�tc "<>"�

CHAPTER�tc "<>CHAPTER"�

 �tc "<> "�6�tc "<> 6"�

Risk Management�tc "<>Risk Management"�

EDITOR’S NOTE: Graphics quality will improve when printed.

CHAPTER OVERVIEW�tc "<Head 3 (14)>CHAPTER OVERVIEW"�

Software acquisition and management may be the greatest challenge of your career. Software programs are more prone to failure than to success. Therefore, the most important thing you have to manage in your program are the inherent risks associated with the development and support of all major software-intensive systems. A risk is the probability of an undesirable event occurring and the impact on the success of your program if that risk occurs. Your program is subject to three main risk factors: (1) your product does not meet planned performance requirements, (2) your program overruns its budget, and/or (3) your product is delivered too late or not at all.

In this chapter you will learn that risk management encompasses a defined set of activities which include identifying, analyzing, planning, tracking, controlling, and communicating program risks. Risk mitigation techniques include avoidance, control, assumption, and transference. How you implement these activities and techniques are defined in structured, disciplined risk management methodologies. The risk management methodology you choose must be tailored and selected based on those risks peculiar to your program. The sampling of methodologies discussed here are systematic, repeatable, and based on solid, proven risk management techniques. A disciplined risk management approach is essential for program insight so you can make decisions and take preventive actions critical to program success.

All the methods presented here stress that significant risks be assessed and their impacts quantified in terms of quality, cost, and schedule. Risk management must be planned, budgeted, and accommodate abatement plans based on quantified risk impacts. Time and dollar requirements for risk management must be included in the total estimated contract cost. Risk elements must also be tracked throughout the total system life cycle. Techniques for managing risk are discussed in subsequent chapters and throughout these Guidelines. They include: software development maturity assessments; engineering discipline; process, product, and program monitoring through measurement and metrics; reuse; strategic and continuous program planning; reviews, audits, and peer inspections; defect prevention, detection, and removal; and constant process improvement.

Risk management, on an iterative tradeoff basis, is key. It is a proactive way for you to prevent problems and be prepared. It is an insurance policy. It is a way for you to be armed with alternative solutions if an anticipated (or unforeseen) problem interrupts or negates your plans. The time, effort, and funds you dedicate to its practice will be well-spent. Risk management is a necessary, sound investment in your program’s success.

�

�tc "<>"�

CHAPTER�tc "<>CHAPTER"�

 �tc "<> "�6�tc "<> 6"�

Risk Management�tc "<>Risk Management"�

Risk Management: An Investment in Success�tc "<Head 2 (14)>Risk Management\: 					An Investment in Success"�

It was one of those sweltering, breezeless, smog-ladened New York City summer afternoons when no one wanted to be outdoors. Those who are out staggered from air conditioned offices to air conditioned taxis heading towards refrigerated apartments. One man was sitting out in that heat. He was slumped wearily, glassy-eyed, his brief case in his lap, his power tie askew, his Amante suit jacket thrown over the back of a bench. He looked like someone who had been squeezed through the slot of an automatic teller machine. He was oblivious to the heat or anyone around him. He had not slept in two days and emitted a deep sense of despair. This was a severely troubled man. He shook his head from side to side repeating, “If I only knew how it happened ... if I only knew how it happened...”

Our man was one of the senior executives at Bank of America who had just lost his high-paying job because of a software acquisition disaster. Other nonexecutive staff members would be receiving pink slips in the morning. The bank’s chairman was not amused when our executive had to make the hard decision to abandon an originally estimated $20 million software-intensive system development after spending $60 million trying to make it work. [LATIMES88] This decision followed an earlier failed attempt that cost the bank an additional $6 million. He really had been backed into a corner. The second attempt was originally scheduled to be a two-year effort, but they were three years into the resurrected development — with no end insight. The chairman had very publicly declared that Bank of America was going to be the banking industry’s information technology leader and this software-intensive system was the main strategic move towards getting them there. Having to admit this monumental investment loss through their inability to field the system was a blow to the bank’s integrity, requiring painful explanation to investors.

