�tc "<>"�

CHAPTER�tc "<>CHAPTER"�

 �tc "<> "�8�tc "<> 8"�

Measurement and Metrics�tc "<>Measurement and Metrics"�

EDITOR
’
S NOTE: Graphics quality will improve when printed.

CHAPTER OVERVIEW

	
Why is it so important to measure your process and the product it produces? Unlike other manufacturing processes, software development is inherently unstable. Any human-intensive activity, without control, deteriorates with time. It takes constant attention and discipline to keep the software production process from breaking down — let alone to improve it. If you do not measure, there is no way to know whether the process is on track or if it is improving
.

Measurement

provides a way for you to assess the status of your program to determine if it is in trouble, in need of corrective action, and/or process improvement. This assessment must be based on up-to-date measures that reflect current program status, both in relation to the program plan and to models of expected performance drawn from historical data of similar programs. If, through measurement, you diagnose your program as being in trouble, you will be able take meaningful, effective remedial action (e.g., relaxing performance requirements, extending your schedule, adding more money, or any number of options).
 [See Chapter 16, The Challenge, for a discussion on remedial actions for troubled programs.]
Measurement provides benefits at the strategic, program, and technical levels.

	Software quality measures are often no more than counts of defects in the code. By measuring defects, you gain information for making decisions about rework, whether to release to the next unit or phase, to move intermediate code forward to the next development activity, or to continue the current activity. Defects must be identified, tracked, and resolved through software problem reports (SPRs) which are subject to rigorous configuration management rules. The

defect

discovery

and

resolution

rate
 is a direct measure of software process health.

	Poor size estimation is one of the main reasons major software-intensive acquisition programs ultimately fail. Size is the critical factor in determining cost, schedule, and effort, the failure to accurately predict (usually too small), results in budget overruns and late deliveries which undermine confidence and erode support for your program. Size estimation is a complicated activity the results of which must be constantly updated throughout the life cycle with actual counts. Size measures include source lines-of-code, function points, and feature points. Complexity is a function of size which greatly impacts on design errors and latent defects which ultimately result in quality problems, cost overruns, and schedule slips. Complexity continuously must be measured, tracked, and controlled. Another factor leading to size growth is requirements creep which also must be baselined and diligently controlled.

	Actual versus planned staff-hours expended should be tracked from the day of contract award. Effort expended is often the largest (and least controllable) cost variable
.
Effort
measures
 permit
 the comparison between planned
 (piece-of-cake)
 and actual
 (this-is-a-bit-more-difficult-than-we-thought)
 level of manhour expenditures which give us insights into productivity, another key cost driver. You will want to breakdown the various labor and support staff expenditures into task areas, such as levels of experience and task assignment. Again
,

metrics reveal trends
.
If the effort expended exceeds planned estimates, and cost or schedule begin to slide, watch for quality to follow
.

	
Scrap and rework measures assess the amount of effort lost when portions of the product thrown out or recoded because it does not meet expectations. Usually, scrap and rework occurs because defects are found in the code, or the product does not perform as required
. Scrap and rework is a major variable in both cost and schedule.
Perhaps more than any other metric
,

scrap and rework
 reveals the contractor’s software development maturity. If proper front-end planning, design, and code production are accomplished with quality as the underlying goal, scrap and rework should be a very small percent of total program effort.

	A good measurement program is an investment in success by facilitating early detection of problems, and by providing quantitative clarification of critical development issues. Metrics give you the ability to identify, resolve, and/or curtail risk issues before they surface. Measurement must not be a goal in itself. It must be integrated into the total software life cycle — not independent of it. To be effective, metrics must not only be collected —
 they must be used!
Campbell and Koster summed up the bottom line for metrics when they exclaimed:

If you ain’t measurin,’ you ain’t managin’ — you’re only along for the ride (downhill)!

[CAMPBELL95]

�
�tc "<>"�

CHAPTER�tc "<>CHAPTER"�

 �tc "<> "�8�tc "<> 8"�

Measurement and Metrics�tc "<>Measurement and Metrics"�

MEASUREMENT�tc "<Head 2 (14)>MEASUREMENT"�

Measurement is the key to progress in software...Now that accurate measurements and metrics are available
, it can be asserted that software engineering is ready to take its place beside the older engineering disciplines as a true profession, rather than an art or craft as it has been for so long.
[JONES91]

You cannot build quality software, or improve your process, without measurement. Measurement aids in achieving the basic management objectives of prediction, progress, and process improvement. An oft repeated phrase by �xe "DeMarco, Tom"�DeMarco holds true, “
You can’t manage what you can’t measure!
” [DeMARCO86] All process improvement must be based on measuring where you have been, where you are now, and predicting where you are heading.
Good metrics always lead to process improvement!

Measures, Metrics, and Indicators�tc "<Head 3 (14)>Measures, Metrics, and Indicators"�

A software measurement is a quantifiable dimension, attribute, or amount of any aspect of a software program, product, or process. It is the raw data which identify various elements of the software process and product. Metrics are computed from measures. They are quantifiable indices used to compare software products, processes, or projects or to predict their outcomes. With metrics, we can:

·	Monitor requirements,

·	Predict development resources,

·	Track development progress, and

·	Understand maintenance costs.

A distinction should be made between �xe "Indicators:Management"�indicators and metrics. With indicators, the requirement for determining a relationship between the value of the indicator and the value of the software characteristic being measured is substantially relaxed. A �xe "Indicators:Reliability"��xe "Reliability:Indicator"�reliability indicator, for example, will not describe an anticipated value of reliability [i.e., mean-time-between-failure (MTBF) of 0.8 on a scale of 0 to 1]. Indicators are used to compare the current state of your program with past performance or prior estimates and are derived from earlier data from within the program. They show
trends
 of increasing or decreasing values, relative only to the previous value of the same indicator. They also show containment or breeches of pre-established limits, such as allowable latent defects. Useful insights can be drawn from indicators because they are derived from readily available data internal to the program and do not require significant investment in resources or imposition on existing processes. Table 8-1 gives some examples of useful management indicators.

�

Table 8-1 Example Management Indicators

A metric, on the other hand, is a direct measure of a software product that is embedded in a hierarchy of relationships ultimately connecting that metric with the software characteristic being measured. The change in the value of the metric has a direct relationship to any change in the value of the software attribute (characteristic) being measured. Because they compare your program attributes with industry benchmarks and norms, they require access to historical databases of normalized information to provide insights into deviations from accepted levels of performance. Metrics provide key insights into how your program is performing, whether it is stable, and about the quality of your process.

Metrics are also useful for determining a
“business strategy”
 (how resources are being used and consumed). For example, in producing hardware, management looks at a set of metrics for �xe "Rework"�scrap and rework. From a software standpoint, you will want to see the same information on how much money, time, and manpower the process consumes that does not contribute to the end product. One way a software program might consume too many resources is if errors made in the requirements phase were not discovered and corrected until the coding phase. Not only does this create rework, but the
 �xe "Requirements, software:Cost of errors"��xe "Cost:Of requirements errors"��xe "Error:Cost of"�cost to correct an error during the coding phase that was inserted during requirements definition is approximately 50% more costly to correct than one inserted and corrected during the coding phase
. [�xe "Boehm, Barry W"�BOEHM81] The key is to catch errors as soon as possible (i.e., in the same phase that they are induced).

 [See Chapter 15,

Managing
Process Improvement
,
for a detailed discussion on error prevention.]

�xe "Measurement/metrics:Management"�Management metrics are measurements that help evaluate how well the contractor is proceeding in accomplishing their �xe "Software Development Plan (SDP)"�Software Development Plan. Trends in management metrics support forecasts of future progress, early trouble detection, and realism in plan adjustments. Software �xe "Product:Attribute"�product attributes are measured to arrive at �xe "Measurement/metrics:Product"��xe "Product:Metrics"�product metrics which determine user satisfaction with the delivered product or service. From the user’s perspective, product attributes can be reliability, ease-of-use, timeliness, technical support, responsiveness, problem domain knowledge and understanding, and effectiveness (creative solution to the problem domain). Product attributes are measured to evaluate software quality factors, such as efficiency, integrity, reliability, survivability, usability, correctness, maintainability, verifiability, expandability, flexibility, portability, reusability, or interoperability. �xe "Measurement/metrics:Process"��xe "Process:Metrics"�Process metrics are used to gauge organizations, tools, techniques, and procedures used to develop and deliver software products. [PRESSMAN92] �xe "Attribute:Process"��xe "Process:Attribute"�Process attributes are measured to determine the status of each phase of development (from requirements analysis to user acceptance) and of resources (dollars, people, and schedule) that impact each phase.

NOTE:	Despite the SEI’s Software Capability Evaluation (SCE) methods, process efficiency can vary widely within companies rated at the same maturity levels and from program to program.

There are five classes of metrics from generally used from a commercial perspective to measure the quantity and quality of software. During development technical and defect metrics are used. After market metrics are then collected which include user satisfaction, warranty, and reputation.

·	Technical metrics are used to determine whether the code is well-structured, that manual for hardware and software use are adequate, that documentation is complete, correct, and up-to-date. Technical metrics also describe the external characteristics of the system’s implementation.

·	Defect metrics are used to determine that the system does not erroneously process data, does not abnormally terminate, and does not do the many other things associated with the failure of a software-intensive system.

·	End-user satisfaction metrics are used to describe the (demand) value received from using the system.

·	Warranty metrics reflect specific revenues and expenditures associated with correcting software defects on a case-by-case basis. These metrics are influenced by the level of defects, willingness of users to come forth with complaints, and the willingness and ability of the software developer to accommodate the user.

·	Reputation metrics are used to assess perceived user satisfaction with the software and may generate the most value, since it can strongly influence what software is acquired. Reputation may differ significantly from actual satisfaction:

-	Because individual users may use only a small fraction of the functions provided in any software package; and

-	Because marketing and advertising often influences buyer perceptions of software quality more than actual use.

Software Measurement Life Cycle�tc "<Head 3 (14)>Software Measurement Life Cycle"�

Effective software measurement adds value to all life cycle phases. Figure 8-1 illustrates the primary measures associated with each phase of development. During the requirements phase, function points are counted. Since requirements problems are a major source of cost and schedule overruns, an error and quality tracking system is put into effect. Once requirements are defined, the next phase of measurement depends on whether the program is a custom development, or a combination of newly developed applications, reusable assets, and COTS. The risks and values of all candidate approaches are quantified and analyzed.

�

Figure 8-1 Software Measurement Life Cycle [JONES91]

If the solution is a custom development, from the logical system design on, defect removal is the most costly activity. Therefore, design reviews and peer inspections [discussed in Chapter 15, Managing Process Improvement] are used to gather and record error data. During physical design, reviews and peer inspections continue to be valuable and error data are still collected. The coding phase can either be bothersome, or almost effortless, depending upon the success of the preceding phases. Defect and quality data, as well as code complexity measures, are recorded during code reviews and peer inspections.

One of the most important characteristics of your software development is �xe "Complexity"�
complexity
. With the first executable architecture, throughout the design phases, and subsequently, as the code is developed and compiled, evaluate the complexity of your proposed development. This will give you important insight into the feasibility of bringing your program to a successful conclusion (i.e., to provide the desired functional performance on the predicted schedule, at the estimated cost).

