concept	1-55

REFERENCES	1-58

Addendum

Software Solution: Motorola’s Strategy for Becoming The Premier Software Company	1-63

	

CHAPTER 2	�tc "<>CHAPTER 2	"�

DoD Software Acquisition Environment�tc "<>DoD Software Acquisition Environment"�

CHAPTER OVERVIEW	2-1

THE INFORMATION AGE HAS DAWNED	2-3

DoD SOFTWARE DOMAINS	2-8

	Weapon System Software	2-9

	Embedded Software	2-10

	C3 Software	2-11

	Intelligence Software	2-11

	Other Weapon System Software	2-12

	MIS Software (Non-Weapon System Software)	2-13

Acquisition Streamlining: A National Imperative	2-14

	Decreasing Budgets — Increasing Software Demands	2-15

	DoD’s New Order of Acquisition	2-16

	Acquisition Reform Working Group	2-17

	Acquisition Reform: A Mandate for Change	2-17

	Federal Acquisition Streamlining Act of 1994	2-18

	MilSpec and MilStd Reform	2-19

	Specifications & Standards — A New Way of Doing Business	2-20

		MIL-STD-498, Software Development and Documentation	2-23

		DoD Policy on the Use of Ada	2-24

C4I for Warrior	2-25

	Open Systems	2-26

	Technical Architecture Framework for Information Management (TAFIM)	2-27

Software Best Practices Initiative	2-32

	Software Program Managers Network Products and Services	2-36

	Training	2-36

	Support Services and Products	2-38

SOFTWARE TECHNOLOGY SUPPORT CENTER (STSC) 	2-41

	Services	2-41

GUIDELINES, SOFTWARE BEST PRACTICES, AND YOU	2-42

REFERENCES	2-43

�Addendum A

MIL-STD-498: What’s New and Some Real Lessons-

	Learned	2-47

ADDENDUM B

Adopting MIL-STD-498: The Stepping-stone to the US Commercial Standard	2-47

CHAPTER 3 �tc "<Head 3 (14)>CHAPTER 3 "�

System Life Cycle and Methodologies�tc "<Head 3 (14)>System Life Cycle and Methodologies"�

CHAPTER OVERVIEW	3-1

LIFE CYCLE PROCESS RAISES CURTAIN ON DECISION MAKING SYSTEM LIFE CYCLE	3-4

	Life Cycle Phases, Milestone Decisions, and Activities	3-6

LIFE CYCLE MANAGEMENT METHODOLOGIES	3-11

	Evolutionary	3-13

	Incremental	3-16

	Spiral Method	3-19

		Ada Spiral Model Environment	3-20

	Choosing Among Evolutionary, Incremental, and Spiral Models	3-21

	Waterfall Model	3-21

	Fast Track	3-22

REFERENCES	3-24

PART II Engineering�tc "<>PART II Engineering"�

CHAPTER 4 �tc "<Head 3 (14)>CHAPTER 4 "�

Engineering Software-Intensive Systems�tc "<Head 3 (14)>Engineering Software-Intensive Systems"�

CHAPTER OVERVIEW	4-1

ENGINEERING IS THE KEY	4-3

WHAT IS DOMAIN ENGINEERING?	4-5

	Domain Identification	4-7

	Domain Analysis	4-7

	Domain Design	4-8

	Domain Implementation	4-9

	Benefits of Domain Engineering	4-11

WHAT IS SYSTEMS ENGINEERING?	4-12

	Integrated Product Development (IPD)	4-16

	Concurrent Engineering	4-18

	The Case for Software Engineering	4-20

	Domain Engineering and the Software Engineering Process	4-23

	Relationship Among Enterprise Engineering, Domain Engineering, and Application

		Engineering	4-25

WHAT IS SOFTWARE ENGINEERING?	4-26

	Software Engineering Goals	4-29

		Supportability	4-30

		Reliability	4-30

			Safety	4-31

		Efficiency	4-32

		Understandability	4-33

	Software Engineering Principles	4-33

		Abstraction and Information Hiding	4-34

		Modularity and Localization	4-35

		Uniformity, Completeness, and Confirmability	4-36

Managing Software Engineering 	4-37

	Software Engineering Information	4-38

WHAT IS INFORMATION ENGINEERING?	4-40

	Information Engineering Process	4-42

	Information Engineering Architecture	4-42

	IDEF		4-44

Success Through Engineering	4-46

REFERENCES	4-48

Addendum A

SWSC Domain Engineering Lessons-Learned	4-51

Addendum B

A New Software OT&E Methodology	4-56

�tc "<>"�

	

