�tc "<>"�
CHAPTER
 7

Software Development Maturity�tc "<>Software Development Maturity"�

EDITOR’S NOTE: Graphics quality will improve when printed.
CHAPTER OVERVIEW

The development of a weapon system requires integrating technical, administrative, and management disciplines into a cohesive, well-planned, and rigorously controlled process. As a critical component of a weapon system, software must be developed under a similarly disciplined engineering process. [DSMC90]

Software is like entropy. It is difficult to grasp, weighs nothing and obeys the Second Law of Thermodynamics; i.e., it always increases. [AUGUSTINE86]

The above statements sum up the need for maturity in software development — we must have a disciplined, engineering approach to software development, while maintaining a grasp on the process and product. If we cannot achieve either of these, we have introduced unnecessary risk in meeting customer needs within cost and schedule constraints.
The Air Force and the Software Engineering Institute (SEI) have each produced a software development capability assessment method for use in source selection to determine the maturity and associated degree of risk of a software developer’s process. These assessments provide important insight whether the developer has a process that is predictable, repeatable, and manageable in terms of cost and schedule. These should be used for source selection of any organization requiring the development or modification of software — contractor or government. This includes post-deployment software support, since the support organization is usually different (with different development processes) from the original developer.
To assist developers in assessing their current maturity, as well as to guide process improvement efforts, the SEI developed the Capability Maturity ModelSM (CMMSM) from which a family of maturity models has evolved. These models are based on key process areas (KPAs) defined a set of minimum requirements needed to achieve a given level of maturity. Knowing KPA requirements, an organization can address those areas needing improvement to achieve the next higher level of maturity. This family of maturity models will help you to specify what level of maturity is required of offerors. You should require that they have a mature, well-defined, standardized process for software development and maintenance.
��tc "<>"�
CHAPTER
 7

Software Development Maturity�tc "<>Software Development Maturity"�
PROCESS MATURITY: An Essential for Success�tc "<Head 2 (14)>PROCESS MATURITY\: 				An Essential for Success"�

Webster defines process as, “A series of operations performed in the making or treatment of a product, e.g., a manufacturing process.” A software �xe "Process"�process is the series of operations performed in making or maintaining of a software product. A software �xe "Process:Definition"�process definition is the description of that process. The process definition guides teams of software engineers in the performance of their work. Thus, a defined, disciplined process is one that is documented, taught, applied, measured, used by everyone in the organization, and accessible to all team members (e.g., an organization’s procedures manual). A defined process accomplishes the following:

·	It provides the basis for examining and improving the software process;
·	It aids in establishing predictability;
·	It improves understanding of roles and dependencies;
·	It guides software personnel through orderly decisions,
·	It provides a smooth working framework; and
·	It helps staff members to readily transition from one program to another. [CLOUGH92]

Without a defined, disciplined software process each team member’s work rests on intuition and the quality of their product on blind faith. Team members are left to arrive at their own operational processes, methods, procedures, and standards without the direction and support professionals in other disciplines consider essential (e.g., in sports, the arts, or science). As General George S. Patton, Jr., explained,

All human beings have an innate resistance to obedience. Discipline removes this resistance, and by constant repetition, makes obedience habitual and subconscious. Where would an undisciplined football team get? The players react subconsciously to the signals. They must, because the split second required for thought would give the enemy the jump. [PATTON47]

�xe "Humphrey, Watts"�Watts Humphrey explains that a software team without a defined, disciplined process is one where everyone follows their own individual procedures, which he also equates to a ball team where different members are playing their own brand of ball. If some members are playing soccer, some baseball, and others football, the team is ineffective and cannot produce a quality product. In contrast, a team with a precise process definition is one where each individual’s work is coordinated and their progress tracked. More explicitly, Humphrey says the software process is the technical and management framework for applying engineering methods, tools, procedures, and people to software development, while the process definition identifies roles and specifies tasks. The definition also establishes measures and provides entry and exit criteria for every major step in the process. [HUMPREY95]

Software development organizations are more successful when they have processes they can effectively communicate, manage, and evolve. A well-defined process is also easier to improve. For instance, if some steps in the process are skipped, or if the process is inefficient, problems may occur. Steps, or the process itself, may not be used if the definition is poor, communication is unclear, or team members are not motivated. Improvements can be made once these problems are identified. The process, its definition, and the supporting infrastructure all evolve and mature with use and experience. [HUMPHREY95]
SOFTWARE DEVELOPMENT CAPABILITY ASSESSMENT METHODS�tc "<Head 2 (14)>SOFTWARE DEVELOPMENT CAPABILITY ASSESSMENT METHODS"�

Software development capability assessments are an effective method for determining the maturity of an organization’s process. They provide a performance rating system that was established to be fair, accurate, and enforce uniform procedures, clear definitions, consistent measurements, and reliable information to keep vendors from challenging negative ratings. These assessments involve visits to bidders’ facilities to determine their readiness to perform on a contract and their software development maturity. They are used to ascertain whether the developer has a mature software process in place that is predictable, repeatable, and manageable in terms of cost and schedule. The purpose of these assessments is risk mitigation [discussed in detail in Chapter 6, Risk Management]. They are used to determine what risks are associated with contracting a given organization to perform your development task. An award to a contractor with a mature, well-defined, standardized process can translate into substantially lower program risk and cost savings for the Government through reduced documentation, oversight, review, and auditing requirements.

REMEMBER:	In addition to having a mature software development process, the developer should also have experience in the application domain being developed. Although a developer might have a high-level process maturity, the lack of domain expertise could have a drastic impact on product development (i.e., performance, cost and schedule). You need both process maturity and domain expertise to minimize software development risk. This chapter addresses development maturity, and assumes the software developer has the necessary domain experience.

Two software development capability assessment methods are available for source selection evaluations. The Aeronautical Systems Center Software Development Capability Evaluation (SDCE) is best used for developers of weapon systems with embedded software or any application requiring substantial systems engineering. The SEI Software Capability Evaluation (SCE) is appropriate for MIS developers, and has been used for C4I developers; however, with the substantial systems engineering required by C4I programs, you should consider performing a SDCE to ensure the developer has a mature systems engineering capability. The �xe "Software Process Assessment (SPA)"�Software Process Assessment (SPA) program was also developed by the SEI. [NOTE: The SPA program has been updated, and is now the �xe "Capability Maturity Model (CMMSM):CMMSM-Based Appraisal — Internal Process Improveme"�CMMSM-Based Appraisal — Internal Process Improvement (CBA-IPI).] The CBA-IPI focuses on helping development organizations (government and contractor) assess and improve their own processes. [HUMPHREY91] The objective of these methods is to provide structured, consistent, and comprehensive approaches for evaluating the software process to determine the capability of any organization having software development responsibility after contract award. A high rating on the review does not guarantee software development success; but the evaluation does isolate areas needing closer consideration during source selection (and if selected, after contract award).

NOTE:	For questions about C3 and ground electronics systems acquisitions capability assessments, contact Electronic Systems Center [see “Evaluating C3 Systems” in Volume 2, Appendix A]. For MIS acquisitions contact the Standard Systems Group [see “Evaluating MIS Systems” in Volume 2, Appendix A]. For avionics and embedded systems contact Aeronautical Systems Center [see “Evaluating Embedded/Avionics Systems” in Volume 2, Appendix A]. Air Force in-house software development organizations with questions on Software Process Improvement and Software Maturity Assessments should contact the Air Force C4 Agency [see “Software Process Improvement and Software Maturity Assessments” in Volume 2, Appendix A].

Once your program is assessed, it is of little or no use if you are not committed to unremitting improvement. No matter how often the assessment is performed, it is only a starting point. Each time an assessment is performed, it identifies your current level of capability — but more importantly — it identifies a point from which to begin your next round of improvement. Those few organizations who have achieved a CMMSM Level 3 or above claim they got there, and stay there, because they have an organization-wide quality attitude. Always looking for ways to improve, they develop an extensive set of measures they perpetually re-evaluate.

NOTE:	Refer to the February 1994, July 1995, and September 1995 issues of CrossTalk (published by the STSC) for timely, pertinent articles on the subject of process improvement and moving up the maturity scale. Copies are available from STSC customer service [see Volume 2, Appendix A] or can be viewed online [see Volume 2, Appendix B for Web address].

Software Development Capability Evaluation (SDCE)�tc "<Head 3 (14)>Software Development Capability Evaluation (SDCE)"�

As described in �xe "AFMCP 63-103"�AFMC Pamphlet 63-103, the SDCE evaluates a contractor’s ability to develop software for a specific weapon system program, as defined in the RFP. It also helps to decide whether the contractor has the capacity and sufficient qualified personnel available to complete the proposed software development. Assessing capability during source selection accomplishes three related objectives:

·	The offeror’s capability and capacity to develop the required software within the program baseline is determined;
·	The review process elicits a contractual commitment by the offeror, if selected, to implement the methods, tools, practices, and procedures making up their software development process; and
·	Insight is gained into each offeror’s systems and software engineering development methods and tools to be applied to your program.

The SDCE concentrates on five areas: management approach, management tools, development practices, personnel resources, and Ada technology. The review is normally performed during the EMD RFP preparation and source selection acquisition phase. However, when software developed during Dem/Val is planned to be carried through to EMD, an SDCE should be performed during the Dem/Val source selection phase. Your RFP must state that offerors provide specific information describing their software development methods, including examples of how their methods have been applied on past or on-going programs. If an open discussion is conducted, the an in-plant review of the offeror’s team is performed by the Government. The evaluation can also be based solely on the material submitted with the proposal, with the in-plant portion of the SDCE conducted after contract award. [Aeronautical Systems Center policy requires the use of SDCE results in all weapons systems software source selections.]

SEI Software Capability Evaluation (SCE)�tc "<Head 3 (14)>SEI Software Capability Evaluation (SCE)"�

The SCE is described in SCE Method Description (CMU/SEI-94-TR-06, Version 2.0, June 1994) and the SCE Implementation Guide, (CMU/SEI-94-TR-05, Version 2.0, February 1994) by the �xe "Software Engineering Institute (SEI)"�SEI. The SCE Method Description contains an appendix of “look-fors” and guidance in determining contractor strengths and weaknesses against �xe "Software Capability Evaluation (SCE):Key process area (KPA)"��xe "Key process area (KPA)"�key process areas (KPAs). SCE Implementation Guide contains suggested wording for acquisition documents. [See Volume 2, Appendix M, for more information.]

The SCE assesses contractors’ capabilities in four areas: (1) organization and resource management, (2) software engineering process and management, (3) tools and techniques, and (4) software development expertise. The SCE specifically analyzes multiple programs for a discrete acquisition and reports findings at the organizational level for a vendor site based on the discrete programs evaluated. [BARBOUR93] The SCE is used in source selection, and contractors without mature, well-defined, standardized processes are considered high risk. Also, contractors can use this evaluation for self-assessment of their current maturity level and as guidance for achieving higher levels.