The testing phase can range from a simple unit test a programmer conducts, to a full-scale, multi-staged formal test suite including function tests, integration tests, stress tests, regression tests, independent tests, field tests, system tests, and final acceptance tests. During all these activities, in-depth defect data are collected and analyzed for use in subsequent �xe "Defect:Prevention"�defect prevention exercises. Retrospective analyses are performed on �xe "Defect:Removal:efficiency"�defect removal efficiencies [also discussed in Chapter 15, Managing Process Improvement] for each specific review, peer inspection, and test, and on the cumulative efficiency of the overall series of defect removal steps.

During the maintenance phase, both user satisfaction and latent defect data are collected. For enhancements or replacements of existing systems, the structure, complexity, and defect rates of the existing software are determined. Further retrospective analysis of defect removal efficiency is also be performed.
A general defect removal goal is a cumulative defect removal efficiency of 95% for MIS, and 99.9% (or greater) for real-time weapon systems
. This means that, when defects are found by the development team or by the users, they are summed after the first (and subsequent) year(s) of operations. Ideally, the development team will find and remove 95% to 100% of all latent defects. [JONES91]

Software Measurement Life Cycle at Loral�tc "<Head 3 (14)>Software Measurement Life Cycle at Loral"�

Table 8-2 illustrates how �xe "Measurement/metrics:Loral Federal Systems"��xe "Loral Federal Systems"�Loral Federal Systems, Manassas collects and uses metrics throughout the software life cycle. The measurements collected and the metrics (or in-process indicators) derived from the measures change throughout development. At the start of a program (during the proposal phase or shortly after contract start), detailed development plans are established. These plans provide planned start and completion dates for each CDRL (CSU or CSCI). From these plans, a profile is developed showing the planned percent completion per month over the life of the program for all the software to be developed. Also at program start, a launch meeting is conducted to orient the team to a common development process and to present lessons-learned from previous programs.

�

Table 8-2 Collection and Use of Metrics at Loral

During software design, coding, and unit testing, many measurements and metrics are used. On a weekly basis, actual percent completion status is collected against the plan established at program start. Actuals are then plotted against the plan to obtain early visibility into any variances. The number of weeks (early or late) for each line item is also tracked to determine where problems exist. Source statement counts (starting as estimates at program start) are updated whenever peer inspections are performed. A plot of code change over time is then produced. Peer inspections are conducted on a regular basis and defects are collected. �xe "Measurement/metrics:Peer inspection metrics"��xe "Inspection, peer:Metrics"�Peer inspection metrics include �xe "Measurement/metrics:Peer inspection metrics:efficiency"�peer inspection efficiency (effectiveness) (percent of defects detected during inspections versus those found later) and expected product �xe "Quality"��xe "Measurement/metrics:Quality"�quality [the number of defects detected per thousand source lines-of-code (KSLOC)]. Inspection data are used to project the expected latent defect rate (or conversely, the �xe "Defect:Removal:efficiency"�defect removal efficiency rate) after delivery. At the completion of each development phase, �xe "Defect:Causal analysis"�defect causal analysis meetings are held to examine detected defects and to establish procedures, which when implemented, will prevent similar defects from occurring in the future.

During development, program measurements are updated periodically (either monthly or quarterly) in the site metrics database. These measurements include data such as cost, effort, quality, risks, and technical performance measures. Other metrics, such as planned versus actual staffing profiles, can be derived from these data. During integration and test, trouble report data are collected. Two key metrics are produced during this phase: the �xe "Program:Program Trouble Report (PTR)"�Program Trouble Report (PTR) density (the number of defects per KSLOC) and Open PTRs over time. An internal development team survey is transferred to the integration and test team so they can derive the team’s defect removal efficiency and PTR satisfaction for the internal software delivery.

At the end of the program, lessons-learned for process improvement are documented for use in future team launches. If possible, a customer survey is conducted to determine a �xe "Customer:Satisfaction:rating"�customer satisfaction rating for the program. Delivered product quality is measured during acceptance testing and compared to the earlier projected quality rate. These actuals are then used to calibrate the projection model for future and on-going programs.

Software Measurement Process�tc "<Head 2 (14)>Software Measurement Process"�

When you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind…

—
Lord Kelvin

Your software measurement process must be an objective, orderly method for quantifying, assessing, adjusting, and ultimately improving your development process. Data are collected based on known, or anticipated, development issues, concerns, and questions. They are then analyzed with respect to the software development process and products. The measurement process is used to assess quality, progress, and performance throughout all life cycle phases. The key components of an effective measurement process are:

•	Clearly defined software development issues and the measure (data elements) needed to provide insight into those issues;

•	Processing of collected data into graphical or tabular reports (indicators) to aid in issue analysis;

•	Analysis of indicators to provide insight into development issues; and,

•	Use of analysis results to implement process improvements and identify new issues and problems.

Your normal avenue for obtaining measurement data is via contract CDRLs. A prudent, Level 3 contractor will implement a measurement process even without government direction. This measurement process includes collecting and receiving actual data (not just graphs or indicators), and analyzing those data. To some extent the government program office can also implement a measurement process independent of the contractor’s, especially if the contractor is not sufficiently mature to collect and analyze data on his own. In any case, it is important for the Government and the contractor to meet and discuss analysis results. �xe "Measurement/metrics"�
Measurement activities keep you actively involved in, and in control of, all phases of the development process.
Figure 8-2 illustrates how measurement is integrated into the organizational hierarchy at IBM-Houston. It shows how a bottoms-up measurement process is folded into corporate activities for achieving corporate objectives.

�

Figure 8-2 Organizational Measurement Hierarchy

Metrics Usage Plan�tc "<Head 3 (14)>Metrics Usage Plan"�

For measurement to be effective, it must become an integral part of your decision-making process. Insights gained from metrics should be merged with process knowledge gathered from other sources in the conduct of daily program activities. It is the
entire measurement process
 that gives value-added to decision-making, not just the charts and reports. [ROZUM92] Without a firm Metrics Usage Plan, based on issue analysis, you can become overwhelmed by statistics, charts, graphs, and briefings to the point where you have little time for anything other than ingestion.
Plan well!
 Not all data is worth collecting and analyzing. Once your development program is
 in-process,
and your development team begins to design and produce lines-of-code, the effort involved in planning and specifying the metrics to be collected, analyzed, and reported upon begins to pay dividends. Figure 8-3 illustrates examples of life cycle measures and their benefits collected on the �xe "Space Shuttle"�Space Shuttle program.

�

Figure 8-3 Space Shuttle Life Cycle Measurements

The ground rules for a Metrics Usage Plan are that:

•	Metrics must be understandable to be useful. For example, lines-of-code and function points are the most common, accepted measures of software size with which software engineers are most familiar.

•	Metrics must be economical. Metrics must be available as a natural by-product of the work itself and integral to the software development process. Studies indicate that approximately 5% to 10% of total software development costs can be spent on metrics. The larger the software program, the more valuable the investment in metrics becomes. Therefore, do not waste programmer time by requiring specialty data collection that interferes with the coding task. Look for tools [discussed in Chapter 10,
 Software Tools
] which can collect most data on an unintrusive basis.

•	Metrics must be field tested. Beware of software contractors who offer metrics programs that appear to have a sound theoretical basis, but have not had practical application or evaluation.

•	Metrics must be highly leveraged. You are looking for data about the software development process that permit management to make significant improvements. Metrics that show deviations of .005% should be relegated to the trivia bin.

•	Metrics must be timely. If a measurement is not available until the program is in deep trouble because, for instance, defect detection and repair rates were not measured early on,
you have landed long and the overrun is upon you
. [YOURDON92]

•	Metrics must give proper incentives for process improvement. High scoring teams are driven to improve performance when trends of increasing improvement and past successes are quantified. Conversely, metrics data should be used very carefully during contractor performance reviews. A poor performance review, based on metrics data, can lead to negative government/industry working relationships.
Remember, do not use metrics to judge team or individual performance.

•	Metrics must be evenly spaced throughout all phases of development. Effective measurement adds value to all life cycle activities. [JONES91]

•	Metrics must be useful at multiple levels. They must be meaningful to both management and technical team members for process improvement of all facets of development.

Boeing 777 Metrics Program�tc "<Head 4 (12)>Boeing 777 Metrics Program"�

According to Ronald J. Pehrson, manager of Boeing’s Embedded Software Engineering Commercial Airplane Group, the software metrics used on the Boeing 777 development program tracked progress against plans for design, code, test procedure creation, and test completion. They included the predicted total software size (in SLOC) and total number of tests. Metrics charts showed key milestones in the airplane program. These milestones represented interim points to measure progress against the ultimate program completion. Associated with these milestones, were success criteria based on completion of software product design, code, and testing. Figure 8-4 shows the total airplane metrics program roll-up. [Their metrics also measured utilization of computer resources (throughput and memory) though not discussed here.] Boeing’s metrics process included the following:

 •	Supplier Metrics Plans. Each supplier was requested to prepare plans for their design, code, and test activities. These plans showed expected totals and the planned completion status for each biweekly reporting period until the task was complete. Even at this early stage in the metrics process, they achieved their first benefits as they discovered that some suppliers’ initial plans did not support program milestones. This proved invaluable insight, and in a few cases was the only major corrective action needed to assure the supplier supported the program.

•	Biweekly plan updates. Following initial plan submittal, biweekly updates showed actual development status in terms of completed design, code, and tests. Any changes in the estimated total size of the effort were also provided and the plans modified to correctly reflect new totals. Plans could be changed at any time; however, previously reported plans and actual status were not adjusted. The metrics information was shared with the systems developers. This led to important discussions on how they were going to succeed at an early enough point in the program where they could actually do something about it.

•	Metrics used for process improvement. Indications of a healthy program were fairly obvious — a plan that supported program milestones and status that consistently tracked to the plan. Programs needing special attention were often several weeks behind the plan line, had numerous re-plans, or had plans that required unprecedented productivity to be successful. They quickly established reasonable productivity figures that easily tested the feasibility of suppliers’ plans based simply on head count, work to go, and time to go. The metrics provided an excellent vehicle for discussions about how the program was going. They helped in dealing with their current status and in getting back on a schedule that supported the overall airplane program.

�

Figure 8-4 Total Metrics Roll-Up for the 777 [PEHRSON96]

�

Figure 8-4 Total Metrics Roll-Up for the 777 (cont.) [PEHRSON96]

The above metrics process was as important as the measures themselves in assuring success. However, there were certain characteristics of the metrics program that were key to supporting this process and making it all work. They were as follows:

•	Uniformity,

•	Frequent updates,

•	Clear definition,

•	Objective measures,

•	Re-plans, as needed, were allowed and even encouraged, and

•	Past plans and actuals were held constant.

The uniform nature of the metrics program enabled comparison across systems and supported communication of objective status to all levels of program management. This was particularly important with the large number of organizations involved in the software development. Boeing was also able to combine status information from several different systems provided by a single supplier. This provided unique opportunities to discuss how the supplier was supporting the overall program and to focus needed resources to solve schedule problems.