CHAPTER 5 �tc "<>CHAPTER 5 "�

Ada: The Enabling Technology�tc "<>Ada\: The Enabling Technology"�

CHAPTER OVERVIEW	5-1

Ada: Because it’s safe	5-3

	Ada’s Eagle — Our Safest Bird of Prey	5-3

Ada: BECAUSE IT’S SMART	5-5

	Ada Is for All Domains	5-5

	Ada’s Background	5-6

Ada: BECAUSE IT ENABLES SOFTWARE ENGINEERING	5-8

	Software Engineering Principles and Ada	5-9

	Ada: The Great Facilitator	5-9

Ada: Facts and Fallacies	5-12

Addendum A

How Long Does It Take to Learn Ada?	5-15

Ada: Who’s Using IT?	5-19

	Ada Use in DoD	5-19

	Large-Scale Commercial Applications from Around the World	5-22

	Seawolf Submarine’s AN/BSY-2 Project	5-22

		Demanding Software Requirements	5-26

		World’s Biggest, Unprecedented Ada Development	5-27

		Challenging COTS Integration	5-27

		Ada and Engineering Discipline Are Key to Success	5-28

		BSY-2 Ada Lessons-Learned	5-29

	NCTAMS-LANT Project	5-30

	NCPII Re-engineering Project	5-30

	Theater Display Terminal	5-30

	Ada for Windows Project	5-31

		Team Training Was An Innovative Effort	5-31

		Lack of Ada Windows Tools Sparked More Innovation	5-32

		Lessons-Learned Applied to Other Efforts	5-33

		New Skills Breed New Applications and Training Programs	5-33

		Ada Windows Team Spreads the Wealth and Presses On	5-33

	Intelsat I-VII Satellite Project	5-34

		Ada’s Package Feature Benefits	5-35

		Ada’s Typing Feature Benefits	5-35

		Why Ada for Intelsat I-VII?	5-36

Achievable Success with Ada	5-36

	Ada versus the C++ Challenge	5-37

	Ada versus the Assembly Challenge	5-43

	Ada versus the Fourth Generation Language (4GL) Challenge	5-45

		Key Points to Consider	5-46

		Ada May Be Cheaper Than 4GLs — 4GLs May Be Cheaper Than Ada	5-47

		Appropriate Domains for 4GL’s	5-47

		Development Details	5-48

		4GL Versus Ada Size Only (Impacts Of Software Technology and Environment)	5-48

		What About Maintenance?	5-49

		Lessons-Learned 4GL Estimation versus Ada	5-50

Ada Language Features	5-50

	Ada Program Unit	5-51

	Ada Subprograms	5-52

	Ada’s Packaging Feature	5-52

	Ada’s Tasking Feature	5-53

	Ada’s Exception Handling Feature	5-54

	Ada’s Generics Feature	5-55

	Ada Representation Specification	5-56

	Ada Input/Output Packages	5-56

	Ada’s Typing Feature	5-57

Ada 95: Language for the 21st Century	5-58

Ada IMPLEMENTATION	5-62

	Transitioning to Ada 95	5-62

		Adopt An Incremental Transition Strategy	5-63

		Write Ada 95-Compatible Code in Ada 83	5-64

		Remember the Human Factor	5-64

Ada TECHNOLOGY CONSIDERATIONS	5-65

	Ada Compilers	5-65

		Compiler Selection	5-65

		Compiler Maturity	5-66

		Compiler Validation	5-66

		Compiler Evaluation	5-67

		Compiler Benchmarks	5-67

		Choosing the Appropriate Ada 95 Compiler	5-68

	Ada Interface Standards	5-69

	Ada Bindings	5-70

	Operating Systems	5-72

	Databases	5-72

	Graphics	5-73

	Windowing Environment	5-73

	Ada Run-time Efficiency	5-73

Ada AND YOUR PROGRAM	5-74

	Ada and Your New-Start Program	5-74

	Ada and Your On-going Program	5-75

	Ada and Your PDSS Program	5-75

		Ada Upgrade Opportunities	5-76

		Mixing Ada with Other Languages	5-76

		Porting with Ada	5-76

		Requirements and Design Impacts	5-77

ADDRESSING Ada IN THE RFP	5-78

	Ada Waivers	5-79

Ada: The language of choice	5-81

REFERENCES	5-83

Addendum B

Ada Users Throughout the World Tell: WHY Ada! 	5-87

Addendum C

The Ada 95 Philosophy	5-93

Addendum D

Ada Implementation Lessons-Learned from SSC and CSC	5-93

	

CHAPTER 6 �tc "<>CHAPTER 6 "�

Risk Management�tc "<>Risk Management"�

CHAPTER OVERVIEW	6-1

Risk Management: An Investment in Success	6-3

Software Risk	6-5

	Software Risk Factors	6-6

	Common Risk Factors	6-6

		“Top-10” Risk Identification Checklist	6-8

		Environmental Factors	6-8

		Interrelated Factors	6-9

Managing Software Risk	6-9

	Risk Mitigation Techniques	6-10

	Risk Management Process	6-11

Formal Risk Management Methods	6-12

	Software Risk Evaluation (SRE) Method	6-13

		SRE Functional Components	6-14

		Harris Corporation SRE Risk Management Streamlining Example	6-18

	Boehm’s Software Risk Management Method	6-19

		Risk Management Paradigm	6-20

		Boehm’s Risk Management Process	6-20

	Best Practices Initiative’s Risk Management Method	6-24

	Team Risk Management Method	6-27

		Team Risk Management Principles	6-27

		Team Risk Management Advantages	6-27

		Team Risk Management on the NALCOMIS Program Example	6-29

	B-1B Computer Upgrade Risk Management Method and Example	6-31

		Identified Risks	6-31

		Contractor Risk Management Teams	6-33

		Program Office Estimate	6-33

		Integrated Risk Management Process	6-34

		Chief Engineers’ Watchlist	6-34

		Computer Resources Working Group	6-35

Risk Management Planning	6-35

	Risk Management Plan	6-36

	Contingency Planning	6-38

		Crisis Management Plan	6-40

		Crisis Recovery Plan	6-41

Risk Element Tracking	6-41

	Risk Tracking Methods	6-42

ADDRESSING RISK IN THE RFP	6-43

	Offeror’s Risk Methodology	6-43

	Risk-Based Source Selection	6-44

	Performance Risk Analysis Group (PRAG)	6-46

Software Risk Management Begins With You!	6-47

REFERENCES	6-47

CHAPTER 7 �tc "<>CHAPTER 7 "�

Software Development Maturity�tc "<>Software Development Maturity"�

CHAPTER OVERVIEW	7-1

PROCESS MATURITY: An Essential for Success	7-3

SOFTWARE DEVELOPMENT CAPABILITY ASSESSMENT METHODS	7-4

	Software Development Capability Evaluation (SDCE)	7-7

	SEI Software Capability Evaluation (SCE)	7-7

Maturity Models	7-9

	Capability Maturity Model (CMMSM)	7-11

	ISO/IEC Maturity Standard: SPICE	7-13

		SPICE Product Suite	7-14

		Baseline Practices Guide	7-14

		BPG Capability Levels	7-15

		Common Features and Generic Practices	7-16

	People — Capability Maturity Model (P-CMMSM)	7-18

		P-CMMSM Structure	7-19

	Software Acquisition — Capability Maturity Model (SA-CMMSM)	7-21

	Systems Security Engineering — Capability Maturity Model (SSE-CMMSM)	7-23

	Trusted Software — Capability Maturity Model (TS-CMMSM)	7-26

	Systems Engineering — Capability Maturity Model (SE-CMMSM)	7-26

		SE-CMMSM Architecture	7-27

BENEFITS OF MOVING UP THE MATURITY SCALE	7-29

	Moving Up the Maturity Scale at USAISSDCL	7-32

	Moving Up the Maturity Scale at OC-ALC	7-34

	Moving Up the Maturity Scale at USSTRATCOM	7-35

		Evidence of Improvement	7-36

		Methods for Success	7-37

		Process Maturity Pays Off	7-38

	Moving Up the Maturity Scale at SSG	7-38

	Moving Up the Maturity Scale at Raytheon’s Equipment Division, Software Systems Lab	7-40

	Moving Up the Maturity Scale at Hughes Aircraft Company, Software Engineering Division	7-42