As you learned in Chapter 1, Software Acquisition Overview, and in the Scientific American article, “Software’s Chronic Crisis,” in the Foreword, the Bank of America fiasco is not an isolated case. Software development is one of the most (if not THE most) risk prone management challenge of this decade. Risk factors are always present that can negatively impact the development process, and if neglected, can tumble you unwittingly into program failure. Software developments, like campaigns and battles, are nothing but a long series of difficulties to overcome. To counteract these forces, you must actively assess, control, and reduce software risk on a routine basis. As Chief of Staff of the Army, often called “The Organizer of Victory,” General George C. Marshall, explained to the first officer candidate class at Fort Benning, Georgia,

Campaigns and battles are nothing but a long series of difficulties to be overcome. The lack of equipment, the lack of food, the lack of this or that are only excuses; the real leader displays his quality in his triumphs over adversity, however great it may be. [MARSHALL41]

Also in Chapter 1, you were told why software programs fail. Poor management is cited time and again as the culprit causing software acquisitions to go belly up. Our development processes are immature, chaotic, and unpredictable. Our estimates of cost, schedule, and software size and complexity are inadequate. Our problem solving and decision making is poor because we do not plan, measure, track, or control the process and product. Risk management addresses all these shortcomings. To be an effective manager, you must identify and mitigate risks throughout the entire life cycle. You will be hard pressed to eliminate all risks, but should take action on those risks most critical to the success of your program to the point where they become manageable.

Implementing �xe \b "Risk:Management"�risk management in your program (based on a judicious mix of theoretical background, practical methodologies, and common sense) will give you a greater chance to succeed with the ability to straighten things out. It is important to form an effective government/industry team at the onset of the acquisition. Sharing information and concerns, careful listening, and timely responses between mutually bound partners are essential risk management activities. Industry’s belief that their concerns about risk will be addressed by the Government is also vital. Conversely, the SPO’s ability to rely on its industry partner(s) to provide quality solutions (within the parameters provided by the user) enhances the probability of risk management success. Figure 6-1 shows how effective risk management can minimize the cost of risk to a program.

�

Figure 6-1 Benefits of Effective Risk Management [HALL95]

Software Risk�tc "<Head 2 (14)>Software Risk"�

While risk management has been used for years in many different disciplines and professions (including financial, petrochemical, insurance, etc.), and has been advocated by DSMC for over 12 years, it has only been in the past 5 to 7 years that risk management is receiving more attention in the software engineering community. [MARCINIAK94] Risk is defined as the probability of an undesirable event occurring and the impact of that event occurring. A risks is the precursor to a problem. It is the probability that, at any given point in the system life cycle, its predicted goals (either operational or logistical) cannot be achieved within available resources. There is a high probability that you will have less than a full understanding of the requirements of either the software product or the process before you begin your development. You also run the risk that it will take longer and cost more than expected. Trying to totally eliminate risk is a futile endeavor — however, managing risk is something you can and must do. To know whether an event is truly “risky,” you must have an understanding of the potential consequences of the occurrence/nonoccurrence of that event. As a program manager, you risk failure in three ways and combinations thereof:

•	The product does not meet performance requirements (operationally or logistically),

•	Actual costs are higher than budgeted, and

•	Delivery of the product is too late.

Software Risk Factors�tc "<Head 3 (14)>Software Risk Factors"�

Software risk factors that impact a product’s performance, cost, and schedule can be further segmented into five risk areas. However, any given risk may have an impact in more than one area. The five risk areas are:

•	Technical risk (performance related),

•	Supportability risk (performance related),

•	Programmatic risk (environment related),

•	Cost risk, and

•	Schedule risk.

The following sections identify: the common risk factors found in many programs; a “Top-10” risk identification checklist; environmental factors that sometimes get overlooked; and additional interrelated factors that contribute to software risk. While some of these risk factors may overlap, they all must be considered.

Common Risk Factors�tc "<Head 3 (14)>Common Risk Factors"�

The �xe "Software Program Managers Network (SPMN)"�Software Program Manager’s Network (SPMN) identifies common threads among troubled software programs. These conclusions, based on risk assessments performed on 30 software programs since 1988, include:

•	�xe "Management"�Management. Management is inconsistent, inappropriately applied or not applied at all. In many cases, it is reactionary — management reacts to rather than plans for issues.

•	Predictable risks ignored. When a problem arises, it is identified by program personnel; but they often say, “Hey, it’s too much trouble. I can’t deal with it.” They ignore it, press on, and then get blind-sided by the impact.

•	Disciplines not uniformly applied. On many programs, configuration management, product assurance, and technical disciplines are not uniformly applied. Organizations throw away standards as they go through the program to “buy” more schedule, performance, or save on cost. The result is the program moves along in the short-term, but creates a rolling wave of disaster in the long-term.

•	Poor �xe "Training"�training. In many cases, the reason managers do not perform a specific task is because they did not know how to do it. For example, some managers do not understand costing or schedule, do not know how to do the technical job, or to plan. No accessible training or resources are available to them.