Considerable effort was given to clearly define measures. This led to a 21-page set of instructions to their suppliers on how to prepare metrics data. The data items measured were objective and easily observed. The combination of these meant there was little confusion about what the metrics meant so real conclusions could be drawn from the data. Moreover, without this they would not have achieved the desired uniformity. Two aspects of the metrics plans were critical: replanning when needed was encouraged, and past data were never changed. The essence of a plan is it shows how to get from here to there. Once you have significantly deviated from a plan it no longer serves that purpose. Throughout the metrics process, Boeing used
deviation from the plan
 as an indicator of problems. Since replanning was encouraged, the only reason to not be close to their plan was they did not have a plan. They found that programs several weeks behind their plan did indeed need help.

This approach to software program metrics repeatedly “
saved their bacon.
” Starting with initial plans, they indicated where program milestones were not being supported. Continuous monitoring through testing identified schedule problems early in the development process. The metrics were invaluable in showing where program risk points were soon enough to take corrective action. [PEHRSON96]

Metrics Selection�tc "<Head 3 (14)>Metrics Selection"�

Marciniak and Reifer proclaim that: “
Software projects don’t get into trouble all at once; instead they get into trouble a little at a time
.” [MARCINIAK90] As illustrated on the Boeing 777 program, metrics must be selected to ascertain your program’s
 trouble threshold
 at the earliest phase of development. Basic measures should be tailored by defining and collecting data that address those trouble (risk) areas identified in the Risk Management Plan.
A rule of thumb for metrics is that they must provide insight into areas needing process improvement!
 Which metrics to use depends on the maturity level of the organization. Table 8-3 illustrates how metrics are used to obtain program knowledge, based on the Army’s STEP metrics process. [See Army policy on Preparation for Implementing Army Software Test and Evaluation Panel (STEP) Metrics Recommendations, Volume 2, Appendix C.]

�

Table 8-3 How Metrics Are Used for Program Management [ARMY]

ATTENTION!	Metrics selection must focus on those areas you have identified as sources of significant risk for your program.

NOTE:	Examples of minimum measures include: quarterly collation and analysis of size (counting source statements and/or function/feature points), effort (counting staff hours by task and nature of work; e.g., hours for peer inspection), schedule (software events over time), software quality (problems, failures, and faults), rework (SLOC changed or abandoned), requirements traceability (percent of requirements traced to design, code, and test), complexity (quality of code), and breadth of testing (degree of code testing).

[Contact the Global Transportation Network (GTN) Program for a copy of the
GTN Software Development Metrics Guidelines
which discusses the metrics selected and gives examples of how to understand and interpret them. See Volume 2, Appendix A for information on how to contact the GTN program office.]

Data Collection�tc "<Head 3 (14)>Data Collection"�

Get your facts first…then you can distort ‘em as much as you please.

—
 Mark Twain

As stated above, metrics are representations of the software and the software development process that produces them — the more mature the software development process, the more advanced the metrics process. A well-managed process, with a well-defined data collection effort embedded within it, provides better data and more reliable metrics.
Accurate data collection is the basis of a good metrics process
. You must, therefore, determine what data to collect, and how to define those data based both on current and projected program issues and on the characteristics of your software development process and products. Figure 8-5 illustrates the variety of software quality metrics and management indicators that were collected and tracked for all ATF (F-22) weapon systems functions.

�

Figure 8-5 ATF Data Collection for Software Development Tracking

After you have identified your program issues (and before contract award) you and your future contractor must agree on �xe "Process:Entry and exit criteria"�entry and exit criteria definitions for the proposed software development process and products. Entry and exit criteria must also be defined for all data inputs, standards of acceptance, schedule and progress estimation, and data collection and analysis methods. For instance, there must be an agreement on the definition of source lines-of-code and how and when SLOC will be estimated or counted.
The entire collection and analysis process — all definitions, decisions, and agreements — should be written into the contract.
 Once data collection has commenced, it is important that there is consistency in data definitions. Changing a definition midstream during data collection produces variations in data trends that can skew the analysis of performance, quality, and related issues. If definitions do change through process-knowledge, it is critically important that you understand each change and how these changes will affect already collected data. [Changes in entry/exit definitions should be reflected in an updated SDP.]

To summarize, data collection must be woven into the developer’s process. For instance, count the number of software units to be built by looking at the �xe "Design:Documentation:Software Design Description (SDD)"�Software Design Description (SDD) and limit the use of
out-of-range
 data. Also, avoid collecting data that are derived, ill-defined, or cannot be traced directly back to the process. As the development progresses, new tools or data collection techniques may emerge. If new data collection methods are employed, the data collection efforts must be tailored to these techniques. In addition, as the data collection changes, your understanding of what those data mean must also change. [ROZUM92]

Data Analysis�tc "<Head 3 (14)>Data Analysis"�

Both objective and subjective measures are important to consider when assessing the current state of your program. �xe "Data:Objective"�Objective data consists of actual item counts (e.g., staff hours, SLOC, function points, components, test items, units coded, changes, or errors) that can be independently verified. Objective data are collected through a formal data collection process. �xe "Data:Subjective"�Subjective data are based on an individual’s (or group’s) feeling or understanding of a certain characteristic or condition (e.g., level of problem difficulty, degree of new technology involved, stability of requirements). Objective and subjective data together serve as a system of checks and balances throughout the life cycle. If you are a resourceful manager, you will depend on both to get an accurate picture of your program’s health. Subjective data provide critical information for interpreting and validating objective data; while objective data provide true counts that may cause you to question your subjective understanding and investigate further.

Analysis of the collected data must determine which issues are being addressed, and if new issues have emerged. Before making decisions and taking action from the data, you must thoroughly understand what the metrics mean. To understand the data, you must:

·	Use multiple sources to validate the accuracy of your data and to determine differences and causes in seemingly identical sets of data. For instance, when counting software defects by severity, spot check actual problem reports to make sure the definition of severity levels is being followed and properly recorded.

·	Study the lower-level data collection process, understand what the data represent, and how they were measured.

·	Separate collected data and their related issues from program issues. There will be issues about the data themselves (sometimes negating the use of certain data items). However, do not get bogged down in data issues. You should concentrate on program issues (and the data items in which you have confidence) to provide the desired insight.

·	Do not assume data from different sources (e.g., from SQA or subcontractors) are based on the same definitions, even if predefined definitions have been established. You must reverify definitions and identify any variations or differences in data from outside sources when using them for comparisons.

·	Realize development processes and products are dynamic and subject to change. Periodic reassessment of your metrics program guarantees that it evolves. Metrics are only meaningful if they provide insight into your current list of prioritized issues and risks.

Metrics should be compared to get the whole picture of program status and progress. As illustrated in Figure 8-6, the metrics analyzed (chosen dependent on software development maturity level) can be interrelated and flow into each other.

�

Figure 8-6	CMM Maturity Level, Measures Collected, Metrics Compared

 [CAMPBELL95]

The availability of program metrics is of little or no value unless you also have access to �xe "Models"�models (or norms) that represent what is expected. The metrics are used to collect historical data and experience. As their use and program input increases, they are used to generate databases of information that become increasingly more accurate and meaningful. Using information extracted from these databases, you are able to gauge whether measurement trends in your program differ from similar past programs and from expected models of optimum program performance within your software domain. Databases often contain key characteristics upon which models of performance are designed. �xe "Cost:Data"�Cost data usually reflect measures of effort. �xe "Data:Process"�Process data usually reflect information about the programs (such as methodology, tools, and techniques used) and information about personnel experience and training. �xe "Product:Data"��xe "Data:Product"�Product data include size, change, and defect information and the results of statistical analyses of delivered code.

Figure 8-7 illustrates the possibilities for useful comparison by using metrics, based on available program histories. By using models based on completed software developments, the initiation and revision of your current plans and estimates will be based on
“informed data.”
 As you gather performance data on your program, you should compare your values with those for related programs in historical databases [see NSDIR discussion below]. The comparisons in Figure 8-7 should be viewed collectively, as one component of a
feedback-and-control
system that leads to revisions in your management plan. To execute your revised plans, you must make improvements in your development process which will produce adjusted measures for the next round of comparisons.

�

Figure 8-7 Management Process with Metrics

National Software Data and Information Repository (NSDIR)�tc "<Head 3 (14)>National Software Data and Information Repository (NSDIR)"�

The National Software Data and Information Repository (NSDIR) is a managed warehouse of data (and resulting information) about software development and maintenance programs. The repository collects, manages, and analyses the by-products of software engineering processes and products. Such by-products are measures about the:

·	Program and product size,

·	Program schedule,

·	Nature of the program,

·	Effort expended on the program,

·	Quality of program products, and

·	Other program attributes, such as rework, reuse, and practices.

The NSDIR, an Air Force sponsored program, is chartered to benchmark technologies and methodologies utilized in software-intensive programs through the collection and management of software product and process metrics data. Although initially focused on Air Force programs, the NSDIR is challenged to obtain like-metrics data from other sources. Data from the other services, federal agencies, and commercial industry enables decision-makers to answer questions such as, but not limited to:

·	Degree of language use and methods, tools, techniques, and standards used,

·	Relative measures of maintenance versus new development activity,

·	Nature and type of software work contracted out,

·	Size, scope, and nature of software engineering programs,

·	Extent of open systems, COTS, GOTS, and reuse implementation, and

·	Amount and type of documentation produced.

Overall, the NSDIR effort has two main objects: developing a repository capability and developing an information analysis capability. The basic repository capabilities are the collection, storage, and retrieval of metrics data. The repository evolves as the information needs of the users change. The enterprise-level database grew out of a need to focus on software measurement data which software development programs are likely to collect and report at natural intervals. The data requirements implemented by the NSDIR Metrics Collection and Submission Guide ensures a database contains information that is:

·	Useful at an enterprise level for NSDIR users,

·	Available from a large number of programs,

·	Collected at significant program dates (milestones), and

·	Suitable for benchmarking.

�xe "Data:Analysis"�Data analysis capability focuses on data once entered into the repository. Users of the repository access these data from their desktop personal computers through various telecommunications methods. Through the use of standard desktop analysis and office automation tools, a user of the repository selects from a range of predefined queries. Varying these queries according to interest, the user performs analysis, reporting, and presentation of the data and information stored in the repository. Additionally,
ad hoc
 queries are supported to enable the user to perform unanticipated analyses. With this analysis capability, repository users can generate graph-based reports for:

·	Benchmarking their own program status and trends,

·	Summary data across programs, and

·	Trend data across programs.

Why the NSDIR Is Necessary�tc "<Head 4 (12)>Why the NSDIR Is Necessary"�

DoD faces rapidly changing budgetary, software technology, and military threat environments which it has responded to with initiatives to streamline acquisition, adopt commercial practices, and improve government and contractor processes. Guiding this transition requires accurate information about the nature of DoD software applications, the state of DoD software practice, and the performance of DoD software processes. DoD executives and program managers need quantitative answers to many difficult questions if to be successful in this challenging environment. Key questions about program planning asked by program managers include:

·	How big is a typical program of this type,

·	What is the typical productivity for this type of software,

·	How many high-priority problems are found in a typical program,

·	What level of rework effort can be expected for this type of software,

·	How many people does it take, typically, to maintain 100,000 lines-of-code,

·	How much code growth due to requirements change occurs in a typical program, and

·	What are leading-edge programs doing in terms of methods and tools?