	Moving Up the Maturity Scale at Litton Data Systems	7-44

ADDRESSING MATURITY IN THE RFP	7-46

REFERENCES	7-47

ADDENDUM A

A Correlation Study of the CMMSM and Software Development Performance	7-49

ADDENDUM B

Lessons-Learned While Achieving a CMMSM Level 3 Rating	7-63

�

CHAPTER 8 �tc "<>CHAPTER 8 "�

Measurement and Metrics�tc "<>Measurement and Metrics"�

CHAPTER OVERVIEW	8-1

MEASUREMENT	8-3

	Measures, Metrics, and Indicators	8-3

	Software Measurement Life Cycle	8-7

	Software Measurement Life Cycle at Loral	8-9

Software Measurement Process	8-11

	Metrics Usage Plan	8-12

	Boeing 777 Metrics Program	8-14

	Metrics Selection	8-17

	Data Collection	8-18

	Data Analysis	8-20

	National Software Data and Information Repository (NSDIR)	8-22

		Why the NSDIR Is Necessary	8-24

		NSDIR History	8-25

TYPICAL SOFTWARE MEASUREMENTS AND METRICS	8-27

	Quality	8-28

		User Satisfaction	8-29

	Size		8-32

		Measuring Software Size	8-33

			Source Lines-of-Code Estimates	8-34

			Function Point Size Estimates	8-35

			Feature Point Size Estimates	8-37

	Complexity	8-38

	Requirements	8-40

	Effort		8-41

	Productivity	8-42

	Cost and Schedule	8-44

		Cost and Schedule Estimation Methodologies/Techniques	8-46

		Ada-Specific Cost Estimation	8-49

	Scrap and Rework	8-49

	Support	8-50

Cautions About Metrics	8-51

ADDRESSING MEASUREMENT IN THE RFP	8-53

REFERENCES	8-54

Addendum A

Assessment Metrics for Use with the Capability Maturity Model: Are We Improving?	8-57

Addendum B

Software Complexity	8-63

Addendum C

Metrics: The Measure of Success	8-63

Addendum D

Making Metrics Work Miracles	8-64

Addendum E

Swords and Plowshares: The Rework Cycles of Defense & Commercial Software Development Projects	8-64

�

CHAPTER 9 �tc "<>CHAPTER 9 "�

Reuse�tc "<>Reuse"�

CHAPTER OVERVIEW 	9-1

INCREASED QUALITY THROUGH REUSE	9-3

REUSE PROCESS	9-4

	Reuse Management Systems (Repositories)	9-7

Implementing Reuse	9-7

	Product-Line Approach	9-9

		Product-Line Benefits	9-10

		Product-Line Paradigm Shift	9-11

OPPORTUNITIES FOR REUSE	9-12

	Reuse for Embedded Weapon Systems	9-12

	Specification Reuse	9-15

	Architecture Reuse	9-15

	Design Reuse	9-16

	Code Reuse	9-16

	Ada Reuse	9-18

	Data Reuse	9-18

COST/BENEFITS OF REUSE	9-18

	Cost of Reuse	9-19

	Benefits of Reuse	9-20

	Reuse at the Standard Systems Center (SSC)	9-22

	Reuse on the F-22 Program	9-23

	Reuse on the F-16 Upgrade Program	9-24

	Reuse at Hewlett-Packard (HP)	9-24

Reuse Programs	9-26

	Software Technology for Adaptable, Reliable Systems (STARS)	9-26

		STARS Space Command and Control Architecture Infrastructure (SCAI)	9-29

	Asset Source for Software Engineering Technology (ASSET)	9-34

	Comprehensive Approach to Reusable Defense Software (CARDS)	9-35

	Portable Reusable Integrated Software Modules (PRISM)	9-38

	Defense Software Repository System (DSRS)	9-38

	Electronic Library Services and Applications (ELSA)	9-39

		Interoperability Among Software Reuse Libraries	9-39

	DSSA ADAGE Program	9-39

	RICC		9-41

ADDRESSING REUSE IN THE RFP	9-42

A FINAL WORD ON REUSE	9-43

REFERENCES	9-44

CHAPTER 10 �tc "<>CHAPTER 10 "�

Software Tools�tc "<>Software Tools"�

CHAPTER OVERVIEW	10-1

Production Efficiency Through Tools, Methods, and Models	10-3

	Tool Process Improvement Benefits	10-6

MANAGING NEW TECHNOLOGIES	10-8

	Technology Strategy	10-11

	Technology Selection	10-13

		Typical Toolset	10-14

		More Cautions About CASE Tools	10-18

	Technology Transition	10-19

SOFTWARE ENGINEERING TOOLS AND ENVIRONMENTS	10-20

	CASE Tools	10-21

	Software Engineering Environments (SEEs)	10-21

		UNAS	10-22

		CCPDS-R Ada Success Story/UNAS Tool Design	10-24

		Rational Apex™	10-27

		ASC/SEE	10-28

		COHESION™ Team/SEE	10-28

		Demonstration Project SEE	10-29

		I-CASE	10-32

		Ada-ASSURED	10-33

PROGRAM MANAGEMENT TOOLS, METHODS, AND MODELS	10-35

	Cost/Schedule/Size Estimation Models	10-37

		Parametric Model Selection and Use	10-37

		Cost Analysis Requirements Document (CARD)	10-40

	Air Force Acquisition Model (for Weapon System Software)	10-40

	Program Management Support System (PMSS)	10-42

	ADARTS®	10-45

	Process Weaver®	10-46

Requirements and Design Tools	10-47

	Requirements Engineering Environment (REE)	10-47

	Sammi Development Kit (SDK)	10-49

	AdaSAGE	10-49

		AdaSAGE Success Story	10-51

	Teamwork®/Ada	10-52

	Common Object Request Broker Architecture (CORBA)	10-53

Testing Tools	10-55

	Rate Monotonic Analysis for Real-Time Systems	10-55

	AdaQuest	10-58

	AdaWISE	10-59

	AdaTEST	10-60

	MathPack 	10-60

	McCabe Design Complexity Tool 	10-60

	McCabe Instrumentation Tool	10-62

	McCabe Slice Tool	10-62

	Analysis of Complexity Tool (ACT)	10-62

	Battlemap Analysis Tool (BAT)	10-62

	TestMate	10-63

Re-engineering Tools	10-64

	SORTS	10-65

Measurement Tools	10-66

	AdaMAT	10-66

	Amadeus Measurement System	10-67

Configuration Management Tools	10-69

	Process Configuration Management Software (PCMS)	10-70

TECHNOLOGY SUPPORT PROGRAMS	10-71

	Ada Joint Program Office	10-71

		Ada Information Clearinghouse (AdaIC)	10-72

		PAL	10-72

	ASIS		10-73

	Advanced Computer Technology (ACT) Program	10-74

	Computer Resource Technology Transition (CRTT) Program	10-74

	Embedded Computer Resources Support Improvement Program (ESIP)	10-74

TECHNOLOGY SUPPORT CENTERS	10-75

	Software Technology Support Center (STSC)	10-75

	Standard Systems Center (SSC)	10-76

	Software Engineering Institute (SEI)	10-76

	Rome Laboratory	10-77

	Oregon Graduate Institute Formal Methods Research	10-78

ADDRESSING TOOLS IN THE RFP	10-79

REFERENCES	10-80

Addendum A

COTS Integration and Support Model	10-83

Addendum B

	Rate Monotonic Analysis: Did You Fake It?	10-99

	