•	Fallacy of easy solutions. Software programs often get in trouble when generic solutions are applied to specific problems. Methods designed for non real-time work are used in real-time programs. Unproved, �xe "Silver Bullet"�Silver Bullet techniques with no tool support, standards, or an experience base from which to proceed are used on high risk programs. In addition, programs having difficulty often fail to scale the work to resources.

•	Inadequate �xe "Work plan"�work plans. Critical constraints and work plans include schedules, budgets, work allocation, and limited, time-sensitive resources. Programs in trouble do not have a clue where they stand. Inadequate schedules, or schedules not enforced, are often the problem.

•	�xe "Schedule"�Schedule reality. The schedule plan must be realistic ,and if the schedule slips, the impact on delivery must be assessed. Programs in trouble do not deal with this. If there is a schedule slip, they do not realistically consider the effect on the end-date. They take short cuts and came up with success-oriented schedules to avoid announcing an end-date slip.

•	Delivery focus. With many programs in trouble, focus on the schedule and process, not on the delivery. Successful programs focus on the incremental completion of an event. The relationship between all activities should be that one completion, which feeds the next completion, and the next.

•	Constraints. Successful programs use reasonable metrics to status and analyze the program, assess product quality and process effectiveness, and to project the potential for success. Programs in trouble abuse metrics which are used to justify unreasonable positions. The bad is ignored and the good is inflated to overshadow the bad.

•	�xe "Customer:Responsibility"�Customer responsibility. The customer should not just sit back and oversee. The customer has to provide the hierarchy of documentation and at least provide standards for the software development phase in which they are interested. In almost every troubled program, the customer has a “hands-off” approach.

•	Methods and �xe "Tools:Selection"�tool selection. Almost every troubled program has problems in this area. The tools selected are inappropriate for the job. The program staff has too little or no experience with the methods used, which are not integrated, but run as stovepipes. The process is not integrated through configuration management — no effective information flow within the program is established. [EVANS94]

“Top-10” Risk Identification Checklist�tc "<Head 4 (12)>“Top-10” Risk Identification Checklist"�

�xe "Boehm, Barry W"�Boehm identifies a “Top-10” list of major software development areas where risk must be addressed. [BOEHM91]

·	Personnel shortfalls,

·	Unrealistic schedules and budgets,

·	Developing the wrong software functions,

·	Developing the wrong user interface,

·	Goldplating,

·	Continuing stream of requirement changes,

·	Shortfalls in externally furnished components,

·	Shortfalls in externally performed tasks,

·	Real-time performance shortfalls, and

·	Straining computer science capabilities.

Environmental Factors�tc "<Head 4 (12)>Environmental Factors"�

Charrette explains there are subtle environmental factors often overlooked when identifying sources of risk. They include:

•	Software developments are very complex. The software problem has numerous elements with extremely complicated interrelationships.

•	Problem element relationships can be multidimensional. The changes in elements are not governed by the laws of proportionality. It is well documented that adding more people to a program that is behind schedule, in many instances, will make it even later.

•	Software problem elements are unstable and changeable. Although cost and schedule may be fixed, actual costs in labor and time to complete are difficult to program.

•	The development process is dynamic. Conditions ceaselessly change; thus, program equilibrium is seldom achieved. The environment is never static — hardware malfunctions, personnel quit, and contractors do not deliver.

•	People are an essential software development element and a major source of risk. Economic or technical problems are easy with which to deal. The higher-level complications, multidimensional ambiguities, and changing environment caused by conflicting human requirements, interaction, and desires are what cause problems. Software development is full of problems because it is a very human endeavor. [CHARETTE89]

Interrelated Factors�tc "<Head 4 (12)>Interrelated Factors"�

Additionally, there are other interrelated factors that contribute to software risk. These factors are:

•	�xe "Team:Communication"�Communication about risk is one of the most difficult, yet important, practices you must establish in your program. People do not naturally want to talk about potential problems. Rather than confronting imaginary problems while they are still in the risk stage, they wind up having to deal with them after they become full-blown, real problems. Then there is a lot of communication! Effective risk planning only occurs when people are willing to talk about risks in a nonthreatening, constructive environment.

•	Software �xe "Size"�size can affect the accuracy and efficacy of estimates. Interdependence among software elements increases exponentially as size increases. With extremely large software systems, handling complexity through decomposition becomes increasingly difficult because even decomposed elements may be unmanageable.