Getting answers to these questions helps managers and sponsors develop more realistic and achievable plans. Key policy and investment questions asked by DoD executives include:

·	Are productivity and quality in my organization improving over time,

·	What types of applications involve the most software,

·	Which technologies offer the greatest potential for improving productivity and quality,

·	How widely have technology innovations (e.g., Ada, process maturity assessments) been adopted,

·	How predictable is the software process in terms of budget and schedule, and

·	Where are other organizations investing their resources?

Getting answers to these questions helps the executive to define more effective policy, and to make better investments in training, research, and technology to support the organization. Currently, little data exist in the form of benchmarks and norms that can be used to:

·	Define and promote “
best practices
,”

·	Provide a reliable basis for estimates, and

·	Assess the state of the software industry.

The NSDIR repository is needed to store and retrieve software data and information needed to effectively manage software engineering processes and enterprises. Because measurement is key to advancing to an “
engineering process
,” the NSDIR is needed to supply the nation with professional information on “
best practices
” and software engineering benchmarks.

NSDIR History�tc "<Head 4 (12)>NSDIR History"�

There are two major challenges common to both commercial and defense software industries: (1) the transition of a current, state-of-the-art software engineering technology base into state-of-the-practice, and (2) the routine effective use of software measurement, data collection and analysis, and reporting practices. The transition from state-of-the-art software engineering technologies to state-of-the-practice must to be accelerated. The implementation of software measurement programs must become an integral and common component of the technical and organizational infrastructures of the US software industry to support a wide variety of management decisions, as well as process improvement. Successfully addressing these challenges will have a positive effect on the overall industry performance.

Statistically-based organizational process management, control, and improvement is an effective mechanism upon which an organization can base decisions changing and adopting enabling technologies to enhance quality and productivity. It is observed that overall the US software industry does a poor job of measuring software products, processes, and resources essential for improving the industry’s overall quality and productivity.

Based on the current status of software measurement practices in the US and their importance to a highly-competitive and effective commercial and defense software industry, there is a critical need to establish a national capability for collecting and maintaining software measurement data. This national capability will provide the US software industry with an effective and low-risk approach for making decisions on inserting, modifying, and/or eliminating technologies employed for software development and maintenance. However, software measurement theory is very immature. Software metrics are primarily based on consensus rather than formal mathematical representation. This is not be surprising for a new discipline. Most disciplines begin applying subjective measures and evolve to objective ones upon maturing. Accelerating the software measurement maturation curve will provide industry with an effective foundation upon which to base technology improvement decisions. Thus, the NSDIR is needed to collect experience upon which to base objective software measurement and validation.

A national software repository must be part of an overall national vision. There must be a driving force to design and realize this vision and the vision must address software measurement issues at the national level. For example, the vision must address international competitiveness, cost-effectiveness, standards, certification, technology transfer, and technology gaps — to name a few.

In August 1993, over 60 leaders from industry, academia, and the Government participated in the first Software Measurement Workshop to discuss national-level software challenges. What is now referred to as Cooperstown I, resulted in an agreement to develop a strategy for creating the NSDIR and a blueprint for creating a National Software Council. A small operational prototype effort for the NSDIR began with initial funding from the US Air Force. The goal of the prototype, called Order-I, was to be a requirements elicitor and a mechanism for identifying technical and nontechnical barriers in establishing the NSDIR.

In August 1994, at Cooperstown II, eight working groups were formed to discuss and make recommendations concerning the evolution of the Order-I prototype towards the NSDIR, the establishment of a National Software Center, and requirements for an Information Base Repository. These recommendations for the NSDIR, combined with results from various technical interchange meetings of the NSDIR team, shaped the current focus of the program, termed NSDIR Phase II.

TYPICAL SOFTWARE MEASUREMENTS AND METRICS�tc "<Head 2 (14)>TYPICAL SOFTWARE MEASUREMENTS AND METRICS"�

A comprehensive list of industry metrics is available for software engineering management use, ranging from high-level effort and software size measures to detailed requirements measures and personnel information. �xe "Quality"�
Quality
, not quantity, should be the guiding factor in selecting metrics. It is best to choose a small, meaningful set of metrics that have solid baselines in a similar environment. A typical set of metrics might include:

·	Quality,

-	User satisfaction,

·	Size,

-	Source lines-of-code,

-	Function points,

-	Feature points,

·	Complexity,

·	Requirements,

·	Effort,

·	Productivity,

·	Cost and schedule,

·	Scrap and rework, and

·	Support.

[Some industry sources of historical data are the NSDIR (discussed above) and those listed in Volume 2, Appendix A. A good source of information on optional software metrics and complexity measures are the SEI technical reports listed in Volume 2, Appendix E. Also see Rome Laboratory report, RL-TR-94-146, Framework Implementation Guidebook, for a discussion on software quality indicators. Another must-read reference is the Army Software Test and Evaluation Panel (STEP) Software Metrics Initiatives Report, USAMSAA, May 6, 1992 and policy memorandum, Preparation for Implementing Army Software Test and Evaluation Panel (STEP) Metrics Recommendations, Volume 2, Appendix C.]

ATTENTION!	Practical Software Measurement: A Guide to Objective Program Insight, sponsored by the Joint Logistics Commanders, Joint Policy Coordinating Group on Computer Resources Management, is the recommended guide for setting up a measurement program for all major DoD software-intensive systems.
 [Information on how to obtain a copy is found in Volume 2, Appendices A and B.]

�

NOTE:	See Addendum A, Assessment Metrics for Use with the Capability Maturity Model: Are We Improving? See Volume 2, Appendix O, Chapter 8 Addendum C, “Making Metrics Work Miracles,” to understand how setting up a metrics program can provide valuable program insights.

�tc "<Head 3 (14)>"�

Quality�tc "<Head 3 (14)>Quality"�

Measuring product quality is difficult for a number of reasons. One reason is the lack of a precise definition for quality. Quality can be defined as the
degree of excellence
that is measurable in your product. The �xe "Institute of Electrical and Electronics Engineers"�IEEE definition for software quality is:

•	The total features and characteristics of a software product that bear on its ability to satisfy given user needs; for example, conform to stated specifications;

•	The degree to which the software possesses a desired combination of attributes;

•	The degree to which a customer or user perceives that the software meets his or her composite expectations; and

•	The composite characteristics of software that determine the degree to which the software, once in use, will meet the expectations of the user. [IEEE83]

Quality is in the eye of the user!
 For some programs, product quality might be defined as �xe "Reliability"�reliability [i.e., a low failure density (rate)], while on others �xe "Maintenance:Maintainability"�maintainability is the requirement for a quality product. [MARCINIAK90] Your definition of a quality product must be based on measurable �xe "Quality:Attributes"�quality attributes that satisfy your program’s specified user requirements. Because requirements differ among programs, quality attributes will also vary. [MARCINIAK90]

Rome Laboratory’s 1994 Framework Guidebook

lists a set of software quality attributes that are quantitatively measurable. These measures can be translated into terms understandable to the ultimate determinants of quality, the users and maintainers. Table 8-4 lists the Rome’s software quality factors, a definition, and a candidate metric for each. [Do you see a correlation between the software engineering principles, discussed in Chapter 4, Engineering Software-Intensive Systems, and the attributes for quality software? Is this surprising?]

�

Table 8-4 RADC Software Quality Factors

User Satisfaction�tc "<Head 4 (12)>User Satisfaction"�

John �xe "Gilligan, John"�Gilligan, the Air Force Program Executive Official for Combat Support Systems, describes a set of user-focused metrics to measure system performance. Figure 8-8 illustrates an example of mission availability on a C4I program. Data points reflect overall mission availability during quarterly exercises of the product by the user. The lower dark line (threshold) marks developer/user agreed upon unsatisfactory level of performance. The upper dark line (goal) marks developer/user agreed upon performance objective above the threshold, yet still achievable. The circles indicate system availability calculated from user (terminal) perspective (not CPU time) for accomplishing user mission tasks.

�

Figure 8-8 Mission Availability Satisfaction [GILLIGAN]

Figure 8-9 illustrates user satisfaction in meeting warfighting supportability requirements for a nominal C4I system. The lower dark line (threshold) marks developer/user agreed upon unsatisfactory level of performance. The circles indicate actual, discrete data for mission support activity (e.g., spares, manpower, and depot support) per time period compared with the planned support.

�

Figure 8-9 Warfighting Supportability Requirements Satisfaction [GILLIGAN94]

Figure 8-10 illustrates user satisfaction with a nominal C4I system’s operating costs. The upper dashed line (threshold) marks developer/user agreed upon unsatisfactory level of operating costs per installation. The lower dashed line (goal) marks developer/user agreed upon operating costs below current level yet still achievable. Data points collected provide the applicable system’s average total operating cost per installation. Those costs include: training, hardware/software maintenance, license fees, communications, help desk, and central training costs. The circles indicate semiannual data collection points. [GILLIGAN94]

�

Figure 8-10 Operating Cost Satisfaction (total cost/installation) [GILLIGAN94]

Size�tc "<Head 3 (14)>Size"�

Just as we typically need to determine the weight, volume, and dynamic flight characteristics of a developmental aircraft as part of the planning process, you need to determine how much software to build. However, as you learned in Chapter 1,
 Software Acquisition Overview
, one of the main reasons software programs fail is our inability to accurately estimate software size. Because we invariably estimate size too low, we do not adequately fund or allow enough time for development. Poor size estimates are usually at the heart of cost and schedule overruns.
The trend has been to estimate size too small!

There are two common types of size inaccuracies for which you can compensate to some degree. (1) Normal statistical inaccuracies can be dealt with by using multiple data sources and estimating methodologies, or by using multiple organizations to do the estimating and check and analyze results. (2) The earlier the estimate is made — the less is known about the software to be developed — the greater the estimating errors. Basing your estimates on more than one source is sound advice for both type of discrepancies. In addition, accuracy can be improved if estimates are performed at the smallest product element practical. Therefore, base your estimates on the smallest possible unit of each component. Then compile these calculations into composite figures. [HUMPHREY89] The key to credible software sizing is to use different software sizing techniques, and not to rely on a single source or method for the estimate. Reliance on a single source or technique represents a major contribution to program cost and schedule risk, especially if it originates exclusively from a contractor based on their bid.

Given our shortcomings in size estimation, it is absolutely critical that you measure, track, and control software size throughout development. You need to track the actual software size against original estimates (and revisions thereto) both incrementally and for the total build. Analysis is necessary to determine trends in software size and functionality progress. Data requirements for these measures are stated in contract CDRL items which include:

•	The number of distinct functional requirements in the SRS and IRS,

•	The number of software units contained in the SDP or SDD, and

•	SLOC or function point estimates for each CSCI and build compared to the actual source code listing for each software unit.

Software size has a direct effect on overall development cost and schedule. Early significant deviations in software size data indicate problems such as:

•	Problems in the model(s), logic, and rationale used to develop the estimates,

•	Problems in requirements stability, design, coding, and process,

•	Unrealistic interpretation of original requirements and resource estimates to develop the system, and

•	Faulty software productivity rate estimates.