A WORD OF CAUTION! An SCE investigates areas generally limited to the processes used. For example, this includes the process of selecting appropriate tools and methods, and training personnel to use them. However, an SCE does not evaluate whether the processes themselves are effective or efficient, nor does it address the appropriateness of the tools and methods used by the developer. Therefore, a proposal by a mature software development organization to use new, state-of-the-art tools and methods could be a significant risk if the developer does not have an experience base to handle them. [HOROWITZ95]

SEI transition partners train source selection teams on conducting SCEs. SEI instructor personnel do not lead or formally participate in SCEs; however, they may observe SCE teams while they conduct evaluations on site. These observation trips, lessons-learned reports, and experiences have been major contributors to SCE method’s evolution into its current form. [BARBOUR93]

NOTE:	ESC can provide SCE evaluation teams upon request for Air Force procurements. Contact ESC for more information [see Volume 2, Appendix A, “Evaluating C3 Systems,” for phone number and address]. For more information on the SEI Transition Partners, contact the SEI [see Volume 2, Appendix A].

Maturity Models�tc "<Head 2 (14)>Maturity Models"�

Many organizations have embarked on organizational improvement efforts that focus on software process improvement. The CMMSM provides a means for assessing current practice and guiding process improvement efforts. [The CMMSM is a registered Service Mark of Carnegie Mellon University.] The International Standards Organization/International Electrotechnical Commission (ISO/IEC) has developed a version of the CMMSM framework, the Software Process Improvement Capability dEtermination (SPICE) model. There are also specialty engineering CMMSMs, based on the generalized engineering CMMSM framework. The models discussed here include:

·	Capability Maturity Model (CMMSM) for Software,
·	Software Process Improvement Capability dEtermination (SPICE),
·	People — Capability Maturity Model (P-CMMSM),
·	Software Acquisition — Capability Maturity Model (SA-CMMSM),
·	Systems Security Engineering — Capability Maturity Model (SSE-CMMSM),
·	Trusted Software — Capability Maturity Model (TS-CMMSM), and
·	Systems Engineering — Capability Maturity Model (SE-CMMSM).

These models address many aspects of software development; however, most of the models (and the methods for using them) are not yet fully mature. [For more information on the status of any of the CMMSMs, contact the SEI (see Volume 2, Appendix A).] The CMMSMs contain three main components:

·	�xe "Capability Maturity Model (CMMSM):Key process area (KPA)"�Key process areas (KPAs) define the requirements that must be satisfied to accomplish each level of maturity. There are three categories of KPAs: management, engineering, and organization, as illustrated on Figure 7-1. Because progress is made in stages or steps, the levels of maturity and their KPAs provide a road map for attaining higher levels. The KPAs at any given level describe the minimum requirements for that level. This does not mean some portion of those requirements cannot be satisfied or performed at a lower level, in fact they typically will. However, an organization cannot achieve the next higher level unless all KPA requirements have been satisfied. Once a higher maturity level is achieved, the models also make sure that all lower-level requirement satisfaction is maintained. The model stages are complimentary and flow upward. For example, the tracking and oversight at Level 2 will result in corrective actions (e.g., reactive approach to defects). This process matures and compliments risk management at Level 3, where efforts are made to identify and prepare for risks before they happen (proactive approach). While defects should decrease as maturity increases, the need for corrective actions (established at Level 2) never completely goes away.
·	Interpreted KPAs, developed for each general CMMSM KPA where additional interpretation, guidance, or practices are necessary to meet a particular discipline’s needs. These are usually developed for engineering KPAs, since engineering disciplines typically have differences that must be addressed.
·	Specialty KPAs address areas (other than management, engineering, or organization) specific to a particular discipline.

�
Figure 7-1 A Family of CMMSMs [FERRAIOLO95]�tc "Figure 7-1 A Family of CMMSMs [FERRAIOLO95]"�

To facilitate the use of this family of models, general CMMSM KPAs are used to address common practices across all disciplines. Where needed, interpreted KPAs provide additional guidance on general CMMSM KPAs for a specific discipline. If additional new KPAs are required, specialty KPAs are developed. Specialty KPAs address those activities particular to a specialty discipline that go beyond general CMMSM KPAs. Interpreted KPAs and specialty KPAs are usually developed for general CMMSM engineering KPAs. In a similar manner, interpreted KPAs and specialty KPAs can be developed for management or organizational KPAs; however, this is rarely required. How the family of specialized CMMSMs relate to generalized CMMSMs (with the exception of SPICE and SE-CMMSM), is illustrated on Figure 7-1. [FERRAIOLO95]

NOTE:	See Chapter 8, Measurement and Metrics, for a discussion on metrics and the CMM.SM

Capability Maturity Model (CMMSM)�tc "<Head 3 (14)>Capability Maturity Model (CMMSM)"�

Like habitual and subconscious actions, software development processes are difficult to establish and even more difficult to break. Improvement seldom occurs by simply defining a more efficient process. Software engineers must understand the need to change, be convinced the new process will, indeed, improve performance, and be supported while they learn and implement it. The development processes for major software-intensive systems are often large and extremely complex. Therefore, they are difficult to define, comprehend, and especially, to implement. To aid organizations in determining the capabilities of their current process and to establish priorities for improvement, the SEI developed the �xe "Capability Maturity Model (CMMSM):Software process maturity framework"�software process maturity framework, as illustrated on Figure 7-2.

�
Figure 7-2 Software Process Maturity Framework�tc "Figure 7-2 Software Process Maturity Framework"��tc "Table 7-1	BPG Capability Levels, Common Features, and Generic Practices [KONRAD95]"�

The framework provides a benchmark of sound, proven principles for quality, recognized by both engineering and manufacturing disciplines to be effective for software. The purpose of the model is to help organizations determine their current capabilities and identify their most critical issues. The model characterizes the level of an organization’s maturity based on the extent to which measurable and repeatable software engineering and management practices are institutionalized. This method can also be used to identify areas for improvement. Software managers usually know their problems in excruciating detail, but lack clear improvement priorities that can be understood and agreed upon by the team. By establishing a limited set of priorities and working aggressively to achieve them, more rapid progress can be made than with an unfocused effort. The CMMSM is organized into five maturity levels:

·	Level 1 — Initial. The software process is characterized as ad hoc, and occasionally even chaotic. Few processes are defined and success depends on individual effort and heroics.
·	Level 2 — Repeatable. Basic program management processes are established to track cost, schedule, and functionality. The necessary process discipline is in place to repeat earlier successes on programs with similar applications.
·	Level 3 — Defined. The software process for both management and engineering activities is documented, standardized, and integrated into a standard software process for the organization. All programs use an approved, tailored version of the organization’s standard software process for developing and maintaining software.
·	Level 4 — Managed. Detailed measures of the software process and product quality are collected. Both the software process and products are quantitatively understood and controlled.
·	Level 5 — Optimizing. Continuous process improvement is enabled by quantitative feedback from the process and from piloting innovative ideas and technologies.
 [HUMPHREY90]
�
NOTE:	DoD’s goal is to achieve a maturity Level 3 (Defined Process) for in-house Central Design Activities/Software Design Activities and weapon system Software Support Activities. Current practice encourages all bidders on software contracts to have a mature, well-defined, standardized process.

Except for Level 1, each maturity level is decomposed into several KPAs that indicate the areas on which an organization should focus to improve its software process. The KPAs at Level 2 focus on establishing basic program management controls. The KPAs at Level 3 address both program and organizational issues, as the organization establishes an infrastructure that institutionalizes effective software engineering and management across all programs. The KPAs at Level 4 focus on establishing a quantitative understanding of software process and work products under development. The KPAs at Level 5 cover issues that the organization and programs must address to implement continuous and measurable process improvement. Each KPA is described in terms of the key practices that contribute to satisfying its goals, and the infrastructure and activities contributing most to their effective implementation and institutionalization as the organization moves toward higher maturity levels.

ISO/IEC Maturity Standard: SPICE�tc "<Head 3 (14)>ISO/IEC Maturity Standard\: SPICE"�

International Standards Organization/International Electrotechnical Commission (ISO/IEC) is creating a set of international standards under the �xe "Software Process Improvement Capability dEterminat"�Software Process Improvement Capability dEtermination (SPICE) Program. One objective of the ISO/IEC effort is to create a process measuring capability, while avoiding any specific approach to improvement, such as CMMSM maturity levels. SPICE measures the implementation and institutionalization of specific processes. Organizations will be able to use this standard for:

·	Self-assessment (to help determine an organization’s ability to implement a new software program);
·	Process improvement (to help an organization improve its own software development and maintenance processes); and
·	Capability determination (to help a purchasing organization determine the capability of a potential software supplier).

SPICE Product Suite�tc "<Head 4 (12)>SPICE Product Suite"�

The core set of SPICE products comprising the software process assessment standard include:

·	Introductory Guide. This is the SPICE product suite entry point specifying what is required to obtain a SPICE-conformant assessment.
·	Baseline Practices Guide (BPG). This identifies practices essential to good software management, engineering, and increasing process capability similar to the SEI’s CMM.SM
·	Process Assessment Guide. This describes the steps for performing an assessment and rating the organization against BPG practices.
·	Assessment Instrument. This describes what type data to gather in an assessment and includes an example questionnaire of adequacy indicators for BPG practices.
·	Assessor Training and Qualification Guide. This contains criteria for determining whether a candidate is qualified to perform a SPICE assessment.
·	Process Improvement Guide. This guides an organization in applying other SPICE products for improving its software processes.
·	Process Capability Determination Guide. This guides an organization in applying other SPICE products for selecting capable suppliers.

Baseline Practices Guide�tc "<Head 4 (12)>Baseline Practices Guide"�

The �xe "Baseline Practices Guide (BPG)"��xe "Software Process Improvement Capability dEterminat:Baseline Practices Guide (BPG)"��xe "Baseline Practices Guide (BPG)"�Baseline Practices Guide (BPG) defines, at a high level, the goals and fundamental activities essential to good software engineering practice. The BPG describes what activities are required — not how to implement them. BPG practices may be extended through Practice Guides that address a specific industry, sector, or other requirements. [The CMMSM is an example of a sector-specific Practice Guide for large, software-intensive programs and organizations.] The BPG defines five process categories:

·	Customer-supplier. This category consists of processes that directly impact the customer, support development and transition of the software to the customer, and provide for its correct operation and use.
·	Engineering. This category consists of processes to directly specify, implement, or maintain a system, a software product, and its user documentation.
·	Program. This category consists of processes to establish the program and coordinate and manage its resources to produce customer satisfactory products or services.
·	Support. This category consists of processes enabling and supporting performance of other program processes.
·	Organization. This category consists of processes establishing organizational business goals and developing process, product, and resource assets to achieve business goals.

Each process in the BPG can be described in terms of base practices unique to software engineering or management activities. Process categories, processes, and base practices provide a grouping by type of activity. These processes and activities characterize performance of a process, even if it is not systematic. Performance of base practices may be ad hoc, unpredictable, inconsistent, poorly planned, and/or result in poor quality products, but those work products are, at least marginally, usable in achieving process purpose. Implementing only process base practices of a process may be of minimal value and represent only the first step in building a process capability. However, the base practices represent unique, functional process activities when instantiated in a particular environment.