CHAPTER 11 �tc "<>CHAPTER 11 "�

Software Support�tc "<>Software Support"�

CHAPTER OVERVIEW	11-3

Software Support: A Total Life Cycle Approach	11-3

	Software Support Cost Drivers	11-5

	Software Support Activities	11-6

	Software Support Issues	11-7

	COTS Software Support Issues	11-10

Planning for Support Success	11-11

	Software Support Cost Estimation	11-13

Software re-engineering	11-13

	Re-engineering Decision	11-14

	Re-engineering Process	11-15

	Re-engineering to Ada	11-17

	Re-engineering COBOL at WPFA	11-18

	STSC Re-engineering Support	11-19

Logistics Support Analysis (LSA)	11-19

	LSA on the F-22 Program	11-21

Continuous Acquisition and Life Cycle Support (CALS)	11-24

Managing a PDSS Program	11-25

	Computer Resources Integrated Support Document (CRISD) 	11-27

	Society of Automotive Engineers (SAE)	11-28

ADDRESSING SOFTWARE SUPPORT IN THE RFP	11-29

	Specifying Supportable Software	11-31

		Statement of Objectives (SOO)	11-31

		Specification Practices	11-31

	Documentation	11-32

	Life Cycle Software Support Strategies	11-33

REFERENCES	11-34

Addendum A

ROADS: The “Software Logistics Vehicle” for the Digitized Battlefield	11-37

Addendum B

Electronic Combat Model Re-engineering	11-44

PART III Management �tc "<>PART III Management "�

CHAPTER 12 �tc "<>CHAPTER 12 "�

Strategic Planning: The Ounce of Prevention�tc "<>Strategic Planning\: The Ounce of Prevention"�

CHAPTER OVERVIEW	12-1

PLANNING IS KEY TO SUCCESS	12-3

STRATEGIC PLANNING GOALS	12-6

	Program Stability	12-8

	Quality	12-9

	On-Time Completion/Within Budget	12-10

SOFTWARE ACQUISITION STRATEGY	12-12

	Mission Definition	12-14

	Acquisition Strategy Development	12-15

		Competition	12-16

		Concurrency/Time Phasing	12-17

		Design-to-Cost	12-18

		Performance Demonstrations	12-19

		Performance Incentives	12-20

		Make-or-Buy	12-21

		Pre-planned Product Improvement (P3I)	12-22

PROGRAM PLANNING PROCESS	12-23

	Planning Objectives	12-26

	Planning Scope	12-26

	Recommendations for Program Planners	12-27

Program Decomposition	12-28

	System/Segment Specification (SSS)	12-29

	Work Breakdown Structure (WBS)	12-29

		WBS Interrelationships	12-29

		Prime Mission Product Summary WBS	12-31

		Software Project Summary WBS	12-31

		Software Contract WBS	12-33

		Software Project WBS	12-35

Market Analysis	12-36

	Software Product Definition and Decomposition	12-37

Baseline Estimates	12-37

	Estimation Accuracy 	12-40

	Program Estimate Selection	12-42

CONTINUOUS PROGRAM PLANNING	12-42

	Continuous Planning Recommendations	12-44

OTHER PLANNING CONSIDERATIONS	12-45

	Major Milestones and Baselines	12-45

	Program Budgeting and Funding	12-49

REFERENCES	12-50

�

CHAPTER 13 �tc "<>CHAPTER 13 "�

Contracting for Success�tc "<>Contracting for Success"�

CHAPTER OVERVIEW	13-1

TEAM BUILDING: ATTACKING THE LION	13-3

	Building High-Performance Teams	13-5

	J-CALS Teamwork in Action	13-7

Contract Type Selection	13-8

DEVELOPING THE RFP	13-10

	RFP Development Team Building	13-11

	Statement of Work (SOW)	13-13

	Contractual Data Requirements List	13-14

	Subcontracting	13-14

		Joint Venture Partnerships	13-17

SPECIAL SOFTWARE RFP CONSIDERATIONS	13-18

	Commercial-off-the-Shelf (COTS) Software	13-21

		COTS Advantage	13-21

		COTS Integration	13-23

		COTS Integration with Ada	13-26

		COTS Integration Lessons-Learned	13-27

		More Cautions About COTS	13-29

		Cautions About Modifying COTS	13-31

	Data Rights	13-34

SPECIAL SOFTWARE SOURCE SELECTION CRITERIA	13-36

	Key Software Development Personnel	13-37

	Skills Matrix	13-38

	Management Commitment	13-38

SOURCE SELECTION	13-39

	Source Selection Team Building	13-40

	Source Selection Planning	13-41

	Pre-Validation Phase	13-41

	Selecting the Last Team Member	13-42

	Navy Seawolf Lessons-Learned	13-44

	Proposal Evaluation	13-45

	Best-Value versus the Cost of Poor Quality	13-46

Protests	13-48

Contract Award	13-51

REFERENCES	13-53

Addendum A

Lessons-Learned in the GSA Trailboss Course	13-57

Addendum B

Contracting for Success	13-80

�

CHAPTER 14 �tc "<>CHAPTER 14 "�

Managing Software Development�tc "<>Managing Software Development"�

CHAPTER OVERVIEW	14-1

WINNING THE BATTLE WITH QUALITY	14-3

SOFTWARE DEVELOPMENT PROCESS	14-4

	Systems Perspective	14-5

	Design Management and Review	14-6

	Effective Teamwork with Clear Roles	14-7

	Process-Approach to Quality	14-7

	Software Development Plan (SDP)	14-8

	Software Development Recommendations	14-9

	Lessons-Learned from SSC and CSC	14-11

Software Requirements	14-15

	Software Requirements Specification (SRS)	14-18

		Interface Requirements Specification (IRS)	14-19

	Requirements Management	14-20

	Prototyping	14-21

		Prototyping Benefits	14-23

		Cautions About Prototypes	14-23

Hardware Requirements	14-25

	VHSIC/ VHDL	14-26

	Hardware Selection	14-26

Design	14-28

	Design Simplicity	14-30

	Architectural Design	14-31

		Addressing Architecture in the RFP	14-35

		Preliminary Design Review (PDR)	14-36

	Detailed Design	14-38

		Functional Design	14-39

		Data-Oriented Design	14-39

		Object-Oriented Design	14-40

			Object-Oriented Baseball	14-41

			Problem Domains and Solution Domains	14-45

		Critical Design Review (CDR)	14-47

Testing	14-50

	Testing Objectives	14-51

		Defect Detection and Removal	14-52

		Defect Removal Strategies	14-55

	Developer Testing	14-55

	Unit Testing	14-57

		Cautions About Unit Testing 	14-59

	Integration Testing	14-59

	System Testing	14-60

	Government Testing	14-60

		AFOTEC Testing Objectives	14-62

			Usability	14-63

			Effectiveness	14-63

			Software Maturity	14-64

		AFOTEC Software Evaluation Tools	14-64

		AFOTEC Lessons-Learned	14-65

Implementation	14-67

BUILDING SECURE SOFTWARE	14-68

	Security Planning	14-68

	Operations Security (OPSEC)	14-70

SOFTWARE DOCUMENTATION	14-75

	Must-Have Documentation	14-77

REFERENCES	14-80

Addendum A

The Multilevel Information Systems Security Initiative	14-83

ADDENDUM B

If Architects Had to Work Like Programmers	14-89

ADDENDUM C

On Board Software for the Boeing 777	14-92

CHAPTER 15 �tc "<>CHAPTER 15 "�

Managing Process Improvement�tc "<>Managing Process Improvement"�

CHAPTER OVERVIEW	15-1	

ATTAINING THE QUALITY OBJECTIVE	15-3

PROGRAM/CONTRACT MANAGEMENT	15-11

	Cost/Schedule Control System Criteria (C/SCSC)	15-15

		Earned-Value Software Metrics	15-21

	Lessons-Learned from the Navy Seawolf Program	15-26

	Lessons-Learned from SSC and CSC	15-26

Software Quality Assurance	15-28

	Defect Prevention	15-32

	Defect Causal Analysis	15-33

	Defect Removal Efficiency	15-37

Reviews, Audits, and Inspections	15-38

	Peer Inspections	15-39

		Cost and Quality Benefits of Inspections	15-41

		Formal Peer Inspection Process	15-44

		Peer Inspection Case Study	15-46

		Peer Inspection Buy-In	15-47

		Peer Inspection Training	15-48

	Independent Verification & Validation (IV&V)	15-49

Cleanroom Engineering	15-49

	Correctness Verification	15-51

	Cleanroom Engineering Results	15-53

	Cleanroom for New-Start Programs	15-55

	Cleanroom for On-Going Programs	15-56

	Cleanroom for Troubled Programs	15-56

	Cleanroom Training	15-56

	Cleanroom Information	15-56

IMPROVING PRODUCTIVITY	15-57

	Ada Use	15-59

	Reuse	15-60

	Design Simplicity	15-60

	User Involvement	15-60

	Prototyping	15-61

	Automated Tools	15-61

	Software Productivity Consortium	15-62

TRAINING	15-63

	Lessons-Learned from SSC and CSC	15-66

CONFIGURATION MANAGEMENT	15-66

	Configuration Management with Ada	15-71

REFERENCES	15-72

Addendum A

Improving Software Economics in the Aerospace and Defense Industry	15-75

ADDENDUM B

Training — Your Competitive Edge in the ‘90s	15-99

ADDENDUM C

Lessons-Learned from BSY-2’s Trenches	15-100

CHAPTER 16 �tc "<>CHAPTER 16 "�

The Challenge�tc "<>The Challenge"�

CHAPTER OVERVIEW	16-1

SEIZE THE OPPORTUNITY	16-3

	Embrace the Software Vision: Make It Work for You	16-4

	Make the Commitment to Excellence	16-7

PROGRAM MANAGEMENT CHALLENGE	16-8

	Managing a New-Start Program	16-9

	Managing an On-going Program	16-9

		If It Ain’t Broke, Break It!	16-10

		Introducing New Processes, Methods, and Tools	16-14

	Managing a PDSS Program	16-15

	Determining If Your Program is in Trouble	16-16

		What to Do With a Troubled Program	16-18

			Increase Your Schedule	16-23

			Reduce Your Software Size	16-25

			Improve Your Process	16-26

		What To Do With a Program Catastrophe?	16-27

			Abandoning the Catastrophe	16-27

THE CONTINUOUS IMPROVEMENT CHALLENGE	16-28

	Measurement	16-28

	Baselines	16-29

	Benchmarks	16-29

		Texas Instruments (TI) Benchmarking Process	16-31

Your MANAGEMENT Challenge	16-32

REFERENCES	16-34

Addendum

Reflections on Success	16-37

LIST OF FIGURES�tc "<Head 3 (14)>LIST OF FIGURES"�

Figure 1-1	Defect Rework Hidden Cost 	1-21

Figure 1-2	Software Cost Estimation Accuracy versus Phase 	1-24

Figure 1-3	Error Propagation Cost	1-27

Figure 1-4	Software Changes Convert B1-B from Nuclear to Conventional Capability 	1-29

Figure 1-5	F-22 Flagship Acquisition Program	1-36

Figure 1-6	F-22 versus F-15 Life Cycle Cost Savings	1-38

Figure 1-7	Boeing 777 Transport Within Budget and On Time 	1-41

Figure 2-1	F/A-18 Hornet Blasting Off Deck of USS Saratoga	2-4

Figure 2-2	Without Software the F-16 Is Only a 15-Million Dollar Lawn Dart 	2-5

Figure 2-3	Software-Intensive Systems Growth	2-6

Figure 2-4	C-17 Aces EMD Phase with Simulated Durability Testing	2-8

Figure 2-5	F-16 Embedded Software Iceberg	2-11

Figure 2-6	C3I Software Provides Secure Information to Tactical Operations	2-12

Figure 2-7	Other Weapon System Software (Not Embedded)	2-13

Figure 2-8	TAFIM Contents	2-28

Figure 2-9	TAFIM Technical Reference Model	2-30

Figure 2-10	Technical Architecture Framework	2-31

Figure 2-11	Architectural Modeling Framework 	2-31

Figure 2-12	DoD Goal Security Architecture 	2-32

Figure 2-13	Human Computer Interface (HCI) Style Guide	2-33

Figure 3-1	Software-Intensive System	3-5

Figure 3-2	Nominal Cost Distribution of a Typical DoD Program 	3-8

Figure 3-3	Effect of Early Decisions on Life Cycle Cost 	3-8

Figure 3-4	Evolutionary Life Cycle Generations	3-14

Figure 3-5	User Involvement in the Evolutionary Method	3-15

Figure 3-6	Example Incremental Life Cycle Method	3-17

Figure 3-7	Example Incremental Method/MAISRC/Project Board Milestones/Reviews	3-18

Figure 3-8	Ada Spiral Model	3-19

Figure 4-1	Total Quality Engineering	4-5

Figure 4-2	Vertical and Horizontal Domains	4-6

Figure 4-3	Systems Engineering Process 	4-13

Figure 4-4	Relationship between Systems, Hardware, and Software Engineering	4-15

Figure 4-5	Example Integrated Product Team Members	4-16

Figure 4-6	Integrated Product Development Process	4-17

Figure 4-7	Order of Magnitude Between Software Engineering and Software-as-Art	4-21