Significant departures from code development estimates should trigger a risk assessment of the present and overall effort. Size-based models [discussed in Chapter 10,
Software Tools
] should be revisited to compare your development program with those of similar domain, scope, size, and complexity, if possible.

Measuring Software Size�tc "<Head 4 (12)>Measuring Software Size"�

There are two basic methods for measuring software size. Historically, the primary measure of software size has been the number source lines-of-code (SLOC). However, it is difficult to relate software functional requirements to SLOC, especially during the early stages of development. An alternative method, �xe "Function point"�function points, should be used to estimate software size. Function points are used primarily for MISs, whereas, �xe "Feature point"�feature points (similar to function points) are used for real-time or embedded systems. [PUTNAM92] SLOC and function (and feature) points are valuable size estimation techniques. Table 8-5 summarizes the differences between the function point and SLOC methods.

�

Table 8-5 Function Points versus Lines-of-code

Source Lines-of-Code Estimates�tc "<Head 5 (10)>Source Lines-of-Code Estimates"�

Most source lines-of-code (SLOC) estimates count all executable instructions and data declarations but exclude comments, blanks, and continuation lines. SLOC can be used to estimate size through analogy — by comparing the new software’s functionality to similar functionality found in other historic applications. Obviously, having more detailed information available about the functionality of the new software provides the basis for a better comparison. In theory, this should yield a more credible estimate. The relative simplicity of the SLOC size measure facilitates automated and consistent (repeatable) counting of actual completed software size, as well as storing and retrieving the size data needed to prepare an accurate estimate for future efforts. The most significant advantage of SLOC estimates is that they directly relate to the software to be built. The software can then be measured after the fact and compared with your initial estimates. [HUMPHREY89] If you are using SLOC with a predictive model (e.g., �xe "Models:COnstructive COst MOdel (COCOMO)"��xe "COnstructive COst MOdel (COCOMO)"�COCOMO), your estimates will need to be continually updated as new information is available. Only through this constant re-evaluation can the predictive model provide a cost that approximates actuals.

A large body of literature and historical data exists that uses SLOC, or thousands of source lines-of-code (KSLOC), as the size measure. Source lines-of-code are easy to count and most existing software estimating models use SLOCs as the key input. However, it is virtually impossible to estimate SLOC from initial requirements statements. Their use in estimation requires a level of detail that is hard to achieve (i.e., the planner must estimate the SLOC to be produced before sufficient detail is available to accurately do so.) [PRESSMAN92]

Because SLOCs are language-specific, the definition of how SLOCs are counted has been troublesome to standardize. This makes comparisons of size estimates between applications written in different programming languages difficult although conversion factors are available.

From SLOC estimates a set of simple, size-oriented productivity and quality metrics can be developed for any given on-going program. These metrics can be further refined using productivity and quality equations such as those found in the basic COCOMO model.

Function Point Size Estimates�tc "<Head 5 (10)>Function Point Size Estimates"�

Function points, as defined by A.J. Albrecht, are the weighted sums of five different factors that relate to user requirements:

•	Inputs,

•	Outputs,

•	Logic (or master) files,

•	Inquiries, and

•	Interfaces. [ALBRECHT79]

The �xe "Function point:International Function Point Users Group (IFPUG)"��xe "International Function Point Users Group (IFPUG)"�International Function Point Users Group (IFPUG) is the focal point for function point definitions. The basic definition of function points provided above has been expanded by several others to include additional types of software functionality, such as those related to embedded weapons systems software (i.e., feature points).

Function points are counted by first tallying the number of each type of function, as listed above. These unadjusted function point totals are subsequently adjusted by applying �xe "Complexity:Measurement/metrics"�complexity measures to each type of function point. The sum of the total complexity-adjusted function points (for all types of function points) becomes the total adjusted function point count. Based on prior experience, the final function point figure can be converted into a reasonably good estimate of required development resources. [For more information on function point counting, see the “Counting Practices Manual” available from the IFPUG administrative office in Westerville, Ohio for a nominal charge, (614) 895-3170 or Fax (614) 895-3466.]

Table 8-6 illustrates a function point analysis for a nominal program. First you count the number of inputs, outputs, inquiries, logic files, and interfaces required. These counts are then multiplied by established values. The total of these products is adjusted by the degree of complexity based on the estimator’s judgment of the software’s complexity. �xe "Complexity"�Complexity judgments are domain-specific and include factors such as data communications, distributed data processing, performance, transaction rate, on-line data entry, end-user efficiency, reusability, ease of installation, operation, change, or multiple site use. This process for our nominal program is illustrated in Figure 8-11.

�

Table 8-6 Function Point Computation [REIFER92]

�

Figure 8-11 Function Point Software Size Computational Process [REIFER92]

While function points aid software size estimates, they too have drawbacks. At the very early stages of system development, function points are also difficult to estimate. Additionally, the complexity factors applied to the equation are subjective since they are based on the analyst/engineer’s judgment. Few automated tools are available to count either unadjusted or adjusted function points, making comparisons between or among programs difficult, and making the function point counts for any single program inconsistent when calculated by different analysts. However, function points are valuable in making early estimates, especially after the SRS has been completed. Like SLOC, they too are affected by changes in system and/or software requirements. Also, as a relatively new measure of software size, there are few significant, widely-available databases for estimating function points by comparison (analogy) to functionally similar historic software applications.

Feature Point Size Estimates�tc "<Head 5 (10)>Feature Point Size Estimates"�

A derivative of function points, feature points were developed to estimate/measure real-time systems software with high algorithmic complexity and generally less inputs/outputs than MISs. �xe "Algorithm"�Algorithms are sets of mathematical rules expressed to solve significant computational problems. For example, a square root extraction routine, or a Julian date conversion routine, are algorithms.

In addition to the five standard function point parameters, feature points include an algorithm(s) parameter which is assigned the default weight of 3. The feature point method reduces the empirical weights for logical data files from a value of 10 to 7 to account for the reduced significance of logical files in real-time systems. For applications in which the number of algorithms and logical data files are the same, function and feature point counts generate the same numeric values. But, when there are more algorithms than files, feature points produce a greater total than function points. Table 8-7 illustrates the ratio of function point to feature point counts for selected applications. [For a more detailed explanation of feature points, see Capers Jones, Applied Software Measurement.] [JONES91]

�

Table 8-7 Ratios of Feature Points to Function Points [JONES91]

NOTE:	See Volume 2, Appendix J, “SPR Metric Analysis: Counting Rules for Function Points and Feature Points.”

Complexity�tc "<Head 3 (14)>Complexity"�

Complexity measures focus on designs and actual code. They assume there is a direct correlation between design complexity and design errors, and code complexity and latent defects. By recognizing the properties of each that correlate to their complexity, we can identify those high-risk applications that either should be revised or subjected to additional testing.

Those software properties which correlate to how complex it is are size, interfaces among modules (usually measured as
fan-in
, the number of modules invoking a given application, or
fan-out
, the number of modules invoked by a given application), and structure (the number of paths within a module). Complexity metrics help determine the number and type of tests needed to cover the design (interfaces or calls) or coded logic (branches and statements).

There are several accepted methods for measuring complexity, most of which can be calculated by using automated tools. Addendum C, by McCabe and Watson, discusses the �xe "Complexity:McCabe Cyclomatic Complexity Metric"��xe "McCabe:Cyclomatic Complexity Metric"�McCabe Cyclomatic Complexity Metric. The �xe "Complexity:Halstead Volume Metric"��xe "Halstead Volume Metric"�Halstead Volume Metric (also mentioned in Addendum B) identifies certain intrinsic, measurable properties embodied in an algorithm. Halstead’s theory is based on the assumption that “
the human brain follows a more rigid set of rules (in developing algorithms) than it has been aware of…
” [HALSTEAD77] He defines a set of primitive measures that can be derived estimated once the design is complete, after the software is coded. These are:

·	
n
1 = the number of distinct operators used,

·	
n
2 = the number of distinct operands used,

·	
N
1 = the total number of operators used, and

·	
N
1 = the total number of operands used.

Halstead uses these measures to derive expressions for total application
length
, the potential minimum algorithm
volume
, the
actual volume
 (number of bits need to specify an application), the
program level
 (a software complexity measure), the
language level
 (constant for any given language), and other features such as development
effort
, development
time
, and projected number of software
defects
. [PRESSMAN92]

To get an idea of how complexity affects software quality (in this case latent defects), the �xe "Complexity:Card Design Complexity"�Card Design Complexity metric is an interesting example. In his book, Measuring Software Design Quality, Card defines a design complexity measure he calls “.” Card performed a number of studies to develop this overall design metric based on a composite calculated measure. The formula for Card Design Complexity metric is:

�

where,

�	=	the sum of the fan-out squared (over each module in the design),

�	=	the sum of the number of module input and output variables divided by fan-out + 1 (over each module in the design), and

 n	=	the number of modules in the application.

Card conducted an independent validation study on data taken from eight programs (about 2,000 modules) and found a correlation between
C
T
 and defect density (defects KSLOC) to be .83. His study evaluated coupling and cohesion as predictors (metrics) for defects and fault rate. As you remember from Chapter 4,
Engineering Software-Intensive Systems
, �xe "Coupling"�
coupling
 is the measure of interface tightness among modules, and �xe "Cohesion"�
cohesion
 is the measure of how tightly bound or related internal module elements are to one another. He classified several hundred modules for which defect data were available into three groups based on their coupling rating: parameter coupling (low complexity), mixed coupling (medium complexity), and extensive coupling (high complexity). Based on their cohesion strength he classified them as: only one function (low complexity), two functions (medium complexity), and three or more functions (high complexity). The analysis of the defects and fault rates for each of these groupings is illustrated on Figure 8-12.

�

Figure 8-12 Coupling and Cohesion versus Fault Rate [HETZEL93]

As you can see, Card found the relationship between coupling and defect rate to be inconsequential; whereas, the correlation between cohesion (functional robustness) and defect rate was quite significant. The highly robust modules had a higher percent of zero faults (50% versus 18%) and a lower percent with high faults (20% versus 44%) than the highly complex modules. This is an example of why code complexity must be measured and controlled throughout the life cycle. [CARD90]

NOTE:	See Addendum C, Software Complexity, by Thomas McCabe for a discussion on complexity analysis.