•	Software �xe "Architecture"�architecture also affects software risk. Architectural structure is the ease with which functions can be modularized and the hierarchical nature of information to be processed. It is also development team structure, its relationship with the user and to one another, and the ease with which the human structure can develop the software architecture. [PRESSMAN93]

Managing Software Risk�tc "<Head 2 (14)>Managing Software Risk"�

While you can never totally remove software risk, there are several different techniques that can be used to mitigate it. These techniques, of course, should be used in the structure of a software risk management process. This section identifies risk mitigation techniques and the basic software risk management process. While many methods exist, the next section, Formal Risk Management Methods, presents several structured, well-proven methods from which you can choose for your program.

Risk Mitigation Techniques�tc "<Head 3 (14)>Risk Mitigation Techniques"�

Risk mitigation techniques include:

�xe "Risk:Avoidance"�Risk avoidance. You can avoid the risk of one alternative approach by choosing another with lower risk. This conscious choice avoids the potentially higher risk; however, it really results in risk reduction in risk — not complete risk elimination. While a conscious decision to ignore (or assume) a high risk may be a creditable option, an unconscious decision to avoid risk is not. As General Robert E. Lee proclaimed,

There is always hazard in military movements, but we must decide between the possible loss of inaction and the risk of action. [LEE33]

You must assess, rate, and decide on the possible consequences of inaction. You must also decide if the benefits of acting on a risk merit the expense in time and money expended. You and your developer should document all risk handling actions with supporting rationale. You should also employ risk management in concert with metrics and process improvement used to measure, track, and improve your program’s progress and process.

�xe "Risk:Control"�Risk control. You can control risk (the most common form of risk handling) by continually monitoring and correcting risky conditions. This involves the use of reviews, inspections, risk reduction milestones, development of fallback positions, and similar management techniques. Controlling risk involves developing a risk reduction plan, then tracking to that plan.

�xe "Risk:Assumption"�Risk assumption. You can assume risk by making a conscious decision to accept the consequences should the event occur. As Napoleon explained,

If the art of war consisted merely in not taking risks, glory would be at the mercy of very mediocre talent. [NAPOLEON55]

Some amount of risk assumption always occurs in software acquisition programs. It is up to you to determine the appropriate level of risk that can be assumed in each situation as it presents itself.

�xe "Risk:Transference"�Risk transference. You can transfer risk when there is an opportunity to reduce risk by sharing it. This concept is frequently used with contractors where, for instance, contract type, performance incentives (including award fees), and/or warranties are risk sharing contractual mechanisms. Although many of these techniques only share cost risk, risk transfer is often beneficial to the Government and the developer.

Risk Management Process�tc "<Head 3 (14)>Risk Management Process"�

It is your responsibility to put a process in place that enables you and your team to identify, analyze, plan, track, and relentlessly control risk. Risk management costs time and money. However, it is always less expensive to be aware of and deal with risks than to respond to unexpected problems. A risk that has been analyzed and resolved ahead of time is much easier to deal with than one that surfaces unexpectedly. [BLUM92] Figure 6-2 identifies a basic risk management model. This model identifies the fundamental risk management actions you must take:

•	Identify. Search for and locate risks before they become problems adversely affecting your program.

•	Analyze. Process risk data into decision-making information.

•	Plan. Translate risk information into decisions and actions (both present and future) and implement those actions.

•	Track. Monitor the risk indicators and actions taken against risks.

•	Control. Correct for deviations from planned risk actions.

•	Communicate. Provide visibility and feedback data internal and external to your program on current and emerging risk activities. [Refer to CMU/SEI-93-TR-06.]

�

Figure 6-2 Risk Management Continuous Process

Another, more formal risk management model is shown in Figure 6-3. This model illustrates more of the functions of, and interrelationships among, the basic steps. This model is representative of many formal risk management methods [described in the following section].

�

Figure 6-3 A Formal Risk Management Process

�

Formal Risk Management Methods�tc "<Head 2 (14)>Formal Risk Management Methods"�

A proactive approach to risk is the most effective way to control it. The methods you employ must be disciplined, systematic, repeatable, and based on solid principles. They must facilitate communication among all stakeholders — at all levels. A disciplined risk management approach will help you to obtain valuable program insight, allowing you to make decisions and take actions that may be critical to its success. As Sir Winston Churchill explained,

...when fortune is dubious or adverse; when retreats as well as advances are necessary; when supplies fail, arrangements miscarry, and disasters impend... — as the severity of military operations increases, so also must the sternness of the discipline. [CHURCHILL99]

Formal risk management methods provide the necessary information to focus on priority risks and their mitigation. They define distinct procedures to aid in performing risk management functions and have integrated tools and techniques to ensure standardized application. Formal methods gain their robustness through practical use, testing, and continuous field validation. As they evolve and mature, they demonstrate their ability to produce similar, consistent results no matter who applies them. There are many risk management methods. Keep in mind that whichever method you choose, it must be tailored to your specific program needs. Examples of these methods include:

·	Software Risk Evaluation (SRE) method,

	- Example: Harris Corporation risk management streamlining,

·	Boehm’s Software Risk Management method,

·	Best Practices Initiative Risk Management method,

·	Team Risk Management method,

- Example: Team Risk Management on the NALCOMIS Program, and

·	B-1B Computer Upgrade Risk Management method and example.