Figure 4-8	Software Life Cycle Costs	4-23

Figure 4-9	Domain Engineering and Software Engineering Discipline	4-24

Figure 4-10	Three-tiered View of Organizational Engineering Processes 	4-26

Figure 4-11	Software Engineering Elements	4-29

Figure 4-12	Software Engineering Relationship to the Software Life Cycle	4-39

Figure 4-13	Information Engineering Phases 	4-42

Figure 4-14	Strategic Management Planning 	4-43

Figure 4-15	Information Engineering Four-Level Architecture 	4-43

Figure 4-16	IDEF (Level A0) for Nominal Program	4-45

Figure 4-17	IDEF (Decomposition of A0) Model for a Nominal Program	4-46

Figure 4-18	Software Engineering Builds a Solid Foundation Upfront	4-47

Figure 4-19	SWSC Software Re-engineering Environment	4-52

Figure 4-20	SWSC Domain Engineering Approach	4-52

Figure 4-21	Domain/Application Model Relationship 	4-53

Figure 4-22	Iterative Two Life Cycle Domain/Application Engineering Process 	4-54

Figure 5-1	Ada’s Eagle: Our Safest Fighter	5-4

Figure 5-2	Ada Component Interfacing Facilitated YF-22 Fire Control Software Demonstration	5-10

Figure 5-3	Software-Intensive SSN-21 Seawolf Attack Stealth Submarine 	5-26

Figure 5-4	Type Programs Where Ada Reuse is Cheaper Than 4GL 	5-49

Figure 5-5	Ada Features Support Software Engineering Principles	5-51

Figure 5-6	Ada Two-part Program Unit	5-52

Figure 5-7	An Ada Package	5-53

Figure 5-8	Searching for the Exception Handler	5-55

Figure 5-9	Relationships between Ada’s Features, Software Engineering Principles and Goals	5-58

Figure 5-10	Ada Bindings	5-71

Figure 5-11	Linking Ada to Non-Ada Modules	5-77

Figure 5-12	Summary of Ada Feature Benefits	5-81

Figure 6-1	Benefits of Effective Risk Management 	6-5

Figure 6-2	Risk Management Continuous Process	6-11

Figure 6-3	A Formal Risk Management Process	6-12

Figure 6-4	SRE Method Application	6-14

Figure 6-5	Structure of the Software Risks Taxonomy	6-15

Figure 6-6	SRE Functional Components	6-16

Figure 6-7	Risk Magnitude Level Matrix	6-17

Figure 6-8	Streamlined SEI Risk Assessment Process	6-19

Figure 6-9	Decision Tree for Satellite Software Risk Item	6-21

Figure 6-10	Software Risk Management Steps	6-22

Figure 6-11	NALCOMIS Local Repair Cycle	6-29

Figure 6-12	One Third of All Navy/Marine Squadrons Use NACOMIS OMA	6-30

Figure 6-13	Risk Management Filters Through All B-1B Upgrade Phases	6-32

Figure 6-14	Contractor Risk Management Teams	6-33

Figure 7-1	A Family of CMMSMs	7-10

Figure 7-2	Software Process Maturity Framework	7-12

Figure 7-3	Three Necessary Components for Improvement	7-18

Figure 7-4	P-CMMSM Key Process Areas by Maturity Level	7-20

Figure 7-5	SA-CMMSM Architecture 	7-22

Figure 7-6	System Security Engineering CMMSM KPAs	7-24

Figure 7-7	SE-CMMSM Architecture	7-28

Figure 7-8	Reduction per Year in Post-release Defect Reports	7-31

Figure 7-9	Gain per Year in Productivity	7-32

Figure 7-10	Return on Investment Ratio of SPI Efforts	7-32

Figure 7-11	Benefit Ratios of Moving from Level 1 to Level 3	7-39

Figure 7-12	1994 Assessment Results	7-44

Figure 7-13	Characteristics of a Level 3 Contractor	7-46

Figure 7-14	The Effect of Process Maturity on Performance	7-52

Figure 7-15	Origin of Data Points	7-55

Figure 7-16	Scatter Plot of CPI versus Rating for High and Very High Rating Relevance	7-57

Figure 7-17	Scatter Plot of SPIU versus Rating for Less Than 80% Complete	7-58

Figure 8-1	Software Measurement Life Cycle	8-7

Figure 8-2	Organizational Measurement Hierarchy	8-12

Figure 8-3	Space Shuttle Life Cycle Measurements	8-13

Figure 8-4	Total Metrics Roll-Up for the 777	8-14, 8-15

Figure 8-5	ATF Data Collection for Software Development Tracking	8-19

Figure 8-6	CMM Maturity Level, Measures Collected, Metrics Compared 	8-21

Figure 8-7	Management Process with Metrics	8-22

Figure 8-8	Mission Availability Satisfaction	8-31

Figure 8-9	Warfighting Supportability Requirements Satisfaction 	8-31

Figure 8-10	Operating Cost Satisfaction (total cost/installation) 	8-31

Figure 8-11	Function Point Software Size Computational Process 	8-36

Figure 8-12	Coupling and Cohesion versus Fault Rate	8-40

Figure 8-13	Software Productivity Factors (Weighted Cost Multipliers)	8-43

Figure 9-1	Domain-specific, Architecture-based Software Engineering to Maximize Reuse	9-5

Figure 9-2	Reusable Asset Production through Iterative Domain and Application Engineering	9-6

Figure 9-3	Factory Fixed and Variable Costs	9-9

Figure 9-4	Design Reuse Compared to Code Reuse 	9-17

Figure 9-5	Annual Projected DoD Software Cost (dollars in billions) 	9-21

Figure 9-6	SEL Comparisons of Defect Rates and Development Cost of New and Reused Modules	9-22

Figure 9-7	STARS Megaprogramming	9-27

Figure 9-8	Process-based Development Conceptual Model	9-28

Figure 9-9	SWSC Stovepiped Software Systems	9-30

Figure 9-10	Architectural Infrastructure is the Product-Line Approach Foundation	9-31

Figure 9-11	SWSC Product-Line Saved People Resources	9-31

Figure 9-12	Reuse on SCAI Mobile Space System Build 2	9-32

Figure 9-13	Architecture Is the Key to Reuse Success	9-33

Figure 9-14	Obstacles to the Product-Line Paradigm Shift	9-34

Figure 9-15	High-Level Architecture View of DSSA ADAGE	9-41

Figure 10-1	Gains in Quality and Productivity Attained by Technology Transitions 	10-12