Requirements�tc "<Head 3 (14)>Requirements"�

As you learned in Chapter 1,

Software Acquisition Overview
, requirements changes are a major source of software size risk. If not controlled and baselined,
requirements �xe "Requirements, software:Creep"�creep
 is a common problem that increases cost, schedule, and fielded defects. If requirements evolve as the software evolves, it is next to impossible to develop a successful product. Software developers find themselves shooting at a moving target and throwing away design and code faster than they can crank it out

[scrap and rework is discussed below]
.
 Colonel Robert �xe "Lyons, Col Robert, Jr"�Lyons, Jr., former co-leader of the �xe "F-22 Advanced Tactical Fighter"�F-22 System Program Office Avionics Group, cites an
 “undisciplined requirements baselining process
” as the number one cause of
“recurring weapons system problems.”
 An undisciplined requirements process is characterized by:

•	Inadequate requirements definition,

•	Late requirements clarification,

•	Derived requirements changes,

•	Requirements creep, and

•	Requirements baselined late. [LYONS91]

Once requirements have been defined, analyzed, and written into the �xe "System Requirements Specification (SRS)"�System Requirements Specification (SRS), they must be tracked throughout subsequent phases of development. In a system of any size this is a major undertaking. The design process translates user-specified (or explicit) requirements into derived (or implicit) requirements necessary for the solution to be turned into code. This multiplies requirements by a factor of sometimes hundreds. [GLASS92]

Each �xe "Requirements, software:Implicit"�implicit requirement must be fulfilled, traced back to an �xe "Requirements, software:Explicit"�explicit requirement, and addressed in design and test planning. It is the job of the configuration manager to guarantee the final system meets original user requirements. As the requirements for a software solution evolve into a design, there is a snowball effect when converting original requirements into design requirements needed to convert the design into code. Conversely, sometimes requirements are not flowed down and get lost during the development process (dropped through the developmental crack) with a resulting loss in system performance or function. When requirements are not adequately tracked, interface data elements can disappear, or extra interface requirements can be introduced. Missing requirements may not become apparent until system integration testing, where the cost to correct this problem is exponentially high.

Effort�tc "<Head 3 (14)>Effort"�

In the 1970s, �xe "Rome Air Development Center (RADC)"�Rome Air Development Center (RADC) collected data on a diverse set of over 500 DoD programs. The programs ranged from large (millions of lines-of-code and thousands of months of effort) to very small (a one month effort). The data was sparse and rather primitive but it did include output KLOC and input effort months and duration. At that time most program managers viewed effort and duration as interchangeable. When we wanted to cut completion time in half, we assigned twice as many people! Lessons-learned hard knocks and program measures such as the RADC database, indicated that the relationships between duration and effort were quite complex, nonlinear functions. Many empirical studies over the years have shown that manpower in large developments builds up in a characteristic way and that it is complex power function of software size and duration. Many estimation models were introduced, the best known of which is �xe "Boehm, Barry W"�Barry Boehm’s �xe "COnstructive COst MOdel (COCOMO)"��xe "Models:COnstructive COst MOdel (COCOMO)"�COnstructive COst MOdel (COCOMO). [HETZEL93]

Productivity�tc "<Head 3 (14)>Productivity"�

Software productivity is measured in the number of lines-of-code or function/feature points delivered (i.e., SLOC that have been produced, tested, and documented) per staff month that result in an acceptable and usable system. Table 8-8 lists the industry average software productivity rates (in function points produced) over 5-year intervals.

�

Table 8-8	Industry Average Productivity Rates (function points produced per staff month)

Boehm explains there are three basic ways to improve software development productivity.

•	Reduce the cost-driver multipliers,

•	Reduce the amount of code; and,

•	Reduce the scalable factor that relates the number of instructions to the number of manmonths or dollars.

His model for measuring productivity is:

Effort = Constant x Size Sigma x Multipliers [BOEHM89]

In this equation, multipliers are factors (such as efficiency of support tools, whether the software must perform within limited hardware constraints, personnel experience and skills, etc.). Figure 8-13 lists the various cost drivers that affect software development costs. Many of these factors (not all) can be modified by effective management practices. The weight of each factor as a �xe "Cost:Productivity multipliers"�cost multiplier (on a scale of 1 to 5, with 5 having the greatest weight) reflects the relative affect that factor has on total development costs. Boehm’s studies show that next to size
, “employing the right �xe "People:Skills/talent"�people” has the greatest influence on productivity
. (Reliability and complexity are also important multipliers.)

�

Figure 8-13 Software Productivity Factors (Weighted Cost Multipliers) [BOEHM89]

People with more �xe "Ada:Experience"��xe "Maturity:Ada"�Ada experience build better Ada software!
 By building better software,
“Ada can reduce the added cost of building highly complex, highly reliable software.”
 [BOEHM89] Advanced tools and environments reduce turnaround times and defect rates, which reduce the numerical value of the multipliers. Reducing the size can be accomplished by using reusable code, COTS software, or VHLLs (which will some day produce the same function in very few instructions).

The third element in the equation, the exponent
Sigma
, is about 1.2 in �xe "Boehm, Barry W"�Boehm’s �xe "Cost:Constructive Cost Model (COCOMO)"��xe "Boehm, Barry W:Constructive Cost Model (COCOMO)"�COCOMO model. For large aerospace systems the value amounts to a fairly costly exponent. When you double the size of software, you multiply the cost by 21.2, which is 2.3. In other words, the cost is doubled, plus a 30% penalty for size. The size penalty, according to Boehm, results from inefficiency influences that are a product of size. The bigger the software development, the bigger the integration issues, the bigger the team you need, the less efficient they become.

You bring a bigger team on board. The people on the team spend more time talking to each other. There is more learning curve effect as you bring in people who don’t know what you are building. There is a lot of thrashing in the process any time there is a proposed change of things that haven’t been determined that people are trying to determine. Any time you do have a change, there are ripple effects that are more inefficient on big programs than on small programs.

[BOEHM89]

Cost and Schedule�tc "<Head 3 (14)>Cost and Schedule"�

As previously discussed, the driving factors in DoD software development have always been cost, schedule, or both. A typical DoD scenario has been for the software development schedule to be accelerated to support the overall program schedule, increasing the cost of the software and reducing quality. Because �xe "Cost"�
cost is the key issue in any development program
, it must be reviewed carefully as part of the program review and approval process. As Benjamin Franklin explained:

I conceive that the great part of the miseries of mankind are brought upon them by the false estimates they have made of the value of things.
 [FRANKLIN33]

To avoid the miseries of a runaway program,
 you must carefully plan for and control the cost and schedule of your software development effort.
 These measures are important for determining and justifying the required funding, to determine if a specific proposal is reasonable, and to insure that the software development schedule is consistent with the overall system schedule. Cost measures should also be used to evaluate whether the developer has the appropriate mix and quantity of assigned staff, and to develop a reasonable program cost and schedule baseline for effective and meaningful program management.

While size is by far the most significant driver of cost and schedule, other factors impact them as well. These factors are usually more qualitative in nature and address the development and operational environments as well as the software’s characteristics. Most software cost estimating models use these factors to determine environmental and complexity factors which are in turn used in computations to calculate effort and cost.

Multisource cost and schedule estimation is the use of multiple, independent organizations, techniques, and models to estimate cost and schedule, including analysis and iteration of the differences between estimates. Whenever possible, multiple sources should be used for estimating any unknowns, not just cost and schedule. Errors or omissions in estimates can often be identified by comparing one with another. Comparative estimates also provide a sounder set of
“should-costs”
 upon which to control software development. As with size estimates, assessment from alternate sources (such as program office software technical staff, prime or subcontractors, or professional consulting firms is advisable for cost and schedule. Reassessments throughout the program life cycle improve the quality of estimates as requirements become better understood and refined. The following summarizes the resources you should consider when costing software development.

•	�xe "Resources:Manpower"�Human resources. This includes the number and qualifications of the people required, as well as their functional specialties. Boehm asserts that
human resources are the most significant cost drivers on a software development effort
. [BOEHM81] Development personnel skills and experience (reflected in their productivity) have the greatest effect on cost and schedule. [See Chapter 9 for a detailed discussion on productivity cost drivers.]

•	�xe "Resources:Hardware"��xe "Hardware:Resources"�Hardware resources. This includes development (host) and target computers, and compilers. Hardware resources used to be major cost drivers when development personnel needed to share equipment with multiple constituencies. Now that virtually everyone has a PC or workstation on their desk, the issue is whether the target computer significantly differs from the development computer. For instance, if the target machine is an air or spaceborne system, the actual CPU may be technology-driven and not usable for all required development activities.

•	�xe "Resources:Software"�Software resources. Software is also used as a tool to develop other software. CASE tools needed for development, test, and code generation must be considered. As discussed in Chapter 10,
Software Tools
, your toolset might include: business systems planning tools, program management tools, support tools, analysis and design tools, programming tools, integration and test tools, prototyping and simulation tools, maintenance tools, cost/schedule estimating tools, and architectural tools.

•	�xe "Resources:Reusable"��xe "Reuse:Assets"�Reusable resources. Reusable assets [defined in Chapter 9,
Reuse
]
 are a valuable resource that must be considered in determining your cost requirements. This includes the assets you will develop for future reuse by other programs, as well as searching the reuse repositories for existing code that can be integrated into your development. Reusable assets will have significant impact on your program cost and schedule.

�xe "Schedule:Metrics"�Schedule measurements track the contractor’s performance towards meeting commitments, dates, and milestones. �xe "Milestone:Performance"��xe "Schedule:Performance:milestone performance"��xe "Schedule:Milestone performance"�Milestone performance metrics give you a graphical portrayal (data plots and graphs) of program activities and planned delivery dates. It is essential that what constitutes progress slippage and revisions is understood and agreed upon by both the developer and the Government. Therefore, entry and exit criteria for each event or activity must be agreed upon at contract award. A caution in interpreting schedule metrics is to keep in mind that many activities occur simultaneously. Slips in one or more activities usually impact on others. Look for problems in process and
never, never sacrifice quality for schedule!

NOTE:	See Chapter 15, Managing Process Improvement, for a discussion on the Cost/Schedule Control System Criteria (C/SCSC) method for measuring, tracking, and analyzing contract performance earned-value.

Cost and Schedule Estimation Methodologies/Techniques�tc "<Head 4 (12)>Cost and Schedule Estimation Methodologies/Techniques"�

Most estimating methodologies are predicated on analogous software programs. Expert opinion is based on experience from similar programs; parametric models [discussed in Chapter 10,
Software Tools
] stratify internal data bases to simulate environments from many analogous programs; engineering builds reference similar experience at the unit level; and cost estimating relationships (like parametric models) regress algorithms from several analogous programs. Deciding which of these methodologies (or combination of methodologies) is the most appropriate for your program usually depends on
availability of data
, which is in turn depends on where you are in the life cycle or your scope definition.

·	Analogies. Cost and schedule are determined based on data from completed similar efforts. When applying this method, it is often difficult to find analogous efforts at the total system level. It may be possible, however, to find analogous efforts at the subsystem or lower level (CSCI/CSC/CSU). Furthermore, you may be able to find completed efforts similar more or less in complexity. If this is the case, a scaling factor may be applied based on expert opinion (e.g., CSCI-x is 80% as complex). After an analogous effort has been found, associated data need to be assessed. It is preferable to use effort rather than cost data; however, if only cost data are available, these costs must be normalized to the same base year as your effort using current and appropriate inflation indices. As with all methods, the quality of the estimate is directly proportional to the credibility of the data.

·	Expert (engineering) opinion. Cost and schedule are estimated by determining required effort based on input from personnel with expansive experience on similar programs. Due to the inherent subjectivity of this method, it is especially important that input from several independent sources be used. It is also important to request only effort data rather than cost data as cost estimation is usually out of the realm of engineering expertise (and probably dependent on non-similar contracting situations). This method is rarely used as a primary methodology alone, with the exception of rough orders-of-magnitude estimates. Expert opinion is used to estimate lower-level, low cost, pieces of a larger cost element when a labor-intensive cost estimate is not feasible.