Software Risk Evaluation (SRE) Method�tc "<Head 3 (14)>Software Risk Evaluation (SRE) Method"�

The SEI has developed a �xe "Risk:Software Risk Evaluation (SRE)"�Software Risk Evaluation (SRE) method which focuses on the contractor/government relationship. It is a formal approach for identifying, analyzing, communicating, and mitigating the technical risks associated with a software-intensive acquisition. As illustrated in Figure 6-4, the program manager (Government) directs an independent SRE team to perform a risk evaluation. The team then executes SRE functions for the contractor’s target software development task. The outcome is a set of findings processed to provide value-added information (results) to the Government. The SRE can also be used as a business tool by the contractor to manage software program risks. [Refer to CMU/SEI-94-SREv0.2, Software Risk Evaluation Method.]

�

Figure 6-4 SRE Method Application

The SRE method is based on the Risk Management Paradigm [discussed below], the Software Development Risk Taxonomy, and the Taxonomy-Based Questionnaire. The later two elements are defined as:

·	�xe "Risk:Software Risk Evaluation (SRE):Software Development Risk Taxonomy (SDRT)"�Software Development Risk Taxonomy (SDRT). The taxonomy provides a basis for organizing and studying the breadth of software development issues. As illustrated in Figure 6-5, it serves as a systematic way of eliciting and organizing risks and provides a consistent framework risk management method and technique development. [See Table 6-7 for a more detailed, lower-level taxonomy.]

�

Figure 6-5 Structure of the Software Risks Taxonomy

·	The SEI �xe "Risk:Software Risk Evaluation (SRE):Taxonomy-Based Questionnaire (TBQ)"�Taxonomy-Based Questionnaire (TBQ). The TBQ is a tool specifically used for identifying software development risks. This tool ensures all potential risk areas are covered by asking questions at the SEI Software Development Risk Taxonomy detailed attribute level. The TBQ also contains specific cues and follow-up questions that allow the person administering the questionnaire to probe for risks. This tool is effective when used along with appropriate techniques for interviewing management and technical program personnel. Field tests have shown the TBQ produces better results when administered by an independent team and the respondents are in peer group sessions. [For more information, contact the SEI (see Volume 2, Appendix A) or look them up online (see Volume 2, Appendix B).]

SRE Functional Components�tc "<Head 4 (12)>SRE Functional Components"�

The SRE method consists of primary and support functions, as illustrated on Figure 6-6. Primary SRE functions are:

·	Detection is the function of finding target program software technical risks. This function ensures systematic and complete coverage of all potential technical risks areas. It also ensures efficiency and effectiveness through use of appropriate tools and techniques. Risk detection in the SRE method is performed by using the following:

-	SEI Taxonomy-Based Questionnaire to ensure complete coverage of all areas of potential software technical risks;

-	An SRE team that conducts group interviews using a specified technique and implementation process which includes functional roles for each individual; and

-	Selection of appropriate individuals and guidelines for interview groups to ensure coverage of all viewpoints including software development, support functions, and technicians and managers.

·	Specification is the function of recording all aspects of identified technical risks including their condition, consequences, and source. Each risk is assigned to a specific category within the SEI Software Development Risk Taxonomy, i.e., the source of the risk is specified as belonging to a taxonomy class, element, or attribute.

·	Assessment is the function that determines the magnitude of each software technical risk. By definition, magnitude is the product of severity of impact and the probability of risk occurrence where:

Magnitude = Severity of Impact • Probability of Occurrence

�

Figure 6-6 SRE Functional Components

	Risk statements are assessed at one of three levels of magnitude: high, medium, or low. The level at which a particular risk is assessed depends on the separate assessments of its severity of impact and its probability of occurrence. Severity of impact is the effect of the particular risk on the target program or task and is assessed on the basis of its impact on software performance, support, cost, and schedule. Each risk is assessed to belong to one severity level: catastrophic/critical, marginal, or negligible. Probability of occurrence is the certainty or likelihood of the risk becoming true. Each risk is assigned to one probability level: very likely, probable, or improbable

Figure 6-7 illustrates SRE risk magnitude levels. The shaded areas indicate different levels of magnitude. The figure also shows the derivation of the magnitude levels using their assessments for severity of impact and probability of occurrence. For example, a high magnitude risk is one whose severity is catastrophic/critical and probability is very likely or probable. Similarly, a risk is of high magnitude if its severity is marginal and probability is very likely.