BPG Capability Levels�tc "<Head 4 (12)>BPG Capability Levels"�

The BPG expresses evolving process maturity in terms of capability levels, common features, and generic practices. A capability level is a set of common features (sets of activities) that, when applied together, increase a developer’s ability to perform a process. Each level represents a major process capability improvement and process performance growth. They constitute a rational way for practice progression, harmonize different software processes rating approaches (i.e., the CMMSM). Capability levels provide two benefits: (1) they acknowledge dependencies among process practices; and (2) they help identify which improvements might be performed first, based on a plausible process implementation sequence. The BPG lists six capability levels:

·	Level 0 — Not performed. This level has no common features and there is a general failure to perform base practices. There are no easily-identifiable process work products or outputs.
·	Level 1 — Performed informally. Base practices are generally performed and process work products testify to performance.
·	Level 2 — Planned and tracked. Process base practice performance is planned, tracked, and verified. Work products conform to specified standards and requirements. The primary distinction from the previous level is that process performance is planned, managed, and progressing towards being well-defined.
·	Level 3 — Well-defined. Base practices are performed according to a well-defined process using approved, tailored versions of standard, documented processes. The primary distinction from the previous level is that the process is planned, managed, and standardized throughout the organization.
·	Level 4 — Quantitatively controlled. Detailed measures of performance are collected and analyzed. This leads to a quantitative understanding of process capability and an improved ability to predict and manage performance. The quality of work products is quantitatively known. The primary distinction from the previous level is that the defined process is quantitatively understood and controlled.
·	Level 5 — Continuously improving. Quantitative process effectiveness and performance efficiency goals (targets) are established based on organizational business goals. Continuous process improvement against these goals is enabled by quantitative feedback from defined process performance and the piloting of innovative ideas and technologies. The primary distinction from the previous level is that the defined, standardized process undergoes continuous refinement and improvement based on a quantitative understanding of the impact of process changes.

Common Features and Generic Practices�tc "<Head 4 (12)>Common Features and Generic Practices"�

A �xe "Software Process Improvement Capability dEterminat:Baseline Practices Guide (BPG):common feature"�common feature in the BPG is a set of practices (called �xe "Software Process Improvement Capability dEterminat:Baseline Practices Guide (BPG):generic practice"�generic practices) that address the aspects of process implementation and institutionalization. The words “common” and “generic” convey the idea that these features and practices are applicable to any process, with the goal of enhancing the capability to perform that process. For example, “planning” is a feature common to improved management of any process. Table 7-1 lists BPG common features and generic practices by capability level.

�

Table 7-1	BPG Capability Levels, Common Features, and Generic Practices [KONRAD95]�tc "Table 7-1	BPG Capability Levels, Common Features, and Generic Practices [KONRAD95]"�

BPG capability levels and CMMSM maturity levels are similar, yet distinctly different. BPG capability levels are applied on a per process basis, while CMMSM organizational maturity levels are a set of process profiles. Also, the BPG architecture does not prescribe any specific organizational improvement path. Improvement priorities are left completely up to the software organization, as determined by its business objectives. Individual processes, at either organization or program level, can be measured and rated using the BPG continuous improvement architecture. [KONRAD95] [For further information, contact the SEI (see Volume 2, Appendix A.)]
�
People — Capability Maturity Model (P-CMMSM)�tc "<Head 3 (14)>People — Capability Maturity Model (P-CMMSM)"�

Organizations trying to improve their capability often discover a number of interrelated components must be addressed. Three necessary components for improvement are: people, process, and technology, as illustrated on Figure 7-3.

�
Figure 7-3 Three Necessary Components for Improvement [HEFLEY95]�tc "Figure 7-3	Three Necessary Components for Improvement [HEFLEY95]"�

Despite the importance of a talented staff, human resource practices are often ad hoc and inconsistent, and managers are insufficiently trained in performing them. Consequently, software managers often rely on their human resource departments for human resource practices administration (such as training, professional development, mentoring). Thus, these practices are applied with regard to how they impact performance. In many cases, even when software organizations are aware of the problem and want to improve these practices, they do not know where or how to begin.

The SEI’s People — Capability Maturity Model (P-CMMSM) provides guidance on how to improve human resource management. The P-CMMSM is an adaptation of the CMMSM that focuses on developing organizational talent. It can be used to radically improve an organization’s ability to attract, develop, motivate, organize, and retain the talent needed to increase software development maturity. The P-CMMSM helps software organizations to:

•	Characterize people management maturity,
•	Set priorities for improving the level of talent,
•	Integrate talent growth with process improvement, and
•	Establish a culture of software engineering excellence that attracts and retains the best and the brightest.

P-CMMSM Structure�tc "<Head 4 (12)>P-CMMSM Structure"�

The P-CMMSM is fashioned after the CMMSM in structure and format. The P-CMMSM will evolve to stay synchronized with architectural changes made in the CMMSM and other maturity standards, such as SPICE. It provides the same type guidance as the CMM,SM but in a different dimension. People management maturity describes an organization’s ability to consistently improve the knowledge and skills of its staff and align their performance with organizational objectives. The P-CMMSM addresses a broad range of people management issues, including:

•	Recruiting (attracting talent),
•	Selection (choosing talent),
•	Performance management (coaching talent),
•	Training (enhancing talent),
•	Compensation and reward (rewarding talent),
•	Career development (developing talent),
•	Organization and work design (organizing talent), and
•	Team and culture development (integrating talent).

As illustrated on Figure 7-4, the P-CMMSM consists of five maturity levels. Each maturity level is a well-defined evolutionary plateau that institutionalizes a level of capability within the organization. Each level contains numerous KPAs designed to satisfy a set of goals set in the context of how people management practices are defined.

�
Figure 7-4 P-CMMSM Key Process Areas by Maturity Level [HEFLEY95]�tc "Figure 7-4	P-CMMSM Key Process Areas by Maturity Level [HEFLEY95]"�

For instance, the KPAs at Level 2 focus on instilling basic discipline into people management activities. The KPAs at Level 3 address the issues of identifying primary competencies and aligning people management activities with them. The KPAs at Level 4 focus on quantitatively managing organizational growth in people management capabilities and in establishing competency-based teams. The KPAs at Level 5 cover continuous improvement methods for developing competency at the organizational and individual level. The KPAs are internally organized by common features (i.e., those attributes indicating whether KPA implementation and institutionalization is effective, repeatable, and lasting). The five common features are: commitment to perform, ability to perform, activities performed, measurement and analysis, and verifying implementation. [HEFLEY95]

Software Acquisition — Capability Maturity Model (SA-CMMSM)�tc "<Head 3 (14)>Software Acquisition — 	Capability Maturity Model (SA-CMMSM)"�

The SEI’s Software Acquisition — Capability Maturity Model (SA-CMMSM) was developed to assess the government’s internal software acquisition management process maturity. It reflects a collaborative team effort by acquisition experts from DoD, federal agencies, the SEI, and industry, and provides a framework for benchmarking and improving the software acquisition process. Its users are those organizations with responsibility for acquiring and supporting software-intensive products, e.g., government PMs/PEOs, government Software Support Activities, industry PM/PEO equivalents, and senior executives. The purpose of the SA-CMMSM is to:

·	Support senior management goal setting (i.e., each level of maturity represents an increased software acquisition process capability); and
·	Support prediction of potential performance (includes accounting for factors significantly contributing to process capability).

The SA-CMMSM is based on the premise that, as we mature and improve our capabilities, our probability of success increases, and we are able to make better predictions. The purpose of assessing an acquisition organization’s maturity level is to identify areas for process improvement. To make improvements, an organization must have an ultimate goal, know what is required to achieve that goal, and be able to measure progress towards achieving it. The SA-CMMSM provides the information and guidance needed to facilitate those activities.

The SA-CMMSM defines KPAs for four of five maturity levels. While the SA-CMMSM describes the acquirer’s role (in contrast to the CMMSM which focuses on the contractor’s process), it includes certain precontract award activities, such as software Statement of Work preparation and documentation requirements, and source selection participation. The SA-CMMSM has the same architecture as the CMM,SM as illustrated in Figure 7-5. SA-CMMSM maturity levels are described as:

·	Level 1 — Initial. At Level 1, the program team typically does not provide a stable environment for acquiring software. Staffing is based on individual availability, resulting in a random composition of acquisition skills. Normally, no one is well-versed in the specialized acquisition of software, nor is anyone dedicated to managing its acquisition. The program is conducted in an ad hoc manner.
·	Level 2 — Repeatable. At Level 2, the program team is knowledgeable and supportive of promulgated policies, regulations, and standards relating to the software-intensive aspects of their program, and make a dedicated attempt to comply therewith. Software acquisition management plans and procedures are established. New program planning and tracking is based on experience with similar programs. An objective in achieving Level 2 is to stabilize contract management by allowing repetition of successful practices employed on prior programs. Contract planning and tracking is stable because documented oversight is in place.
·	Level 3 — Defined. At Level 3, the organization’s standard software acquisition process is defined and integrated into the program for both software contract and program management. The software acquisition process group facilitates process definition and improvement efforts. Processes established at Level 3 are used by management and staff and are tailored, as appropriate, for more effective performance. An organization-wide training program is implemented to ensure all practitioners and managers have the knowledge and skills required to carry out their tasks. A standard software acquisition process is well-defined and understood, and management has visibility into technical program progress. Compliance with plans and contract requirements is ensured, and the team works with the contractor to resolve compliance difficulties as they arise. Cost, schedule, and requirements are under control and software quality is tracked.
·	Level 4 — Managed. Contracts have been implemented with well-defined, consistent measures establishing the quantitative foundation for evaluating program processes, products, and services. Control over processes, products, services, and contracts is achieved by narrowing performance variation to within acceptable quantitative boundaries using statistical process control. An organization-wide process database is used to collect and analyze defined software acquisition process data. Process and product quality are predictable and occur within quantitative, measurable limits. When these limits are violated, corrective action is taken.
·	Level 5 — Optimizing. Focus is on continuous process improvement and identification of candidate processes for optimization. Statistical evidence is available to analyze process effectiveness and used to refine policies. Technological innovations exploiting best software acquisition management and engineering practices are identified, evaluated, and institutionalized. Level 5 organizations continuously strive to raise the upper bound of their process capability. Improvement occurs by incremental advancements in existing process and by innovations using new technologies and methods. [FERGUSON95]

�
Figure 7-5 SA-CMMSM Architecture [FERGUSON95]�tc "Figure 7-5 SA-CMMSM Architecture [FERGUSON95]"�
�
Systems Security Engineering — Capability Maturity Model (SSE-CMMSM)�tc "<Head 3 (14)>Systems Security Engineering — 	Capability Maturity Model (SSE-CMMSM)"�

The Systems Security Engineering — Capability Maturity Model (SSE-CMMSM), based on the CMM,SM establishes a metric for measuring security engineering maturity and provides a guide for improving organizational and production assurance and measurement techniques. SSE-CMMSM KPAs are illustrated in Figure 7-6. [NOTE: This information was taken from an April 1995 presentation at the Software Technology Conference. The SSE-CMMSM effort has been undergoing continuous improvement, and additional KPAs will be finalized after these Guidelines go to press. For the latest information on SSE-CMM,SM see their Web page [see “Industry” listing in Volume 2, Appendix B or call the point of contact listed in under “Government” in Volume 2, Appendix A.] System security engineering KPAs focus on the development organization and the interface between customer roles and groups. The system security engineering KPAs are placed at specified maturity levels based on the process capability identified at each level. SE-CMMSM maturity levels include:

·	Level 1 — Initial. At Level 1, few processes are defined and success depends on individual, heroic effort. While processes may be defined for some security engineering activities, there is no management mechanism to ensure they are performed. No KPAs are placed at this level.
·	Level 2 — Repeatable. Institutionalization of effective security engineering processes allow successes on programs with similar applications to be repeated. Special security engineering KPAs at this level include:
-	Program management of security engineering aspects (program management and planning); and
-	Management of the security engineering activities necessary to build security into a system (security requirements, security design, and security implementation).
·	Level 3 — Defined. All programs use an approved, tailored version of the organization’s standard processes. Special security engineering KPAs at this level include:
-	Process definition addresses the documentation and standardization of security engineering processes;
-	Peer reviews monitor defects in results;
-	Security verification ensures that basic security engineering process work products are consistent with each other;
-	Evidence management ensures that evidence activities support customer assurance needs and are well-integrated with security engineering activities and other engineering disciplines;
-	Security coordination includes management-oriented activities that ensure security engineering activity coordination;
-	Intergroup coordination addresses security engineering activity coordination with other engineering disciplines; and
-	Security concept and external coordination represents understanding of and interaction with all external organizations, such as the end-users, testers, or IV&V.
·	Level 3 — Managed. The organization operates within specified limits and results are within those limits. Special security engineering KPAs at this level include:
-	Security validation represents activities that provide a better understanding of end-results conformance to the customer security needs.
-	Quality management provides an understanding of end-result conformance to previously specified quality goals.
-	Security vulnerability analysis includes activities that provide a better understanding of end result residual vulnerabilities. These KPAs measure conformance of end-results to desired results.
-	Quantitative process management provides an understanding and control of program’s processes and conformance with organizational defined processes.
·	Level 5 — Optimizing. Better process understanding allows identification of inefficient activities and effecting controlled changes which improve capability ranges (limits). Special security engineering KPAs at this level include:
-	Defect prevention supports the identification and prevention of security engineering product defects.
-	Technology change management supports identification of new security technologies (e.g., tools, methods) and evaluation of their effect on organizational security engineering processes.
-	Process change management addresses controlled, effective change to organizational security engineering processes based on input from defect prevention and technology change management. [FERRAIOLO95]

�
Figure 7-6 System Security Engineering CMMSM KPAs [FERRAIOLO95]�tc "Figure 7-6 System Security Engineering CMMSM KPAs [FERRAIOLO95]"�

Trusted Software — Capability Maturity Model (TS-CMMSM)�tc "<Head 3 (14)>Trusted Software — 	Capability Maturity Model (TS-CMMSM)"�

Software trust is the quantification and qualification of evidence that the development process used to create and modify software yields a product that exactly satisfies specified requirements and counters targeted threats. [KITSON95] Trusted software systems use a variety of integrity measures in support of security policy, for the development and application phases, allowing their use in processing sensitive or classified information. A set of trust principles derived from the �xe "Trusted Software Development Methodology (TSDM)"�Trusted Software Development Methodology (TSDM), developed by the Strategic Defense Initiative Organization, is integrated into the CMMSM to produce the Trusted Software — Capability Maturity Model (TS-CMMSM). The �xe "National Security Agency (NSA)"�National Security Agency (NSA) initiated the TS-CMMSM in collaboration with SEI to improve upon NSA’s traditionally lengthy post-development evaluations and increase use of commercial information security software.

The SSE-CMMSM [discussed above] focuses on the entire software life cycle by ensuring proper security requirements are built into and maintained within the software and the software process. In contrast, the TS-CMMSM focuses on the software development process and ensures counter threats are built into the software by disallowing any defects that might permit unwanted access. A �xe "Trusted — Software Capability Evaluation (T-SCE)"�Trusted — Software Capability Evaluation (T-SCE) may be used during source selection and contract monitoring, and a trusted internal process improvement (T-IPI) program may be used for process improvement. [KITSON95]

Systems Engineering — Capability Maturity Model (SE-CMMSM)�tc "<Head 3 (14)>Systems Engineering — 	Capability Maturity Model (SE-CMMSM)"�

The SEI’s Systems Engineering — Capability Maturity Model (SE-CMMSM) expresses essential characteristics of the basic technical, management, and support processes for systems engineering, and provides guidance in applying process management and institutionalization principles to the systems engineering process. The SE-CMMSM architecture adopts that of the SPICE program’s Baseline Practices Guide (BPG).

SE-CMMSM Architecture�tc "<Head 4 (12)>SE-CMMSM Architecture"�

Similar to the BPG, the SE-CMMSM architecture separates actual domain process characteristics — systems engineering — from the practices related to managing those processes. It provides generic and domain specific-guidance for process management. A base practice is defined as an engineering or management practice that addresses the purpose of a particular process area. Base practices are contained in 17 process areas, divided into three process area categories: program, engineering, and organization. For example, the SE-CMMSM contains the engineering process area “integrate system,” the purpose of which is to ensure all system elements work together. One base practice in this process area is to develop detailed interface descriptions implied by the systems architecture. Base practices provide state-of-the-practice type guidance. Systems engineering functions are described in the base practices exhibited in the process.

�xe "Systems Engineering — Capability Maturity Model (S:Generic practices"�Generic practices [defined above] are divided into �xe "Systems Engineering — Capability Maturity Model (S:Common features"�common features [also defined above] which are contained in process capability levels. For example, in Level 2 (Planned and Tracked), the common feature “planning performance” contains practices to allocate adequate process resources, assign responsibilities for product development, and provide adequate tools to support the process. As illustrated in Figure 7-7, the advantage of the SE-CMMSM architecture is principles upon which the CMMSM is based are abstracted and expressed in such a way that they can be used to assess any organization’s processes — i.e., its generic practices. On the other hand, essential process characteristics from a particular domain are also clearly expressed — i.e., its base practices. This architecture, isolates both types of practices and looks at them separately. They are then merged back together to build and design processes. In this way, enterprise domain and process management needs are addressed and supported. [KUHN95]

�
Figure 7-7 SE-CMMSM Architecture [BRIDGE94]�tc "Figure 7-7 SE-CMMSM Architecture [BRIDGE94]"�
BENEFITS OF MOVING UP THE MATURITY SCALE�tc "<Head 2 (14)>BENEFITS OF MOVING UP THE MATURITY SCALE"�

Published studies of software engineering improvements measured by the CMMSM indicate significant cost savings and return on investment (ROI). Thus, software testing and maintenance costs are decreased, because quality requirements are more readily met. Of the companies studied, a distinction is made between the one time CMMSM-compliance costs of achieving a higher maturity level from those costs for continuing to perform software engineering at that higher level. The latter has been found to actually represent a cost reduction when compared to software production costs at the former lower level. Some studies show that the onetime cost of achieving a higher level are quickly recouped by significant savings in producing higher-quality software, requiring less rework, that is easier to maintain.

All companies studied report that process improvement works best when employees and employer agree to accept the required extra effort and expense. One such arrangement is to have some meetings and training sessions conducted during the lunch hour, with the company providing lunch. Other variations on employer/employee compromises include shared time, when training is conducted on 50% company time and 50% employee time.

It is fairly easy to quantify the benefits of increased maturity at the company level. Production costs go down — quality goes up — time to market is shortened. How employees benefit is more subtle. The higher level in which an employee works, the more valuable he is to the software industry — i.e., the techniques learned are very marketable, useful professional skills. In addition, employee pride and management respect cannot be overlooked as an employee benefit, reward, and motivating force. Those companies having achieved higher maturity levels agree that a good reputation with their customers is primarily based on product quality and agreeable customer interrelations. Higher maturity levels lead to higher quality software, and therefore, increased company reputation. It also tends to change the manner in which companies interact with their customers. For example, the formality of a higher maturity level lessens ad hoc contractor tendencies to give into volatile government requirements, it also contributes to more reliable, mutually-beneficial contractor-government relationships. Above all, the most compelling benefit is also the most basic one: higher quality software, at lower cost, with improved company reputation, is a powerful formula for competing, winning, and keeping contracts. [SAIEDIAN95]

In the August 1994 report, Benefits of CMMSM-Based Software Process Improvement: Initial Results (CMU/SEI-94-TR-13), the SEI collected and analyzed data from 13 organizations (both industry and Government) to obtain process improvement results of efforts associated with the CMM.SM Table 7-2 summarizes these results. A 35% median productivity gain, a 19% schedule reduction, a 39% post-release defect reduction, and a 5:1 return on investment ratio bear convincing testimony to the worth of process improvement. The SEI stated that if these CMMSM process improvements had been combined with more robust software engineering environments, the use of automated process control tools, or the implementation of methodology improvements [such as Cleanroom or peer inspections (discussed in Chapter 15, Managing Process Improvement)], the results would have been even more dramatic.

�
Table 7-2 Summary of SEI CMMSM Software Process Improvement (SPI) Study�tc "Table 7-2	Summary of SEI CMMSM Software Process Improvement (SPI) Study"�

In this report, �xe "Quality"�quality was defined as the state of software when released or delivered to customers. The most common measure of quality among the data submitted was the number of post-release field defect reports. Figure 7-8 illustrates yearly reductions in that number. The letter values on the Y-axis are arbitrary designations for organization anonymity. The number values in parentheses on the Y-axis indicate the number of years the organization invested in software process improvement (SPI) programs. Organization P sustained a remarkable defect report reduction rate of 39% per year over a 9-year period. That rate represents successive releases with substantial amounts of new and modified code — all of which completed its entire life cycle throughout that period. Organization P’s last release had no defects reported in new and modified code. Organizations S and T also experienced substantial reductions for a significant period.

�
Figure 7-8 Reduction per Year in Post-release Defect Reports [SEI94]�tc "Figure 7-8 Reduction per Year in Post-release Defect Reports [SEI94]"�

�xe "Productivity"�Productivity [discussed on detail in Chapter 15, Managing Process Improvement] data were gathered on lines-of-code (LOC) produced per unit of time. As illustrated on Figure 7-9, the largest gain, organization G, was based on a comparison of two programs, only one of which adopted the SPI. The superior productivity of the second program was due to clear requirements definition and management. Organization H had a large productivity gain due to a reuse [discussed in Chapter 9, Reuse] program supported by tools and an environment adapted to promote reuse.

�
Figure 7-9 Gain per Year in Productivity [SEI94]

ROI data were reported in terms of the ratio of measured benefits to measured costs, as illustrated on Figure 7-10. Benefits included savings from productivity gains and fewer defects. The benefits did not, however, include the value of enhanced competitive position from increased quality and shorter time to market. The cost of SPI included the cost of the SEPG, assessments, and training, but did not include indirect costs such as incidental staff time to put new procedures in place.