·	�xe "Models:Parametric"�Parametric models. See Chapter 10,
Software Tools,
 for a discussion on parametric models for cost and schedule estimation.

·	Engineering build (
grass roots
, or
bottoms-up
 build). Cost and schedule are determined by estimating effort based on the effort summation of detailed functional breakouts of tasks at the lowest feasible level of work. For software, this requires a detailed understanding of the software architecture. Analysis is performed at the CSC or CSU level and associated effort is predicted based on unit level comparisons to similar units. Often, this method is based on a notional system of
government estimates of most probable cost
 and used in source selections before contractor solutions are known. This method is labor-intensive and is usually performed with engineering support; however, it provides better assurance than other methods that the entire development scope is captured in the resulting estimate.

·	�xe "Cost:Performance:Cost Performance Report (CPR)"�Cost Performance Report (CPR) analysis. Future cost and schedule estimates are based on current progress. This method may not be an optimal choice for predicting software cost and schedule because software is generally developed in three distinct phases (requirements/design, code/unit test, integration/test) by different teams. Apparent progress in one phase may not be predictive of progress in the next phases, and lack of progress in one phase may not show up until subsequent phases. For example, it is difficult to measure
earned-value
 [discussed in Chapter 15,
Managing Process Improvement
] during the requirements phase because it depends on counting completed documents at scheduled milestones. Difficulty in implementing a poor design may occur without warning, or problems in testing may be the result of poor test planning or previously undetected coding defects. CPR analysis can be a good starting point for identifying problem areas, and problem reports included with CPRs may provide insight for risk assessments.

·	Cost �xe "Cost:Estimation:Cost estimating relationships (CERs)"�estimating relationships (CERs)/factors. Cost and schedule are estimated by determining effort based on algebraic relationships between a dependent (effort or cost) variable and independent variables. This method ranges from using simple factor, such as cost per line-of-code on similar program with similar contractors, to detailed multi-variant regressions based on several similar programs with more than one causal (independent) variable. Statistical packages are commercially available for developing CERs, and if data are available from several completed similar programs (which is not often the case), this method may be a worthwhile investment for current and future cost and schedule estimating tasks. Parametric model developers incorporate a series of CERs into an automated process by which parametric inputs determine which CERs are appropriate for the program at hand.

Of these techniques, the most commonly used is parametric modeling. There currently is no list of recommended or approved models; however, you will need to justify the appropriateness of the specific model or other technique you use in an estimate presented for DAB and/or MAISARC Review. As mentioned above, determining which method is most appropriate is driven by the availability of data. Regardless of which method used, a thorough understanding of your software’s functionality, architecture, and characteristics, and your contract is necessary to accurately estimate required effort, schedule, and cost.

NOTE:	Refer to “A Manager’s Checklist for Validating Software Cost and Schedule Estimates,” CMU/SEI-95-SR-04, and “Checklists and Criteria for Evaluating the Cost and Schedule Estimating Capabilities of Software Organizations,” CMU/SEI-95-SR-05.

Ada-Specific Cost Estimation�tc "<Head 4 (12)>Ada-Specific Cost Estimation"�

Using Ada-specific models is necessary because Ada developments do not follow the classic patterns included in most traditional cost models. As stated above, the time and effort required during the design phase are significantly greater (50% for Ada as opposed to 20% for non-Ada software developments). [Ada/C++91] Another anomaly with Ada developments is �xe "Productivity:Rate"�productivity rates. Traditional non-Ada developments have historically recorded that productivity rates decrease as program size increases. With Ada, the opposite is often true. Due in large to Ada reusability, the larger the program size — the greater the productivity rate. Ada estimating models and training sources are listed in Volume 2, Appendices A and B.

�tc "<Head 3 (14)>"�

Scrap and Rework�tc "<Head 3 (14)>Scrap and Rework"�

A major factor in both software development cost and schedule is that which is either scrapped or reworked. The �xe "Cost:Of conformance"�costs of conformance

are the normal costs of preventing defects or other conditions that may result in the scrapping or reworking of the software. The costs �xe "Cost:Of nonconformance"�of nonconformance are those costs associated with redoing a task due to the introduction of an error, defect, or failure on initial execution (including costs associated with fixing failures that occur after the system is operational, i.e., scrap and rework cost).

NOTE:	Good planning requires consideration of the “rework cycle.” For iterative development efforts, rework can account for the majority of program work content and cost!

�xe "Cost:Of rework"��xe "Rework:Cost of"�Rework costs are very high. �xe "Boehm, Barry W"�
Boehm’s data suggest rework costs are about 40% of all software development expenditures
. �xe "Defect"�Defects that result in rework are one of the most significant sources of risk in terms of cost, delays, and performance. You must encourage and demand that your software developer effectively measures and controls defects. Rework risk can be controlled by:

•	Using procedures to identify defects as early as possible;

•	Examining the root causes of defects and introducing process improvements to reduce or eliminate future defects; and

•	Developing incentives that reward contractors/developers for early and comprehensive defect detection and removal. [Defect causal analysis, detection, removal, and prevention are discussed in Chapter 15,
 Managing Process Improvement.]

There are currently no cost estimating models available that calculate this substantial cost factor. However, program managers must measure and collect the costs associated with software scrap and rework throughout development. First, it makes good sense to monitor and track the cost of defects, and thereby to incentivize closer attention to front-end planning, design, and other defect preventive measures. Second, by collecting these costs across all software development programs, parametric models can be designed to better help us plan for and assess the acquisition costs associated with this significant problem.

NOTE:	See Volume 2, Appendix O, Chapter 8 Addendum D, “Swords & Plowshares; The Rework Cycles of Defense and Commercial Software Development Projects.”

Support�tc "<Head 3 (14)>Support"�

Software supportability progress can be measured by tracking certain key supportability characteristics. With these measures, both the developer and the acquirer obtain knowledge which can be focused to control supportability.

•	Memory size. This metric tracks spare memory over time. The spare memory percentage should not go below the specification requirement.

•	Input/output. This metric tracks the amount of spare I/O capacity as a function of time. The capacity should not go below the specification requirement.

•	Throughput. This metric tracks the amount of throughput capacity as a function of time. The capacity should not go below specification requirements.

•	Average module size. This metric tracks the average module size as a function of time. The module size should not exceed the specification requirement.

•	Module complexity. This metric tracks the average complexity figure over time. The average complexity should not exceed the specification requirement.

•	Error rate. This metric tracks the number of errors compared to number of errors corrected over time. The difference between the two is the number of errors still open over time. This metric can be used as a value for tested software reliability in the environment for which it was designed.

•	Supportability. This metric tracks the average time required to correct a deficiency over time. The measure should either remain constant or the average time should decrease. A decreasing average time indicates supportability improvement.

•	Lines-of-code changed. This metric tracks the average lines-of-code changed per deficiency corrected when measured over time. The number should remain constant to show the complexity is not increasing and that ease of change is not being degraded.

NOTE: See Volume 2, Appendix O, Chapter 8 Addendum D, “Making Metrics Work Miracles.”

Cautions About Metrics�tc "<Head 2 (14)>Cautions About Metrics"�

Software measures are valuable for gaining insight into software development; however, they are not a solution to issues in and of themselves. To implement a metrics program effectively, you must be aware of certain limitations and constraints.

·	Metrics must be used as indicators, not as absolutes. Metrics should be used to prompt additional questions and assessments not necessarily apparent from the measures themselves. For instance, you may want to know why the staff level is below what was planned. Perhaps there is some underlying problem, or perhaps original manpower estimates need adjusting. Metrics cannot be applied in a vacuum, but must be combined with program knowledge to reach correct conclusions.

·	Metrics are only as good as the data that support them. Input data must be timely, consistent, and accurate. A deficiency in any of these areas can skew the metrics derived from the data and lead to false conclusions.

·	Metrics must be understood to be of value. This means understanding what the low-level measurement data represent and how they relate to the overall development process. You must look beyond the data and measurement process to understand what is really going on. For example, if there is a sharp decrease in �xe "Defect:Detection"�defect detection and an increase in defect resolution and close out, you might conclude that the number of inserted defects is decreasing. However, in a resource-constrained environment, the defect discovery rate may have dropped because engineering resources were temporarily moved from defect detection (e.g., testing) to defect correction.

·	Metrics should not be used to judge your contractor (or individual) performance. Measurement requires a team effort. While it is necessary to impose contractual provisions to implement software measurement, it is important not to make metrics a controversial issue between you and your contractor.
Support of the measurement process will be jeopardized if you “shoot-the-messenger.”
 Measurements should be used to identify problem areas and for improving the process and product. While metrics may deal with personnel and organizational data, these data must be used for constructive, process-oriented decision-making, rather than for placing blame on individuals or teams.

·	Metrics cannot identify, explain, or predict everything. Metrics must be used in concert with sound, hands-on management practice. They are only valuable if used to augment and enhance intimate process knowledge and understanding.

·	Analysis of metrics should NOT be performed exclusively by the contractor. Ideally, the contractor you select will already have a metrics process in place. As mentioned above, you should implement your own independent metrics analysis process because:

-	Metrics analysis is an iterative process reflecting issues and problems that vary throughout the development cycle;

-	The natural tendency of contractors is to present the program in the best light; therefore, independent government analysis of the data is necessary to avoid misrepresentation; and

-	Metrics analysis must be issue-driven and the government and contractor have inherently different issue perspectives.

·	Direct comparisons of programs should be avoided. No two programs are alike; therefore, any historical data must be tailored to your program specifics to derive meaningful projections. [
Conversely, do not tailor your data to match historical data.
] However, metrics from other programs should be used as a means to establish
normative values
 for analysis purposes.

·	A single metric should not be used. No single metric can provide the insight needed to address all program issues. Most issues require multiple data items to be sufficiently characterized. Because metrics are interrelated, you must correlate trends across multiple metrics. [ROZUM92]

NOTE:	See Volume 2, Appendix O, Chapter 8 Addendum C, “Metrics: The Measures of Success.”

ADDRESSING MEASUREMENT IN THE RFP�tc "<Head 2 (14)>ADDRESSING MEASUREMENT IN THE RFP"�

Your RFP should define the indicators and metrics the Government needs to track progress, quality, schedule, cost, and maintainability. What you should look for when analyzing an offeror’s �xe "Measurement/metrics:Metrics Usage Plan"�Metrics Usage Plan is “control.” Through measurement, the process’s internal workings are defined and assessed. If an effective process improvement plan is executed (which requires appropriate measurements be taken) data are collected and analyzed to predict process failures. Therefore, the offeror must have a corporate mechanism implemented in a systematic manner that performs orderly process control and methodical process improvement. This can be identified by the measurement methods the company uses to assess the development process, analyze the data collected, and feed back corrections f
or problems within the process.

[CAREY92]

Make sure the software quality metrics and indicators they employ include a clear definition of component parts (e.g., SLOC), are accurate and readily collectible, and span the development spectrum and functional activities. They must identify metrics early and apply them at the beginning of the system engineering and software implementation process. They should also develop a software Metrics Usage Plan before contract award.