Figure 10-2	Connectivity Among Software Engineering Toolboxes	10-17

Figure 10-3	CCPDS-R Time Savings Approach	10-26

Figure 10-4	COHESION SEE Functions	10-29

Figure 10-5	Demonstration Project SEE Tool Functionality Groups	10-30

Figure 10-6	I-CASE Operational Concept	10-33

Figure 10-7	Teamwork®/Ada Overview	10-54

Figure 10-8	Benefits of Automated Code Verification	10-59

Figure 10-9	Re-engineering Process Models 	10-64

Figure 10-10	COTS Integration and Support	10-84

Figure 10-11	Project Model	10-87

Figure 11-1	Support Tasks Superimposed on the Software Development Phase	11-4

Figure 11-2	Life Cycle Support Costs	11-5

Figure 11-3	Causes of Software Changes	11-6

Figure 11-4	AFOTEC Software Supportability Evaluation Areas	11-7

Figure 11-5	Bathtub Curves for Hardware and Software	11-8

Figure 11-6	Relationship Among Support Engineering Tasks	11-16

Figure 11-7	Post-Deployment Software Support Key Considerations 	11-25

Figure 11-8	Computer Resources Integrated Support Document (CRISD)	11-27

Figure 11-9	Acquisition Instruments	11-31

Figure 11-10	Prototype ROADS Model Configuration	11-40

Figure 11-11	ROADS Concept of Operation Constant Source System Architecture	11-41

Figure 11-12	ROADS Deployment Examples	11-42

Figure 12-1	Factors Influencing Program Stability	12-7

Figure 12-2	Interrelationships Among WBS Types	12-30

Figure 12-3	Interrelationships Among WBS Types	12-32

Figure 12-4	Software Project and Contract WBS Functional Integration	12-34

Figure 12-5	F-22 3-Level WBS	12-35

Figure 12-6	Iterative Software Planning Process 	12-43

Figure 12-7	Maturity Growth Curve	12-48

Figure 13-1	Typical Software Acquisition/Development Team	13-4

Figure 13-2	Contracting Process	13-6

Figure 13-3	RFP Preparation Process	13-11

Figure 13-4	Prime/Software Subcontractor Development Responsibility	13-15

Figure 13-5	Prime-Sub Different Business Perspectives	13-16

Figure 13-6	Chain of Government-Subcontractor Communications	13-16

Figure 13-7	Source Selection Preparation Process	13-41

Figure 13-8	Contract Award Process	13-52

Figure 14-1	F-22 Requirements Process	14-17

Figure 14-2	F-22 Baselined Requirements with Incremental Buildup	14-21

Figure 14-3	Ingredients of Software Design	14-29

Figure 14-4	Standards-Based Architecture Planning Process	14-33

Figure 14-5	Object-Oriented Baseball	14-41

Figure 14-6	Aggregation Hierarchy Example	14-42

Figure 14-7	Classification Hierarchy Example	14-44

Figure 14-8	Message Passing Example	14-44

Figure 14-9	Problem Domain/Solution Domain Analytical Process	14-45

Figure 14-10	Space Shuttle Defect Detection/Removal/Prevention Is Critical	14-46

Figure 14-11	Benefits of Using an OOD Approach with Ada	14-48

Figure 14-12	Space Shuttle Defect Removal Process Improvement 	14-54

Figure 14-13	F-16 Avionics System Integration Testing	14-61

Figure 14-14	F-16 Avionics Integration and System Testing	14-62

Figure 14-15	OT&E Process for Software Maturity	14-64

Figure 14-16	Software Maturity	14-65

Figure 15-1	The Shewhart Cycle	15-7

Figure 15-2	Process Measurement Metrics	15-8

Figure 15-3	Earned-Value through Objectively Observable Milestones	15-13

Figure 15-4	C/SCSC Earned-Value Analysis	15-17

Figure 15-5	Front-loaded Baseline	15-18

Figure 15-6	Rubber Baseline	15-19

Figure 15-7	Effects of Internal Planning	15-19

Figure 15-8	Baseline Budget Exceeds Contract	15-20

Figure 15-9	Requirements and Design Process Metric	15-22

Figure 15-10	Code and Test Progress Metric	15-23

Figure 15-11	Manmonths Progress Metric	15-24

Figure 15-12	Software Quality Assurance and System Life Cycle 	15-30

Figure 15-13	Sample Management Structure for an Independent SQA Element 	15-31

Figure 15-14	Management Factors to Address for a Quality Product 	15-31

Figure 15-15	Defect Rework Hidden Cost	15-33

Figure 15-16	Rework Cost per Development Phase	15-34

Figure 15-17	Defect Causal Analysis Process	15-35

Figure 15-18	F-16 Software Defect Detection Model Results	15-36

Figure 15-19	Industry Average Defect Profile	15-42

Figure 15-20	Defect Profile with Inspections	15-43

Figure 15-21	Personnel Resource Expenditures With and Without Inspections	15-44

Figure 15-22	Cleanroom Process Model 	15-49

Figure 15-23	Cleanroom Pipeline Construction	15-50

Figure 15-24	Cleanroom Certification Process 	15-52

Figure 15-25	How Programmers Spend Their Time	15-59

Figure 15-26	IBM’s Just-in-Time Training Approach	15-65

Figure 15-27	Space Shuttle Software Development Process	15-67

Figure 15-28	Requirements Tracking for the F-22	15-69

Figure 15-29	Software Configuration Management Process	15-70

Figure 15-30	Iterative Development Products versus Conventional Development Products	15-86