�

Figure 6-7 Risk Magnitude Level Matrix

·	Consolidation is the function of merging, combining, and abstracting risk data into concise decision-making information. This is necessary due to the multiplicity of risk detection activities which cause related risks to be identified from different sources. For example, similar risks are often identified during different interview sessions.

SRE support functions include:

·	Planning and coordination is preparing for the SRE by selecting the team, scheduling individuals for interview sessions, and arranging for site visits. Two functional roles perform planning and coordinating functions:

-	The SRE Team Leader is an experienced person from an independent organization responsible for overall planning and coordination of SRE implementation activities.

-	The Site Coordinator, from the target organization, is the single interface with the SRE Team Leader who performs planning and coordination activities including scheduling individuals for interviews and arranging the site visit.

·	Verification and validation ensures implementation process quality and result accuracy and validity. It provides decision-makers with reliable information for mitigating technical risks. Included in this function are the tools and techniques use to take corrective measures during early stage implementation. For example, techniques, such as risk playback and team reviews, ensure content, structure, attributes, and risk context.

·	�xe "Training"�Training and �xe "Team:Communication"�communication ensures implementation process effectiveness by making sure all personnel have sufficient knowledge, understanding, and skills. It creates an environment for effective information dialogue and exchange necessary for SRE implementation. Included in this function are software risk evaluation team training, management and technical personnel orientation, and client organization briefings. Also included are the specific activities, tools, and techniques used to ensure proper training and communication. For example, techniques such as an SRE overview script which the interviewer reads or paraphrases is used at the beginning of an interview session. This creates a proper risk detection environment where respondents understand the interview process and are able to openly discuss software technical risks.

Harris Corporation SRE Risk Management Streamlining Example�tc "<Head 4 (12)>Harris Corporation SRE Risk Management Streamlining Example"�

Risk management can save money and help build better software with a relatively low investment. Incorporating disciplined engineering risk analysis and management techniques into your management process can earn you 50% or more in productivity gains, and greatly increase your potential for producing a quality product. [CHARETTE89] Without effective risk management, Norman Augustine’s Law of Counter-productivity takes over, where “It costs a lot to build bad products.” [AUGUSTINE83]

Hall and Ulrich explain how, in 1992, the Harris Corporation’s, Information Systems Division, collaborated with the SEI to improve their risk management methods. One lesson-learned from this effort was that risk identification and assessment should be more continuous than had been originally recommended. Factors contributing to a more routine risk management effort were changes and growth in Harris’ staffing, an increased awareness of program risk issues, and a different life cycle focus. To increase cost-effectiveness, Harris tailored the SEI Software Development Risk Taxonomy identification process illustrated on Figure 6-8. After tailoring, they identified a similar number of risks while using less assessment team members. Savings in manpower were possible because they had a well-defined, documented, and trained risk assessment process. Thus, less time was needed for process explanation and observation. Independence of the assessment team (from the program teams) was another important factor in achieving cooperation and objectiveness in risk identification. Repeated �xe "Software Engineering Process Group (SEPG)"�Software Engineering Process Group (SEPG) leadership of successive risk assessments assured consistency in implementation and complemented process improvement. Because, risk management is not a one size fits all, Harris also tailored their risk management program to fit both large and small software development programs. It was customized to fit the dynamics of integrated product teams and accommodate subcontractor organizations.

�

Figure 6-8 Streamlined SEI Risk Assessment Process

Harris also assigned an independent �xe "Risk:Champion"�Risk Champion who provided an objective and motivational view of the program without placing attribution or blame on individuals whose areas of the responsibility were inherently risky. Motivation was provided to the program in two ways. First, the Risk Champion led discussions to identify or analyze risk situations. Second, the periodic appearance of the Risk Champion served as the catalyst to perform risk management on a routine basis. As one Risk Champion explained, “I have to drag my people kicking and screaming into a risk meeting, but they’re always glad I did.” [HALL95]

Collaboration is a proactive and synergistic way to produce cost-effective results by sharing resources. The SEI/Harris technical collaboration proved to be beneficial for both organizations in understanding effective risk management methods. At Harris, streamlining the risk assessment process reduced the cost of adopting the standard SEI risk identification process. Cost savings were 50% on the assessment team and 25% on interview session time while identifying the same number and types of risks. [HALL95]