�
Figure 7-10 Return on Investment Ratio of SPI Efforts [SEI94]�tc "Figure 7-10 Return on Investment Ratio of SPI Efforts [SEI94]"�

Moving Up the Maturity Scale at USAISSDCL�tc "<Head 3 (14)>Moving Up the Maturity Scale at USAISSDCL"�
�tc "<Head 3 (14)>"�
The �xe "US Army Information Systems Software Development C"�US Army Information Systems Software Development Center Lee (USAISSDCL), Fort Lee, Virginia, is one of three software development centers within the US Army, Information Systems Command (USAISC), headquartered at Fort Huachuca, Arizona. They are one of the largest software development centers in the Army with approximately 1,200 military, government civilians, and contractor employees. Their systems encompass retail logistics, procurement, facilities engineering, food management, commissary, transportation, criminal investigation, and Army aircraft scheduling. Their operating budget is around $62 million with a customer base that spans the globe. On May 9, 1994, USAISSDCL was certified as a Level 3 organization, the result of an intense assessment conducted by SEI-authorized assessors under the auspices of the Defense Information Systems Agency/�xe "Defense Information Systems Agency (DISA):Center for Information Management (CIM)"�Center for Information Management (DISA/CIM).

Several factors contributed to their success, but chiefly, they worked hard and diligently towards achieving their Level 3. A major change in an organization’s way of doing business is a touchy situation. For the USAISSDCL this was especially true, since the organization had been successful in achieving a Level 2 in 1990. It took them four years, however, of hard work, commitment, involvement, and patience to forge ahead to a Level 3. Commitment came from forward-thinking management who nursed the improvement program along during several downsizing initiatives. Management had the patience to allow the program to continue when immediate success was not evident. Management and the work force became educated in the change and improvement processes which made them aware that success takes time and often moves very slowly.

Inputs from analyzing their business processes, assessing prior Software Process Assessment (SPA) results, and evaluating other data gathering instruments, led to the development of a methodology for improvement. Their strategic improvement plan was derived from various sources, such as TQM, Functional Process Improvement (FPI), Business Process Re-engineering (BPR), CMM,SM their organizational vision and goals. All these inputs fed into the execution phase which incorporated customers’ needs and converted those needs into activities. These activities were decomposed into processes and measured to show fundamental or continuous process improvement. The results of the execution phase were quality products, at a reduced cost, empowered teams, demonstrated ownership, and movement towards a Level 5 organization.
[BOSWORTH95]

Moving Up the Maturity Scale at OC-ALC�tc "<Head 3 (14)>Moving Up the Maturity Scale at OC-ALC"�

The �xe "Oklahoma City Air Logistics Center (OC-ALC)"�Oklahoma City Air Logistics Center (OC-ALC), Directorate of Aircraft (LA), Software Division (LAS), located at Tinker AFB, Oklahoma, employs over 400 software personnel in seven branches. In 1990 the SEI rated the LAS at a maturity Level 1 and by 1993 they were rated again at a Level 2, one of the first in the Air Force. Their goal is to achieve a Level 3 by 1996, the next scheduled SEI assessment. Since 1991, the CMMSM has been the basis for LAS process improvement efforts which involve developing and implementing a process improvement infrastructure. This infrastructure includes a Management Steering Team (MST) comprised of senior management, a Software Engineering Process Group (SEPG) comprised of technical people, and working groups for specific technical areas.

In 1993, an independent study was conducted to determine the economic benefits of software process improvement at LAS. Four LAS programs were studied, each of which were involved in the development of test program set (TPS) software to assess avionics circuit boards for three airplanes and one jet engine. The study covered a period of over eight years. The four programs selected were enough alike to make valid comparisons of their process improvement results. Table 7-3 summarizes the results of this independent study.

�

Table 7-3 OC-ALC Software Process Improvement Benefits [BUTLER95]�tc "Table 7-3	OC-ALC Software Process Improvement Benefits [BUTLER95]"�

When three programs were compared to the baseline program their ROI was 7.5:1. The study also showed that an investment of $1.5 million over an 8-year period resulted in cost savings of $11.3 million. The $11.3 million figure was determined by factoring the amount the three programs would have cost had there not been any productivity improvements. Defect rates from the baseline program to the second program (the only other program for which there was sufficient defect data) decreased by 90% (3.30 defects/KSLOC compared to 0.28 defects/KSLOC for the second program). Data provided by one LAS customer showed that over the past two years, LAS reduced the cost of a TPS maintenance correction by 26%. The most recent TPS development program studied was 10 times more productive than the baseline program (10 times more source code per manmonth was produced). This was attributed to improvements in process and technology from which the customer thought the program benefited from LAS process improvement efforts. [BUTLER95]

Moving Up the Maturity Scale at USSTRATCOM�tc "<Head 3 (14)>Moving Up the Maturity Scale at USSTRATCOM"�

The �xe "US Strategic Command (USSTRATCOM)"�US Strategic Command (USSTRATCOM) is a joint service operation involving the Air Force, Navy, Army, and Marine Corps. The Command, Control, Communications, Computers, and Intelligence (C4I) directorate, known by its office symbol of J6, is responsible for USSTRATCOM’s technical currency by providing software-intensive support necessary for war planning, command and control, intelligence, and office automation. The J6 has been challenged by increasing demands for fluid information systems and greater software productivity while under austere budgets with decreasing manpower.

In 1989, J6 (then part of the Strategic Air Command) was assessed at a maturity Level 1. An elaborate plan was developed outlining the various tasks the software production divisions needed to perform to reach maturity Level 2 by the self-imposed deadline of l992. However, even though many engineers made a concerted, grass-roots effort to fulfill the taskings defined in that plan, the effort lost momentum within a year.

In 1991, process improvement efforts resurfaced in response to budgetary cutbacks. A postmortem of the previous effort revealed it failed because both accountability and management commitment were lacking. The 1989 plan placed the burden of improvement on the software divisions; yet they were neither held responsible for failing to reach improvement goals nor were they rewarded for maturing their software processes. The new approach took a total quality philosophy of forming an expert team responsible for garnering management commitment, marketing benefits to working-level personnel, and facilitating improvement throughout the organization. A three-phased approach of sponsorship, consultation, and training was implemented.

·	Phase 1 — Sponsorship. Senior management created an internal software process improvement group to guide the efforts of the organization in achieving a maturity Level 2.
·	Phase 2 — Consultations. The work of elevating the organization from Level 1 to Level 2 was accomplished through a series of reduced-scope CMMSM assessments, called consultations. The focus of the consultations was to have a group of expert software engineers assist individual divisions in interpreting, implementing, and performing Level 2 KPAs in their environment.
·	Phase 2 — Training. The software process improvement group held periodic seminars to train personnel on the CMMSM and the benefits of process improvement. Seminars were conducted throughout the consultation process and gave J6 members an opportunity to learn about process maturity, to voice concerns, and to suggest changes to the improvement process.

Evidence of Improvement�tc "<Head 4 (12)>Evidence of Improvement"�

The consultation visit to each software group revealed the number of key practices implemented by that group. Follow-up visits allowed the consultation team to track progress made in achieving previously implemented key practices. Indirect evidence of process improvement traceable to the consultation efforts included:

·	The War Planning Systems Division had seven consecutive defect free database cutovers;
·	Requirements processes in the War Planning Division were reduced from 14 to 2;
·	The Intelligence Systems Support Division, which had experienced an average of 250 defects during its 1989 software cutovers, reduced their defect rate to below 10 per cutover after the consultation effort;
·	Command and control software cutover defects were reduced by 66%, and labor costs were down 25%;
·	Command and control malfunction reports were reduced in two years from 219 to 19 per software release; and
·	The Office Automation installation defect rates were reduced from 40% per installation to 3% within 12 months.

The software maturation process has not only demonstrably improved J6’s software business, but the by-products of the consultations has aided in performing long-range planning. One example was the implementation of a cost estimation effort for some 30 million lines-of-code within USSTRATCOM. Software engineers knowledgeable with the COCOMO (Constructive Cost Model) [discussed in Chapter 12, Strategic Planning], a model for estimating program costs as a function of software size and programming environment, worked with the software groups to assist in establishing an initial baseline for software costs. This baseline has proven accurate and has been an effective tool for forecasting the implications of customer work requests on cost, schedule, and performance.

Methods for Success�tc "<Head 4 (12)>Methods for Success"�

For J6, the process improvement effort has achieved its goal of rallying the software program groups into defining and managing their software processes. The specific methods used in the consultation process included:

·	Preventing defects. The J6 maturation approach compelled software production groups to formalize the way they do business and to foster a proactive defect prevention [discussed in Chapter 15, Managing Software Development] culture and not a reactive defect-detection atmosphere.
·	Use of total quality principles. Instead of viewing improvement efforts as a police action, the software groups accepted the improvement team of software experts as a strategic partner whose interests included the betterment of the entire organization.
·	Use of recognized tools. The maturation process achieved a disciplined approach by employing tools, such as the CMM,SM process action teams, prepared questionnaires, interviews, follow-up reports, technology insertion, postmortem sessions. Information sharing, professional conferences, cost estimations, process documentation, brainstorming, program plans/schedules, and quality assurance training.
·	Use of systematic, integrated, and consistent standards. The CMMSM provided the standard against which all software groups were evaluated. Every software group was appraised on its efforts in every Level 2 KPA.
·	Use of self-evaluation, feedback, and adaptation. All software groups were appraised on one KPA before moving to the next KPA. At the end of each stage, the effort was reviewed and fine-tuned as necessary to improve the next cycle.
·	Basing results on quantifiable information. Each consultation visit measured the number of practices being performed by the software group. Results were graphed and tracked for improvement.
·	Fostering continuous improvement. The consultation approach was user-friendly and encouraged software production groups to embrace improvement efforts rather than coercing them into a mandatory program.

Process Maturity Pays Off�tc "<Head 4 (12)>Process Maturity Pays Off"�

In March 1994, the improvement efforts of the USSTRATCOM were honored with the “Best of the Best” award from the Quality Assurance Institute of Orlando, Florida. That award recognizes information technology organizations that have demonstrated a superior and effective commitment to quality principles and practices. The Command won the award in the category of “Best Unique/Innovative Idea” for its software development and maintenance activities. Previous improvement efforts had made little progress because they lacked management commitment and organizational focus. The use of a consultation process and process action teams gave the Command’s software professionals the skills and innovation needed to improve their software processes and create a center of excellence. [UMPHRESS95]

Moving Up the Maturity Scale at SSG�tc "<Head 3 (14)>Moving Up the Maturity Scale at SSG"�

In February 1993, a study report was published on the software engineering process at the Standard Systems Group (SSC), Maxwell AFB-Gunter Annex, Alabama. The purpose of the study was to determine the economic benefits of:

•	Moving up the maturity scale through software development process improvement; and,
•	Reuse of assets from a library of standard reusable objects inherent in Integrated-Computer Aided Software Engineering (I-CASE) environment.

This study was based on two self assessments of the SSG to determine internal and overall maturity levels. Seven SSG programs were studied. Two of the seven advanced from a Level 1 to a Level 3, and three advanced to a Level 2, over the 5-year period between assessments. Differences were quantified between the original baseline and what was achieved when the program advanced. Comparisons were performed by analyzing the management metrics of schedule, effort [in person-months (PMs)], cost, peak manpower, and mean-time-to-defect (MTTD). Table 7-4 illustrates the changes in management metrics from a Level 1 to a Level 3 (for one program).