Figure 15-31	Progress Towards Improved Software Economics	15-92

Figure 16-1	Vision for Software	16-5

Figure 16-2	Activity Network Example	16-18

Figure 16-3	Development Time versus Effort Tradeoffs	16-25

Figure 16-4	TI Quality Metrics Benchmarking Summary (1994 Year to Date) 	16-32

LIST OF TABLES�tc "<Head 3 (14)>LIST OF TABLES"�

Table 1-1	GAO Reports on Software Failures	1-8

Table 1-2	Major Non-Military Software Failures	1-10

Table 1-3	Where Military Software Lags Behind Commercial Software	1-32

Table 1-4	Military and Commercial Software Failure Factors	1-33

Table 1-5	Where Military Software Excels 	1-35

Table 1-6	Military and Commercial Software Success Factors 	1-35

Table 2-1	Software Acquisition Worst Practices	2-33

Table 4-1	SCAI Cost with Megaprogramming	4-55

Table 5-1	Software Engineering Course Length	5-17

Table 5-2	Total SLOC by General Purpose 3GL for Weapons Systems	5-20

Table 5-3	Total SLOC by General Purpose 3GL for MIS	5-20

Table 5-4	New or On-Going Ada Programs Throughout DoD	5-21

Table 5-5	Large-Scale Commercial Ada Systems	5-23

Table 5-6	Industry Experience with Ada	5-37

Table 5-7	FAA Weighted Scores for 6 Criteria Categories	5-38

Table 5-8	SEI Weighted Scores for 6 Criteria Categories (MIS/C3)	5-39

Table 5-9	Productivity Study Comparison (source lines-of-code/manmonth)	5-40

Table 5-10	Cost Study Comparison (dollars/source lines-of-code)	5-40

Table 5-11	Integration and FQT Defect Rates	5-41

Table 5-12	Corporate Cost Effectiveness Analysis	5-42

Table 5-13	Comparison of When Ada or a 4GL Is More Cost Effective 	5-47

Table 5-14	When Ada Reuse is Most Cost Effective	5-48

Table 5-15	Comparison of Size Impacts Using Three Methods	5-49

Table 5-16	Summary of Ada Program Unit Features	5-56

Table 5-17	Summary of Ada Feature Benefits	5-58

Table 5-18	How to Know When to Transition to Ada 95	5-63

Table 6-1	Top-Ten Risk Identification Checklist	6-23

Table 6-2	Risk Exposure Factors for Satellite Experiment Software	6-24

Table 6-3	Risk Management Questionnaire	6-26

Table 6-4	Team Risk Management Principles	6-28

Table 6-5	Advantages of Team Risk Management	6-28

Table 6-6	Proposal Items or Solution Areas 	6-44

Table 6-7	Taxonomy of Software Development Risks	6-45

Table 7-1	BPG Capability Levels, Common Features, and Generic Practices 	7-17

Table 7-2	Summary of SEI CMMSM Software Process Improvement (SPI) Study	7-30

Table 7-3	OC-ALC Software Process Improvement Benefits	7-34

Table 7-4	Benefits of Moving from Level 1 to Level 3 (SSG Program Example)	7-39

Table 7-5	ROI at Raytheon by Moving from Level 1 to Level 3	7-41

Table 7-6	ROI at Hughes by Moving from Level 2 to Level 3	7-42

Table 7-7	Characteristics of the Complete Dataset	7-56

Table 8-1	Example Management Indicators	8-4

Table 8-2	Collection and Use of Metrics at Loral	8-9

Table 8-3	How Metrics Are Used for Program Management 	8-17

Table 8-4	RADC Software Quality Factors	8-30

Table 8-5	Function Points versus Lines-of-code	8-33

Table 8-6	Function Point Computation 	8-35

Table 8-7	Ratios of Feature Points to Function Points	8-37

Table 8-8	Industry Average Productivity Rates (function points produced per manmonth)	8-42

Table 9-1	Impact of Reuse and Moving from Level 1 to Level 3 (113,465 SLOC from reuse)	9-23

Table 9-2	Impact of Reuse at SEI Level 3 (113,465 SLOC from reuse)	9-23

Table 9-3	Quality, Productivity, and Time-to-Market Profiles 	9-25

Table 9-4	Relative Cost to Produce and Reuse	9-25

Table 9-5	HP Reuse Program Economic Profiles	9-26

Table 9-6	Traditional versus Mobile Space System Product-Line Approach	9-32

Table 10-1	Countries with the Highest Net Cost per Feature Point Produced	10-4

Table 10-2	Countries with the Lowest Net Cost per Feature Point (US 1991 dollars)	10-5

Table 10-3	Tools to Implement Process Improvement Goals and Remove Management Inadequacies 	10-9

Table 10-4	Ten Common Sense Rules for Tool Selection	10-14

Table 10-5	Eight Software Engineering Toolset	10-16

Table 10-6	Tool Selection and Evaluation Activities	10-18

Table 10-7	Common Tools and Methods of a SEE	10-23

Table 10-8	Demonstration Project SEE Tool Suppliers	10-31

Table 10-9	Parametric Models Applicability to Life Cycle Phase	10-41

Table 10-10	Upper CASE Tool Functional Characteristics	10-48

Table 10-11	STSC Test Tool Classifications	10-56

Table 10-12	AdaTEST Features and Functions	10-61

Table 10-13	Program Model Phases and Characteristics	10-89

Table 11-1	Software Supportability Checklist	11-21

Table 12-1	The Software Estimation Process 	12-38

Table 14-1	Software Development Life Cycle Cost	14-50

Table 14-2	CMOS Integration Test Results of UT3/Non-UT3 Modules	14-58

Table 14-3	AFOTEC Software OT&E Pamphlets	14-63

Table 14-4	ANSI/IEEE Software Engineering Terminology	14-67

Table 14-5	Military/Commercial Effort Distribution	14-77

Table 14-6	The Ten Commandments of Software Development	14-80

Table 15-1	Flight Plan for Success	15-10

Table 15-2	Software Metrics for Earned-Value	15-25

Table 15-3	1990 US Software Defect Averages (in function points)	15-38

Table 15-4	Fagan Inspection Process Activities	15-45

Table 15-5	Cleanroom Performance Measures (KLOC = 1,000 lines-of-code)	15-54

Table 15-6	Ada Risk Evolution from 1985 to 1994	15-89

Table 16-1	Software Engineering Productivity (1991)	16-11

Table 16-2	US Share of World’s Software and Services Market	16-12

Table 16-3	Countries with Highest Software Quality	16-13

ACRONYMS�tc "<Head 3 (14)>ACRONYMS"�

INDEX�tc "<Head 3 (14)>INDEX"�

��tc "<>"�

Volume �tc "<>Volume "�

 2 �tc "<> 2 "�

 �tc "<> "�

Appendices�tc "<>Appendices"�

�tc "<Head 4 (12)>"�

�tc "<Head 4 (12)>"�

PART I �tc "<Head 4 (12)>PART I "�

Points of Contact and Web Directories�tc "<Head 4 (12)>Points of Contact and Web Directories"�

APPENDIX A	Government and Industry Points of Contact

APPENDIX B	Web Directory of Software Acquisition and Engineering Policy, Information, Education, and Services

PART II�tc "<Head 4 (12)>PART II"�

Policy and Information-Related Appendices�tc "<Head 4 (12)>Policy and Information-Related Appendices"�

APPENDIX C	DoD Policy	

APPENDIX D	Software-Related Government and Industry Documents

APPENDIX E	Selected Technical References

APPENDIX F	Selected Reading and Reference Material		

�tc "<Head 4 (12)>"�

PART III�tc "<Head 4 (12)>PART III"�

Engineering-Related Appendices�tc "<Head 4 (12)>Engineering-Related Appendices"�

APPENDIX G	Software Architecture

APPENDIX H	How Should Ada Software Be Documented?

APPENDIX I	Comparison of ISO 9001 and CMMSM

APPENDIX J	Function/Feature Point Counting

APPENDIX K	Software Support

APPENDIX L	STARS and I-CASE Tools and Services

PART IV�tc "<Head 4 (12)>PART IV"�

Management-Related Appendices�tc "<Head 4 (12)>Management-Related Appendices"�

APPENDIX M	Software Source Selection

APPENDIX N	AIS ORD Recommendations

PART V�tc "<Head 4 (12)>PART V"�

Additional Addenda�tc "<Head 4 (12)>Additional Addenda"�

APPENDIX O	Additional Volume 1 Addenda

Version 2.0

Preface

�PAGE �

�PAGE �
iv
�

Version 2.0

Version 2.0

�

PAGE

�
ii
�

Version 2.0

Version 2.0

Table of Contents