�

REFERENCES�tc "<Head 2 (14)>REFERENCES"�

[Ada/C++91] Ada and C++ Business Case Analysis, Deputy Assistant Secretary of the Air Force (Communications, Computers, and Logistics), Washington, DC, July 1991

[ALBRECHT79] Albrecht, A.J., “Measuring Application Development Productivity,” Proceedings of the IBM Applications Development Symposium, Monterey, California, October 1979

[BOEHM81] Boehm, Barry W., Software Engineering Economics, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1981

[BOEHM89] Boehm, Barry W., as quoted by Ware Myers, “Software Pivotal to Strategic Defense,” IEEE Computer, January 1989

[CAMPBELL95] Campbell, Luke and Brian Koster, “Software Metrics: Adding Engineering Rigor to a Currently Ephemeral Process,” briefing presented to the McGrummwell F/A-24 CDR course, 1995

[CARD90] Card, David N., and Robert L. Glass, Measuring Software Design Quality, Prentice Hall Inc., Englewood Cliffs, New Jersey, 1990

[CAREY92] Carey, Dave and Don Freeman, “Quality Measurements in Software,” G. Gordon Schulmeyer and James I. McManus, eds., Total Quality Management for Software, Van Nostrand Reinhold, New York, 1992

[DeMARCO86] DeMarco, Tom, Controlling Software Projects, Yourdon Press, New York, 1986

[FRANKLIN33] Franklin, Benjamin, Poor Richard’s Almanac, 1733

[GILLIGAN94] Gilligan, John, “The C4I Acquisition Environment: Perspectives and Challenges,” briefing presented at the ISAC meeting, November 21, 1994

[HALSTEAD77] Halstead, M.H., Elements of Software Science, North Holland, Amsterdam, 1977

[HETZEL93] Hetzel, Bill, Making Software Measurement Work: Building an Effective Measurement Program, QED Publishing Group, Boston, 1993

[HUMPHREY89] Humphrey, Watts S., Managing the Software Process, The SEI Series in Software Engineering, Addison-Wesley Publishing Company, Inc., 1989

[IEEE83] ANSI/IEEE Standard 729-1983, IEEE Standard Glossary of Software Engineering Terminology, Institute of Electrical and Electronics Engineers, Inc., New York, 1983

[JONES91] Jones, Capers, Applied Software Measurement, McGraw-Hill, New York, 1991

[LYONS91] Lyons, Lt Col Robert P., Jr., “Acquisition Perspectives: F-22 Advanced Tactical Fighter,” briefing presented to Boldstroke Senior Executive Forum on Software Management, October 16, 1991

[MARCINIAK90] Marciniak, John J. and Donald J. Reifer, Software Acquisition Management: Managing the Acquisition of Custom Software Systems, John Wiley & Sons, Inc., New York, 1990

[PEHRSON96] Pehrson, Ronald J., “Software Development for the Boeing 777,” CrossTalk, January 1996

[PRESSMAN92] Pressman, Roger S., Software Engineering: A Practitioner’s Approach, Third Edition, McGraw-Hill, Inc., New York, 1992

[PUTNAM92] Putnam, Lawrence H., and Ware Myers, Measures for Excellence: Reliable Software On Time, Within Budget, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1992

[ROZUM92] Rozum, James A., Software Measurement Concepts for Acquisition Program Managers, Technical Report CMU/SEI-92-TR-11/ESD-TR-92-11, Carnegie-Mellon University, Software Engineering Institute, Pittsburgh, Pennsylvania, June 1992

[YOURDON92] Yourdon, Edward, Decline and Fall of the American Programmer, Yourdon Press, Englewood Cliffs, New Jersey, 1992

�

�tc "<>"�

CHAPTER 8�tc "<>CHAPTER 8"�

 Addendum A�tc "<> Addendum A"�

Assessment Metrics for Use with the Capability Maturity Model: Are We Improving?�tc "<>Assessment Metrics for Use with the Capability Maturity Model\: 	Are We Improving?"�

S.J. Leadabrand�tc "<Head 3 (14)>S.J. Leadabrand"�

W.E. Burns�tc "<Head 3 (14)>W.E. Burns"�

Loral Vought Systems Corporation�tc "<Head 3 (14)>Loral Vought Systems Corporation"�

The Software Engineering Institute (SEI) Software Process Assessment (SPA) is a mechanism that measures “
where we are
” relative to the SEI Capability Maturity Model (CMM). A standard questionnaire is completed for each of the projects included in the SPA. Subsequent interviews and analysis are used to adjust and correct the questionnaire results. A determination is then made as to the “
maturity level
” of the total organization being assessed.

There is additional useful information that can be obtained through this process by computing metrics using the same data that has already been collected. These metrics can be used to further analyze the state of the organization with respect to the strengths, weaknesses and consistency of its practices. They can provide both the Software Engineering Process Group (SEPG) and management with baselines from which to measure improvement.

“Organizational Profile” Metric�tc "<Head 2 (14)>“Organizational Profile” Metric"�

The first metric is the “
organizational profile
” as shown in Figure 8-14. The questions pertaining to each maturity level are separated to produce four profiles from Level 2 through Level 5. The profile (P) for each project (j) is produced by adding the number of “
yes
” answers for each question from the questionnaire. This sum is then divided by the adjusted total number of projects. The adjusted total is computed by subtracting the number of “
not applicable
” answers from the total number of answers to the question. The result is then converted to a percentage.

�

�

Figure 8-14 Normalized Software Process Questionnaire Results, Level 2

where

Y	=	1 if the project answered “yes” to the question;

i	=	the project sequence number (i = 1,2, ... I), where

I	=	the total number of projects assessed;

j	=	the jth question within the level (j = 1,2, ... J) out of J, where

J	=	the total number of questions; and

NA	=	I if the project answered “not applicable” to the question.

This metric is easily computed in a spreadsheet with the results available for output in bar graph style.

Figure 8-14 aids in the interpretation of the consistency of application of the practices. In this fictitious example, it can be seen that the organization has three or four areas of strength indicated by those bars at 80% or better. All of the practices inferred by the question set are being practiced at least on some of the projects. Of particular interest is the number of practices that are inconsistent across the projects. These are indicated by percentages in the mid-range, e.g., 35 - 70%, on the graph. These “
organizational profile
” metrics are of particular interest to the SEPG since they can be used as a baseline from which improvement in specific areas can be measured. They are probably not of general interest since they include so much detail.

“Where We Are” Metric�tc "<Head 2 (14)>“Where We Are” Metric"�

A metric of more general interest is the “
where we are
” metric (si) shown in Figure 8-15. This metric is computed separately for each maturity level of the CMM. One of the most frequently asked questions is,
 “How close to the next maturity level are we?
” Another is, “
How much progress are we making?
” This metric can help answer both of these questions. It is suitable for presentation to management since it gives an overall “
flavor
” view without getting bogged down in the details.

�

Figure 8-15 Adjusted Software Process Questionnaire Percentiles, Level 2

The “
where we are
” metrics are also separated into two categories: “
all the questions
” and the “
asterisked questions
.” The computation consists of summing the “
yes
” answers in each of the two categories for those questions applicable to each maturity level. The sum is adjusted for not-applicable answers and the result is converted to a percentage. This percentage can be compared against the SEI’s threshold for that maturity level.

�

where the variables have the same meanings as in Equation 1. A spreadsheet can be used for this computation and to produce the pie graphs.

Aging of Metrics�tc "<Head 3 (14)>Aging of Metrics"�

Both the “
organizational profile
” and “
where we are
” metrics can be aged. This helps to eliminate the effects of older projects that may be operating using obsolete practices that prevent them from ever improving to Level 2 or 3.

A weighting factor (wj) based on the age of the project is computed. The weighting factor should force the scores for projects older than a specified age to zero. This factor also should cause scores for older projects to be weighted less than those of more recent projects.

�

If
W
J

< 0; set
W
J
 = 0

where

A
MAX
 = Maximum age of project to have any score in years;

A
J
 = Age of project j in months;

W
J
 = Weighting factor for project j score.

For each category, the aged score (X) is then computed.

		X = �

where

W = the sum of the weights

Figure 8-16 illustrates the effects of aging the fictitious projects with
= 5 years and projects 1 through 7 with ages of 9, 9, 16, 25, 36, 88, and 88 months, respectively. (Note that pseudo results for the questionnaires can be regenerated from Figure 8-15.) A spreadsheet may be used to perform the aged metrics computations and to generate the pie graphs.

�

Figure 8-16	“Aged” and “Adjusted” Software Process Questionnaire Percentiles, Level 2

Figure 8-17
, which is also produced with the spreadsheet, shows the assessment results by asterisked and non-asterisked categories for each CMM level.

�

Figure 8-17	“Aged” and “Adjusted” Software Process Questionnaire Percentiles On Seven Projects

About the Authors�tc "<Head 3 (14)>About the Authors"�

Steve Leadabrand and Bill Bums are actively working full-time in software engineering process improvement within the SEPG at Loral Vought Systems Corporation. Many of the company’s products include real-time embedded software related to missile guidance and control.

S.J. (Steve) Leadabrand and W.E. (Bill) Bums

Loral Vought Systems Corporation

P.O. Box 650003, Mailstop EM-74

Dallas, TX 75265-0003

Voice: (214) 603-9628 (Leadabrand); (214) 603-9960 (Bums)

Fax: (214) 603-9629

�

�tc "<>"�

CHAPTER 8�tc "<>CHAPTER 8"�

 Addendum B�tc "<> Addendum B"�

Software Complexity�tc "<Head 1 (16)>Software Complexity"�

Thomas McCabe�tc "<Head 3 (14)>Thomas McCabe"�

NOTE: 	This article is found in Volume 2, Appendix O, Additional Volume 1 Addenda.

�tc "<>"�

CHAPTER 8�tc "<>CHAPTER 8"�

 Addendum C�tc "<> Addendum C"�

Metrics:�tc "<Head 1 (16)>Metrrics\:"�

The Measure of Success�tc "<Head 1 (16)>The Measure of Success"�

NOTE: 	This article is found in Volume 2, Appendix O, Additional Volume 1 Addenda.

�tc "<>"�

CHAPTER 8�tc "<>CHAPTER 8"�

 Addendum D�tc "<> Addendum D"�

Making Metrics Work Miracles�tc "<Head 1 (16)>Making Metrics Work Miracles"�

NOTE: 	This article is found in Volume 2, Appendix O, Additional Volume 1 Addenda.

�tc "<Head 1 (16)>"�

�tc "<Head 1 (16)>"�

�tc "<Head 1 (16)>"�

�tc "<>"�

CHAPTER 8�tc "<>CHAPTER 8"�

 Addendum E�tc "<> Addendum E"�

Swords & Plowshares: The Rework Cycles of Defense & Commercial Software Development Projects�tc "<Head 1 (16)>Swords & Plowshares\: The Rework Cycles of Defense & Commercial Software Development Projects"�

NOTE: 	This article is found in Volume 2, Appendix O, Additional Volume 1 Addenda.

Version 2.0

CHAPTER 8 Measurement and Metrics

8-� PAGE �
47
�

Version 2.0

8-� PAGE �
43
�

Version 2.0

CHAPTER 8 Addendum A

Version 2.0