�

Table 7-4 Benefits of Moving from Level 1 to Level 3 (SSG Program Example)�tc "Table 7-4	Benefits of Moving from Level 1 to Level 3 (SSG Program Example)"�

Figure 7-11 illustrates the benefit ratios of selected management metrics (for the same program as Table 7-5) indicating the level of economic, productivity, and quality improvements. Without using the CMMSM management practices for a Level 2, one cannot move to a Level 3 or beyond, with merely the implementation of a software methodology or tool. Management processes are the foundation, not a software development methodology or tool. Picking tools without analysis of the software development methodology is the same as putting a methodology in place without the management practices required to carry an initiative through the entire product life cycle.

�
Figure 7-11 Benefit Ratios of Moving from Level 1 to Level 3�tc "Figure 7-11	Benefit Ratios of Moving from Level 1 to Level 3"�

The report concluded that the data collected on the SSG programs indicate very significant benefits can be, and have been, attained through process improvement efforts. These include reduced schedule, staff, effort/cost, and defects resulting in much higher MTTD for fielded software. These savings, through increased productivity and quality, more than pay for the investment in equipment, software tools, and training required to achieve higher levels of software engineering maturity. [SSC93] This study also shows that there are substantive benefits to improving your software engineering capabilities. Implementing process improvement, reuse, quantitative planning, and measurement as part of your management process will produce a positive ROI as your development capability moves up the maturity scale. [Reports Key Practices and the Capability Maturity Model and Capability Maturity Model for Software are available through DTIC and NTIS.]

Moving Up the Maturity Scale at Raytheon’s Equipment Division, Software Systems Lab�tc "<Head 3 (14)>Moving Up the Maturity Scale at Raytheon’s Equipment Division, Software Systems Lab"�

In 1988, the Software Systems Lab at Raytheon’s Equipment Division performed an initial assessment based on the CMMSM questionnaire and found that they were slightly below a Level 2. They identified four areas needing improvement: documented practices and procedures, training, tools and methods, and metrics.

In 1992, a follow-up analysis of six major Raytheon Software Systems Lab programs over the three year period had substantially decreased rework costs. Since the start of the process improvement effort, Raytheon saved about $9.2 million of its nearly $115 million software development costs. They quantified their software improvement cost savings by distinguishing the cost of doing something right the first time versus the cost of rework. This approach identified four major development cost categories:

·	Performance costs associated with doing it right the first time (such as developing the design or generating code);
·	Nonconformance rework costs (such as fixing code defects or design documentation);
·	Appraisal costs associated with product testing to determine reliability; and
·	Prevention costs in trying to prevent defects from degrading the product.

Nonconformance, appraisal, and prevention costs were defined as the “cost of quality” [discussed in Chapter 15, Managing Process Improvement]. The primary objective was to significantly reduce nonconformance costs. This was accomplished, as evidenced by the $9.2 million savings. Raytheon’s numbers are quite remarkable. As summarized on Table 7-5, by investing almost $1 million annually in process improvements, Raytheon achieved a 7.7:1 ROI (a $4.48 million return on a $0.58 million investment) with 2:1 productivity gains. Raytheon says that it eliminated $15.8 million in rework costs (from 41% to 11%) on 15 programs tracked between 1988 to 1992. Raytheon focused their process improvement efforts on three key areas.

·	Quantitative process management. Raytheon’s technical working group (TWG) created a Process Data Center to support proposal writing, quarterly reviews, software capability evaluations, and specific studies, such as the predictive mode necessary to achieve a Level 4 maturity. The TWG also provided standardized spreadsheet templates to facilitate metrics collection by program members.
·	Technology development. Raytheon established a tools-and-methods working group that focused on evaluating tools and environments and process automation. The program sponsored the evaluation of alternative CASE products, cost-benefit analyses used to justify their purchase, training to instruct developers in their intricacies, integration of individual tools to provide a seamless environment, tailoring of tools to specific programs, and generation of manuals for various types of users.
·	Training. Raytheon sponsored a comprehensive training program with courses conducted during work hours (564 courses in 1992). Overview courses were designed to periodically provide general knowledge about specialized technical or management areas. Detailed courses were tailored for specific programs and scheduled accordingly. [SAIEDIAN95]

�

Table 7-5 ROI at Raytheon by Moving from Level 1 to Level 3

Moving Up the Maturity Scale at Hughes Aircraft Company, Software Engineering Division�tc "<Head 3 (14)>Moving Up the Maturity Scale at Hughes Aircraft Company, Software Engineering Division"�

In 1987, Hughes Software Engineering Division was assessed at a CMMSM Level 2. The SEI assessment team assessed six Hughes programs and identified seven areas needing process improvement: quantitative process management, process group, requirements, quality assurance, training, review process, and working relationships. In early 1988, Hughes developed an action plan to implement the recommended improvements. As summarized on Table 7-6, their 2-year program to raise the Software Engineering Division from a Level 2 to a Level 3 cost the company roughly $400,000 (75 manmonths), a 2% increase in division overhead.

�

Table 7-6 ROI at Hughes by Moving from Level 2 to Level 3�tc "Table 7-6 ROI at Hughes by Moving from Level 2 to Level 3"�

After implementing its process improvement program for two years, Hughes requested a second assessment by the SEI, which was performed in 1990. The company had progressed to a strong Level 3 with many activities preparing it for Levels 4 and 5. Hughes calculated that its initial ROI amounted to $2 million annually, based on a 50% reduction in its cost-performance index (CPI) (budgeted cost of work performed/actual cost). The ROI of this investment was 4.5:1. Hughes’ CPI continued to improve through 1992, climbing from 0.97 to 1.02, to the point where, as a whole, their programs were under budget. Hughes attributes these savings to early detection of defects which substantially reduced rework costs. Hughes focused their process improvement efforts on three key areas.

·	Quantitative process management. Hughes standardized uniform data definitions across programs and used them to track cost estimates, actual costs, defects, and schedule performance. A monthly report was compiled for senior management that included the program’s accomplishments, problems, program trouble reports, quality indicators, scope changes, resource needs, and lessons-learned. Actual versus planned values were plotted over time to show the schedule, milestones, rate chart, earned-value, financial/labor status, and target-system resource use.
·	Technology development. Hughes’ technology steering committee defined technology management practices and procedures and created a position called, the “Head of Technology Transfer.” This individual monitored process maturity, maintained a technology database for each program, identified what technology each program needed, and was involved in corporate-wide technology development, process maturity, and training programs.
·	Training. Hughes made training a job requirement rather than a promotional requirement. It supplemented its classes on programming practices, languages, and CASE tools with classes on program management, internal reviews, requirements writing, requirements and unit-level testing, and quality assurance. [SAIEDIAN95]
�
Moving Up the Maturity Scale at Litton Data Systems�tc "<Head 3 (14)>Moving Up the Maturity Scale at Litton Data Systems"�

In June of 1994, Litton Data Systems performed a licensed Software Process Assessment (SPA) of its software engineering process. The assessment team concluded that Data Systems had fully satisfied all of the goals for the Level 2 and Level 3 KPAs, with one exception: the Level 3 training goals were only partially satisfied. The reason they failed to achieve Level 3 was the assessment team found their training program was not planned in accordance with the Division’s objectives and operations, as illustrated in Figure 7-12.

�
Figure 7-12 1994 Assessment Results [DIXON95]�tc "Figure 7-12 1994 Assessment Results [DIXON95]"�

After that assessment, a Division Software Training Plan was implemented to develop, fund, schedule, and provide the training necessary to meet the Division’s current and future needs. This plan described the training of software personnel based on their job functions. It included the course descriptions, methods, schedule, update procedures, funding, and training program administration. It also contained provisions for verifying that training was effective and conducted according to the plan. Litton learned many lessons while implementing their Software Process Improvement Action Plan to achieve a Level 3, which included:

·	Management support. The management at Litton was generous in providing adequate financial support for the effort necessary to form and support the SEPG and working groups.
·	Division-wide approach. Working groups were staffed with over 60 experts from SQA, engineering program management, program office, system test, system engineering, engineering program management, software configuration management, business development, and representatives from the major programs.
·	Management oversight. Litton’s senior management took a genuine interest in the accomplishments of the SEPG. A Steering Committee reported weekly to the Director of Software Processes, bi-monthly to the Engineering Vice President and engineering directors, and bi-annually to the senior staff.
·	Functional teams. An integral part of Litton’s software process improvement effort involved transitioning to a functional team approach to software development which created an atmosphere that fostered communications among team members, other organizations within Litton, and customers. The team approach improved the predictability and efficiency of the software development process.
·	Communications. The SEPG published a quarterly software engineering newsletter to share process and program news with the Litton’s staff and customers.
·	Implementing change. Litton used several means to institutionalize new procedures on on-going programs: (1) Software training was developed for the new processes; (2) a SEPG representative was assigned to each product area to serve as a consultant and to facilitate the institutionalization of the new processes; and (3) software program leaders attended Steering Committee meetings on a monthly basis to address program-specific process issues.
·	Institutionalize inspections. Their formal peer inspection process was successful because of active management support, extensive inspection training, and because inspections were cost effective.
·	Structured working group activities. Litton required that each working group develop a charter, a Process Improvement Plan, and a schedule. Working groups regularly compared their activities and accomplishments against the Action Plan and the CMM.SM
·	SEPG turnover. Formerly, the SEPG and working groups suffered heavy attrition which was detrimental to working group momentum and resulting in wasted efforts, unnecessary rework, and slipped schedules. Litton, thus, assigned individuals who had contributed to software process improvement to other programs where they became champions of software improvement and supported the institutionalization of new processes.
Limited procedure reviewers and checklist use. The review process is useful for process buy-in, but Litton limited reviewers to reduce confusion, hundreds of comments, and slipped schedules. Checklists were used to provide different instructions for each reviewer, so that they would not all review a document for the same thing. [DIXON95] Figure 7-13 illustrates the characteristics of a Level 3 maturity.

�
Figure 7-13 Characteristics of a Level 3 Contractor�tc "Figure 7-13 Characteristics of a Level 3 Contractor"�
ADDRESSING MATURITY IN THE RFP�tc "<Head 2 (14)>ADDRESSING MATURITY IN THE RFP"�

To ensure the software process enacted for your program is predictable, repeatable, and manageable in terms of quality, cost, schedule, and performance, you should evaluate the offeror’s software development capabilities prior to (or during) source selection. Remember, you are buying the process as well as the product! Performing a software development capability assessment will help you identify risks associated with the offeror’s approach. Risk identification is possible, since you will have: (1) an understanding of how the organization managed software development efforts in the past; and (2) you will be able to compare past performance with the proposed software development process.