Boehm’s Software Risk Management Method�tc "<Head 3 (14)>Boehm’s Software Risk Management Method"�

Barry Boehm’s method of risk management embodies the fundamental concept of risk exposure. [BOEHM91] Risk exposure (RE) is defined by the relationship

RE = P(UO) • L(UO)

where P(UO) is the probability of an unsatisfactory outcome and L(UO) is the loss to stakeholders affected by an unsatisfactory outcome. An unsatisfactory outcome differs for various classes of participants:

·	Customers and developers see budget overruns and schedule slips as unsatisfactory;

·	Users see the wrong functionality, user-interface problems, performance shortfalls, or poor reliability as unsatisfactory; and

·	Maintainers see poor quality as unsatisfactory.

Risk Management Paradigm�tc "<Head 4 (12)>Risk Management Paradigm"�

Boehm’s risk management paradigm is the decision tree. He uses the controlling software for a satellite experiment as an example of a potentially risky element. Because the software team is inexperienced, the satellite program manager estimates there is a probability P(UO) of 0.4 (on scale of 0.01 to 1.0) that the software will have a critical defect(s) (CD). He feels this defect will be so critical that it could shut the entire experiment down causing an associated loss L(UO) of the total $20 million program. As illustrated on Figure 6-9, the manager identified two major options for reducing the risk of losing the experiment:

·	Practice better development methods. This incurs no additional cost and he estimates it will reduce the defect probability P(UO) to 0.1.

·	Hire an IV&V contractor to find and remove latent defects. This will cost an additional $500,000. Based on the results of similar IV&V efforts, this will reduce the P(UO) to 0.04.

�

Figure 6-9 Decision Tree for Satellite Software Risk Item

Boehm’s Risk Management Process�tc "<Head 4 (12)>Boehm’s Risk Management Process"�

Boehm’s risk management process involves two primary steps, each with three subsidiary steps as illustrated in Figure 6-10. The first primary step, risk assessment, involves risk identification, risk analysis, and risk prioritization. The second primary step involves risk management planning, risk resolution, and risk monitoring.

�

Figure 6-10 Software Risk Management Steps

Table 6-1 illustrates Boehm’s �xe "Risk:Top-10 List"�Top-Ten Risk Identification Checklist. The checklist can be used to help identify the top-ten risk items that could endanger your program’s quality, cost, and schedule goals — independent of your contractor’s Risk Management Plan. It also provides a set of corresponding risk management techniques proven to be most successful in avoiding or resolving each particular source of risk. Using the checklist you can rate your program’s status for the individual attributes associated with its requirements, personnel, reusable software, tools, and support environment.

�

Table 6-1 Top-Ten Risk Identification Checklist

Table 6-2 illustrates the risk rating and prioritization process for the satellite control experiment. It summarizes several unsatisfactory outcomes and their corresponding ratings for P(UO) and L(UO) (on a scale of 1 to 10) and their resulting risk exposure estimates. Several key factors in risk analysis are illustrated here. One of the highest P(UO)s is data reduction defects, but because these defects are recoverable and not mission-critical, the L(UO) is low with a resulting low RE. Conversely, a low-profile item like a poor user interface becomes a high priority risk item because its combination with a moderately high P(UO) and a medium L(OU) yields a RE of 30.

�

Table 6-2 Risk Exposure Factors for Satellite Experiment Software

CAUTION!	Boehm explains there is much uncertainty in subjectively estimating the probability or loss associated with an unsatisfactory outcome, which is in itself, a major source of risk needing to be addressed as early as possible. He says one of the best ways to reduce this source of risk is to buy information that can give you insight into the situation. For instance, to determine whether fault-tolerant features will cause an unacceptable degradation in real-time performance, you can buy information by investing in a prototype. [Prototyping is discussed in Chapter 14, Managing Software Development.]

Best Practices Initiative’s Risk Management Method�tc "<Head 3 (14)>Best Practices Initiative’s Risk Management Method"�

The Program Manager’s Guide to Software Acquisition Best Practices, developed under the Software Acquisition Best Practices Initiative by the Software Program Manager’s Network (SPMN) [discussed in detail in Chapter 2, DoD Software Acquisition Environment], lists formal risk management as “Number One” of the nine recommended software acquisition best practices. To help program managers with risk management, the SPMN developed the following three-part method:

1.	Address the problem. All software has risk. The cost of resolving a risk is usually relatively low early on, but increases dramatically as the program progresses.

2.	Practice essentials.

·	Identify risk.

·	Decriminalize risk (i.e., protect the guilty),

·	Plan for risk.