Therefore, you must pay due attention to the offeror’s software development processes, starting with overall assessments like the SCE or SDCE, which focus on the details of tools, metrics, personnel facilities, management control, and language experience. Based on the maturity level of the selected contractor, you should consider customizing your contract to adapt that offeror’s strengths and weaknesses. For example, if the contractor has achieved a high level of maturity (3 or above), you may decide that online access to the contractor’s development environment and management status reports (e.g., cost, schedule, risk management and metrics data) is an effective alternative to the traditional oversight mechanisms of formal reviews and submission/approval of data items. Alternatively, if an offeror’s process for coordinating the efforts of different engineering disciplines and stake holders is relatively weak, you may add a requirement for an on-site liaison to support coordination with users and the contractors developing interfacing systems.
REFERENCES�tc "<Head 2 (14)>REFERENCES"�

[AUGUSTINE86] Augustine, Norman R., Augustine’s Laws, Viking Penguin Inc., New York, 1986
[BOSWORTH95] Bosworth, Lawrence E., “The Process Improvement Highway,” paper presented to the Seventh Annual Software Technology Conference, Salt Lake City, Utah, April 1995
[BRIDGE94] “Building Better Bridges: SEI Contributes to Development of a Systems Engineering Capability Model,” Issue Four, Bridge, 1994
[BUTLER95] Butler, Kelley L., “The Economic Benefits of Software Process Improvement,” CrossTalk, July 1995
[CLOUGH92] Clough, Anne J., “Software Process Technology,” CrossTalk, June/July 1992
[DIXON95] Dixon, Susan A., “Litton Data Systems Attains Level 3 Software Process Maturity,”
[DSMC90] Defense Systems Management College, Systems Engineering Management Guide, US Government Printing Office, Washington, RUN-TIME, 1990
[FERGUSON95] Ferguson, Jack R., and Peter A. Kind, “A Software Acquisition Maturity Model,” paper presented to the Seventh Annual Software Technology Conference, Salt Lake City, Utah, April 1995
[FERRAIOLO95] Ferraiolo, Karen M., and Joel E. Sachs, “Security and Security Engineering Overview: The Security Engineering CMM Effort,” tutorial presented to the Seventh Annual Software Technology Conference, Salt Lake City, Utah, April 1995
[HEFLEY95] Hefley, William E., et al., “People Capability Maturity Model (P-CMM) Incorporating Human Resources into Process Improvement Programs,” Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, 1995
[HOROWITZ95] Horowitz, Barry M., personal communication to Lloyd K. Mosemann, II, December 1995
[HUMPREY95] Humphrey, Watts S., A Discipline for Software Engineering, Addison-Wesley Publishing Company, Reading, Massachusetts, 1995
[KITSON95] Kitson, David H., “A Tailoring of the CMM for the Trusted Software Domain,” paper presented to the Seventh Annual Software Technology Conference, Salt Lake City, Utah, April 1995
[KONRAD95] Konrad, Michael D., and Mark C. Paulk, “An Overview of SPICE’s Model for Process Management,” Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, 1995
[KUHN95] Kuhn, Dorothy A., and Suzanne M. Garcia, “Developing a Capability Maturity Model for Systems Engineering,” Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, 1995
[PATTON47] Patton, GEN George S., Jr., War As I Knew It, Houghton Mifflin Company, Boston, 1947
[SAIEDIAN95] Saiedian, Hussein, and Richard Kitzara, “SEI Capability Maturity Model’s Impact on Contractors,” IEEE, January 1995
[SEI94] Benefits of CMM-Based Software Process Improvement: Initial Results (CMU/SEI-94-TR-13), Software Engineering Institute, Carnegie-Mellon University, August 1994
[UMPHRESS95] Umphress, David A., Victor M. Helbling, John R. Russell, and Charles A. Keene, “Software Process Maturation: A Case Study,” Information Systems Management, Spring 1995

��tc "<>"�
CHAPTER 7
 Addendum A

A Correlation Study of the CMMSM and Software Development Performance�tc "<>A Correlation Study of the CMMSM and Software Development Performance"�

Dr. Patricia K. Lawlis
Captain Robert M. Flowe (USAF)
Captain James B. Thordahl (USAF)

The Software Engineering Institute’s (SEI) Capability Maturity Model (CMMSM) is widely used to measure an organization’s software development process maturity. The Department of Defense (DoD) has adopted this model with the belief that a more mature software development process will result in a more successful software program. Although there is a growing body of correlation, we were unable to find any studies, that validate this premise.

The study reported in this article — master’s thesis research at the Air Force Institute of Technology (AFIT) — set out to find empirical evidence to determine if the premise could be validated. The goal of our research was to determine the nature of the correlation, if any, between software process maturity and software program success. We measured process maturity using a CMMSM rating, and success was measured using cost and schedule indicators.

First, we provide an introduction to the concepts and definitions we used in our work. Then, we provide details of our methodology, that describe our approach. Finally, we provide the details of our analysis, then summarize our results.
INTRODUCTION�tc "<Head 2 (14)>INTRODUCTION"�

The SEI’s CMMSM has been widely accepted as a significant step toward solving the problems that plague the development of DoD software. By applying the process maturity assessment protocols to a potential software developer, the Government obtains an assessment of the developer’s capability to produce quality software. Procurement risk is thus thought to be reduced, and the probability of obtaining the desired software within the constraints of schedule and budget are thought to be increased. The key assumption is that there is a significant positive correlation between the SEI CMMSM rating and the success of the software development.
�
Software Success�tc "<Head 3 (14)>Software Success"�

Although the concept of “success” in terms of software development has many definitions, a consistent theme found in software engineering literature is that success can be measured as a combination of cost, schedule, and quality performance [5,6]. Cost and schedule data have a variety of positive attributes that make it convenient for this type of correlational study. These data are readily available for a broad range of programs over a relatively long historical period and are in a relatively consistent format. Quality data, on the other hand, are reported sporadically at best with no accepted standard metrics let alone a stand form for reporting the measurements derived from such metrics. Thus, for the purposes of our research, success was defined cost and schedule performance.

Measuring Cost and Schedule�tc "<Head 3 (14)>Measuring Cost and Schedule"�

To measure cost and schedule performance, two steps must be followed:

1.	A performance baseline must be established.
2.	Actual performance must be compared to the baseline.

In program management, the Cost Performance Index (CPI) and the Schedule Performance Index (SPI) are the standard indices in use. Actual Cost of Work Performed (ACWP) is the sum of funds actually expended in the accomplishment of the planned work tasks. The Budgeted Cost of Work Performed (BCWP) represents the earned-value of the work performed and is an estimate of the value of the work completed. Deviations in the actual versus planned cost can be expressed in the ratio of BCWP to ACWP. This is called the Cost Performance Index (CPI).

CPI = BCWP/ACWP

A CPI of less than 1.00 implies that for every dollar of value earned, more than one dollar was actually spent — a cost overrun. A CPI of more than 1.00 implies that for every dollar of value earned, less than one dollar was spent, and a CPI of 1.00 implies an “on-target” condition. Similarly, the programmed rate of funds expenditure is the Budgeted Cost of Work Scheduled (BCWS), which can be expressed as the planned expenditure of funds over time, based on the completion of the planned work packages. The ratio of BCWP to BCWS defines the degree to which a program is ahead of or behind schedule and is called the Schedule Performance Index (SPI).

SPI = BCWP/BCWS

An SPI of less than 1.00 implies that for every dollar of work scheduled, less than one dollar has been earned — a schedule overrun. An SPI of more than 1.00 implies that for each dollar of work scheduled, more than one dollar of work has been earned, and an SPI of 1.00 implies an on-target condition. [NICHOLAS90]

The indices of CPI and SPI are the standard cost and schedule performance measures for both Government and industry. The closer the CPI and SPI are to a value of 1.00, the more successful the program can be considered, at least in terms of cost and schedule. [NICHOLAS90] This establishes our performance baseline against which we can compare actual performance data.
�
The Effect of Process Maturity on Performance�tc "<Head 3 (14)>The Effect of Process Maturity on Performance"�

Most of the CMMSM literature describes a positive relationship between process maturity and performance. As an organization matures from Level 1 to Level 5, the difference between target results and actual results decreases, i.e., CPI and SPI move closer to 1.00, and the variability of the actual results about the target decreases, i.e., performance becomes more predictable.

Graphically, the relationship between maturity and performance can be thought of as a probability distribution, see Figure 7-14. At Level 1, the central tendency is somewhere below the target, and the distribution exhibits a high variance. At Level 2, the central tendency of the distribution is now on or very near the target, but the distribution still exhibits a high degree of variance. At Level 3 and above, the central tendency of the distribution is the same as the target, and the variance of the distribution decreases as the CMMSM rating increases. [PAULK93] This relationship between process maturity and performance is what we expected to see with respect to both cost and schedule performance. We had to set up a methodology to test this hypothesis scientifically.

�
Figure 7-14 The Effect of Process Maturity on Performance �tc "Figure 7-14	The Effect of Process Maturity on Performance "�
METHODOLOGY�tc "<Head 2 (14)>METHODOLOGY"�

In order to examine the correlation between process maturity and program success, we collected historic data from Air Force software development contracts. We collected the data using a combination of archival search of cost libraries at target product centers, telephone inquiries, and personal interviews. Data were gathered in such a way as to preserve the anonymity of the program, the contractor, and all personnel involved. Target product centers were Aeronautical Systems Center (ASC) at Wright-Patterson Air Force Base, Ohio, and Electronic Systems Center (ESC) at Hanscom Air Force Base, Massachusetts. We focused on large programs that are required to track cost and schedule data according to the Cost/Schedule Control Systems Criteria (C/SCSC) guidelines and archive these data in the Cost Libraries at ASC and ESC. We limited our study to those programs developed for the Air Force which met the following criteria:

·	Programs tracked software-specific cost and schedule data in C/SCSC format.
·	Contractors were rated according to the SEI CMMSM protocols.
·	Relevance of cost and schedule data to the rating could be established.

Many of the organizations providing data to the ASC and ESC cost libraries had been rated by the CMMSM protocols. We obtained the rating information through interviews with the program office personnel. It should be noted that we did not attempt to independently verify rating data. We established the relevance of the data by looking at what we called the temporal and associative aspects of relevance (see the next section). Those programs for which we could establish both a temporal and an associative relevance with a CMMSM rating established the dataset upon which we drew our conclusions.

Temporal and Associative Relevance�tc "<Head 3 (14)>Temporal and Associative Relevance"�

The degree to which the performance data are representative of the rating is important for the correlational analysis to be valid. Performance data and rating data must be linked by time (temporal relevance) and by association (associative relevance). Temporal relevance is obtained by collecting cost and schedule performance data over the 12-month period surrounding the rating date. Associative relevance depends upon whether the program under consideration was used in the CMMSM rating process. Four scenarios define the four degrees of rating-to-program relevance:

·	Very high relevance. The program under consideration was the sole program evaluated in the CMMSM rating process.
·	High relevance. The program under consideration was one program of several used in obtaining the CMMSM rating for the organization.
·	Medium relevance. The program under consideration was not used to establish the CMMSM rating, but the organization or personnel who participated in the program were also responsible for programs evaluated in the CMMSM rating of interest.
·	Low relevance. Neither the program nor the personnel responsible for the program under consideration were used to obtain the organization’s CMMSM rating; the rating for the contractor as a whole is considered to apply to the organization responsible for the program under consideration.

We recognized that programs with medium and low rating-to-program relevance may adversely affect the validity of the correlation between rating and performance. At the outset, our concern for the scarcity of data militated against eliminating medium- and low-relevance programs from consideration. Instead, characterizing the relevance of the data enabled sample stratification, which permitted us to account for any relevance-related effects. Of the 52 data points evaluated, 40 had high to very high rating-to-program relevance.

Data Collection�tc "<Head 3 (14)>Data Collection"�

We collected data on 11 DoD contractors who had been rated by the CMMSM protocols on 31 software programs these organizations were developing while their ratings were in effect. The net result of our data collection was 52 data points. In addition to rating and cost and performance index information, each data point was characterized by moderating variables that were used to provide insight into the correlation between the performance indices and ratings.

For the purposes of this discussion, a data point is defined as an instance or set of circumstances where for a given software development program, rating data and cost data exist and are mutually relevant. Based on this definition, multiple data points may arise from a particular organization, program, or program. An individual organization may have multiple programs that fall within our sampling criteria. Additionally, each program may have one or more tasks that meet the sampling criteria, which means that the cost and schedule data were reported for individual software-unique work packages or tasks. Finally, each individual program may have been in progress during multiple rating periods, so cost and schedule data would be considered for each rating period.

Figure 7-15 illustrates an example for an organization (DoD contractor) that has been rated twice and has two programs (government contracts A and B), one of which has three individual software tasks (WBS elements), the other only one. Note that these government contracts have different periods of performance. Tasks 1 through 3 of Program A were in effect for two rating periods, whereas Tasks 1 of Program B was in effect for the last rating period only. In this scenario, this one organization would have provided seven discrete data points.

�
Figure 7-15 Origin of Data Points�tc "Figure 7-15 Origin of Data Points"�

Table 7-7 summarizes the characteristics of the complete dataset used in this research. Each data point is also characterized by parameters that lend context to the data point. These parameters are called moderating variables and may provide insight into the factors that influence the correlation between the performance indices and the ratings. However, these parameters are not considered here at length. For a complete analysis, which includes these moderating variables, see the complete AFIT masters thesis. [FLOWE94]
�
�
Table 7-7 Characteristics of the Complete Dataset�tc "Table 7-7 Characteristics of the Complete Dataset"�

It is important to note that all of the data points had CMMSM ratings of 1, 2, and 3. It is still highly unusual to find organizations with higher ratings, so these represent the expected data values. However, it means that our research findings are only valid for these three CMMSM levels.

Analysis�tc "<Head 3 (14)>Analysis"�

CMMSM rating data are at best ordinal in nature. Hence, statistical analysis techniques such as multiple linear regression, which require interval or ratio data, cannot be rigorously applied. However, a combination of descriptive and nonparametric techniques are adequate to establish the presence or absence of a statistically significant correlation of software process maturity and software development success.

Our analysis focused on graphically and statistically correlating the cost and schedule performance indices with the respective CMMSM ratings. Graphical analysis tools included scatter plots and box and whisker plots. Statistical tools included Kruskal-Wallis nonparametric analysis of variance as well as the multiple comparison of mean rank test. It is not our intent to explain these tools at length, but we have provided a brief summary of the use of each in the next two sections. For complete discussions of these analysis tools, see the references provided below.

Graphical Tools�tc "<Head 3 (14)>Graphical Tools"�

Scatter plots are used to visualize data by plotting two elements of each data point. Box and whiskers plots show similar data except that they indicate data groupings by a box and outliers by “whiskers,” rather than plotting each individual point. [DEVORE82] For our analysis we used plots of CPI versus CMMSM rating as well as SPI versus CMMSM rating. See Figure 7-16 and 7-17 for scatter plots indicative of our analysis.

�
Figure 7-16	Scatter Plot of CPI versus Rating for High and Very High Rating Relevance�tc "Figure 7-16	Scatter Plot of CPI versus Rating for High and Very High Rating Relevance"�

�
Figure 7-17 Scatter Plot of SPIU versus Rating for Less Than 80% Complete

Statistical Tools�tc "<Head 3 (14)>Statistical Tools"�

The Kruskal-Wallis Test is a nonparametric analysis of variance, testing the null hypothesis that samples subjected to different treatments, e.g., CMMSM ratings, actually belong to the same population. The rejection of the null hypothesis suggests that the populations are different. [GIBBONS76] In our analysis, the rejection of the null hypothesis suggests there is a difference in the median performance of organizations at different maturity levels.

The Kruskal-Wallis test can only determine if at least two of the samples are from different distributions. To determine if there is a statistically significant difference in more than one pair of samples and which samples differ from which others, a multiple comparison test is required. The multiple comparison test compares the absolute values of the differences of the mean ranks between two samples to determine if there is a significant difference in the two samples. It is important to note that the overall level of significance used in multiple comparisons frequently is larger than those ordinarily used in an inference involving a single comparison. Our multiple comparison test was performed at a level of significance of 0.2, which implies an 80% level of confidence in the result. This is consistent with recommended values for this type of nonparametric analysis technique. [GIBBONS76]

Cost Performance�tc "<Head 3 (14)>Cost Performance"�

We observed trends in both central tendency and in variation across the rating levels. The trend observed was high variation with central tendency below a CPI of 1.00 for Level 1, high variation and central tendency near a CPI of 1.00 for Level 2, and low variation and central tendency near a CPI of 1.00 for Level 3. Additionally, the multiple comparison test showed significant differences between Levels 1 and 2 and between Levels 1 and 3. Thus, the trend in CPI with increasing organization maturity is a CPI generally approaching 1.00 with generally decreasing variation (see Figure 7-16). The data show a pattern remarkably like that proposed by Paulk. [PAULK93]

Schedule Performance�tc "<Head 3 (14)>Schedule Performance"�

For the schedule performance data, the variation appears fairly constant between Level 2 and Level 3 and is markedly less than the variation in SPI at Level 1. Thus, a trend in variation with rating level is shown only between Level 1 organizations and the rest. It appears that once an organization matures beyond Level 1, variation in SPI is relatively insensitive to maturity. Unlike the trend observed in variation, we observed no clear trend in the central tendency of SPI within the complete dataset.

At all rating levels, the SPI remains close to 1.00. However, when the moderator “Percent Complete” was taken into account, an intriguing correlation between rating level and central tendency of SPI manifested itself. We noted that for programs less than 80% complete, the performance of Level 1 organizations was consistently below an SPI of 1.00. Thus, the trend of increasing central tendency and decreasing variation with more mature organizations (similar to that observed in CPI) is observed only in programs less than 80% complete.

The trend is markedly different for programs greater than 80% complete, but this is probably attributable to the dynamics of the schedule performance index rather than a maturity effect. The SPI is driven — by definition — to a value of 1.00 at program completion. This results in predictably high SPIs for all programs near completion.
CONCLUSION�tc "<Head 2 (14)>CONCLUSION"�

The aim of our research was to determine the nature of a correlation between the CMMSM rating and software development success. Though success is difficult to measure directly, by using the indicators of cost and schedule performance, we were able to show correlation between CMMSM rating and the cost and schedule performance of a generally representative sample of historical software development contracts.

We observed improved cost and schedule performance with increasing process maturity. Specifically, the least mature organizations were likely to have difficulty adhering to cost and schedule baselines. In contrast, the more mature organizations were likely to have on-baseline cost and schedule performance. This observed correlation was evident in the dataset as a whole, but was more evident in the sample which had high to very high rating-to-program relevance. The correlation was more evident in cost performance than in schedule performance.

This study has validated a correlation between program success and CMMSM ratings established in the same time frame as the program development. Although this result suggests that CMMSM ratings might be used as a predictor of future program success, more research is required before such a predictive relationship can be established. [NOTE: See Volume 2, Appendix A for information on how to contact the authors: Patricia K. Lawlis, Captain Robert M Flowe (USAF), and Captain James B. Thordahl (USAF).]
REFERENCES�tc "<Head 2 (14)>REFERENCES"�

[DEVORE82] Devore, J.L., Probability and Statistics for Engineering and Science, Third Edition, Brooks/Cole Publishing Company, Pacific Grove, California, 1982
[FLOWE94] Flowe, R.M., and J.B. Thordahl, “A Correlational Study of the SEI’s Capability Maturity Model and Software Development Performance in DoD Contracts,” master’s thesis, Air Force Institute of Technology, December 1994
[GIBBONS76] Gibbons, J.D., Nonparametric Methods for Quantitative Analysis, Holt, Rinehart, and Winston, Chicago, 1976
[HUMPHREY90] Humphrey, W.S., Managing the Software Process, Addison-Wesley, Reading, Massachusetts, 1990
[MOSEMANN94] Mosemann, Lloyd K., II, “Why the New Metrics Policy?” CrossTalk, April 1994
[NICHOLAS90] Nicholas, J.M, Managing Business and Engineering Projects, Prentice Hall, Englewood Cliffs, New Jersey, 1990
[PAULK93] Paulk, M.C., B. Curtis, M.B. Chrissis, and C.V. Weber, “Capability Maturity Model, Version 1.1,” IEEE Software, Vol. 10, No. 7, July 1993

About the Authors�tc "<Head 3 (14)>About the Authors"�

Patricia K. Lawlis is president and senior software engineering consultant for cj. kemp systems, inc. She holds a doctorate in computer science from Arizona State University and is a retired Air Force lieutenant colonel. Dr. Lawlis has worked in many areas of software engineering, including software development in many different computer languages. For 10 years she was on the regular faculty of the Air Force Institute of Technology where she continues to be an adjunct assistant professor of software engineering. She was one of the faculty advisers for the thesis work reported in this article. Dr. Lawlis has also been involved with extensive research in developing an object-oriented software architecture for the visual simulation application domain, and she is known for her work in language comparisons.

Patricia K. Lawlis, Ph.D.
c.j. kemp systems, inc.
P.O. Box 24363
Huber Heights, OH 45424
Phone:	(513) 878-3303
Fax:	(513) 878-3303
E-mail:	lawlis@afit.af.mil; lawlis@aol.com

Capt. Robert M. Flowe has been a member of the Air Force since 1983, where he has served in operational support of the Titan II, III, and IV space launch vehicles. He received a master’s degree in software systems management from the Air Force Institute of Technology, and this article is a result of his joint thesis work with Capt. James Thordahl in that degree program.

�

Capt. Robert M Flowe
Electronic Systems Center Dept. 44
Kelly AFB, TX 78243
Phone:	(210) 977-3445; DSN 969-3445

Capt. James B. Thordahl has been a member of the Air Force since 1988, where he has served in support of high-energy laser development for the Ground-Based Laser Antisatellite Program as well as in support of optical research. He received a master’s degree in software systems management from the Air Force Institute of Technology.

Capt. James B. Thordahl
HQ SMC/MC3
2420 Vela Way, Suite 1467-A8
Los Angeles AFB, CA 90245-4659
Phone:	(310) 336-2070; DSN 833-2070
Fax:	(310) 336-4848; DSN 833-4848
E-mail:	thordahl@mc.laafb.af.mil

�

�tc "<>"�
CHAPTER 7
 Addendum B

Lessons-Learned While Achieving a CMMSM Level 3 Rating�tc "<>Lessons-Learned While Achieving a CMMSM Level 3 Rating"�

Sacramento Air Logistics Center

NOTE:	This article is found in Volume 2, Appendix O, Additional Volume 1 Addenda.

Version 2.0
CHAPTER 7 Software Development Maturity

7-� PAGE �
45
�

Version 2.0

7-� PAGE �
46
�

Version 2.0
CHAPTER 7 Addendum A