·	Formally designate a Risk Officer (a senior member of the management team responsible for risk management). [NOTE: This does NOT mean that the RO is the only one responsible for risk! It is everyone’s job to watch out for risk and work to manage it.]

·	Include in the budget and schedule a calculated Risk Reserve Buffer of time, money, and other key resources to deal with risks that materialize.

·	Compile a database for all non-negligible risks.

·	Include technical, supportability, programmatic, cost, and schedule risk.

·	Prepare a profile for each risk (consisting of probability and consequence of risk actualization).

·	Include risks over the full life cycle (not just your watch).

·	Do not expect to avoid risk actualization.

·	Keep risk resolution and work-arounds off the critical path by identifying and resolving risk items as early as possible.

·	Provide frequent Risk Status Reports to the program manager that include:

-	Top ten risk items,

-	Number of risk items resolved to date,

-	Number of new risk items since the last report,

-	Number of risk items unresolved,

-	Unresolved risk items on the critical path, and

·	Probable cost for unresolved risk versus risk reserve.

3.	Check Status.

·	Has a Risk Officer been appointed?

·	Has a risk database been set up?

·	Do risk assessments have a clear impact on program plans and decisions?

·	Is the frequency and timeliness of risk assessment updates consistent with decision updates during the program?

·	Are objective criteria used to identify, evaluate, and manage risks?

·	Do information flow patterns and reward criteria within the organization support the identification of risk by all program personnel?

·	Are risks identified throughout the entire life cycle, not just during the current program manager’s assignment?

·	Is there a management reserve for risk resolution?

·	Is there a risk profile drawn up for each risk, and is the risk’s probability of occurrence, consequences, severity, and delay regularly updated?

·	Does the risk management plan have explicit provisions to alert decision makers upon a risk becoming imminent?

As illustrated on Table 6-3, the Network’s Little Yellow Book of Software Management Questions gives a list of questions to help you understand key risk issues and the extent to which best risk management practices are being employed on your program.

�

Table 6-3 Risk Management Questionnaire

Team Risk Management Method�tc "<Head 3 (14)>Team Risk Management Method"�

The SEI has developed a cooperative risk management method called Team Risk Management (TRM) which views the joint government/industry team approach as a constant process throughout the life cycle. Effective communication about software risk (and systems risk) is addressed from a software perspective. The methods and processes for TRM create effective and continuous risk communications and a positive risk abatement environment within and among government and industry organizations. It also creates a nonthreatening atmosphere where risk is raised to higher levels of control, and actions are taken for its mitigation. With this methodology, effective plans can be put in place to manage risk before they become show-stoppers.

NOTE:	Although it is desirable to have provisions for TRM as part of the contract, the SEI has concentrated their work on building the team environment after contract award and the team is in place.

�
Team Risk Management Principles�tc "<Head 4 (12)>Team Risk Management Principles"�

TRM team-oriented activities involve the Government and contractor applying risk management methods together. The seven principles of TRM are illustrated on Table 6-4.

�

Table 6-4 Team Risk Management Principles

Team Risk Management Advantages�tc "<Head 4 (12)>Team Risk Management Advantages"�

TRM offers a number program advantages as compared to individual or group risk management. It also involves a change from past management practices and government-contractor relationships requiring new commitments by both. These new commitments may involve investment, particularly early in the program. However, one problem prevented can more than pay for the entire investment. Table 6-5 highlights common advantages found on programs implementing TRM. [HIGUERA95]

�

Table 6-5 Advantages of Team Risk Management

Team Risk Management on the NALCOMIS Program Example�tc "<Head 4 (12)>Team Risk Management on the NALCOMIS Program Example"�

During the movie Top Gun, you may have noticed sailors in green flight deck vests on the carrier deck scurrying to prepare Tom Cruise’s F-14 Tom Cat for launch. These were the unheralded, but much appreciated, squadron maintenance technicians who service and repair Navy and Marine aircraft in organizational maintenance activities (OMAs). According toCaptain Wayne Rogers, Program Manager of the Naval Aviation Logistics Command Management Information System (NALCOMIS), the objectives of his program are to make maintenance personnel’s job easier, and to be a combat force multiplier, as well as business transaction cost reducer. NALCOMIS for OMAs is the information deck plate that maintainers use in support of Navy and Marine Corps aviators.

As illustrated on Figure 6-11, the NALCOMIS OMA is a management information system (MIS) developed to support aircraft maintenance and material management functions. It received MAISRC approval for Milestone III full deployment in December 1994. NALCOMIS OMA was developed with production baseline syst�xe "F-14 Tom Cat"�em IOC achieved in less than three years. Today, over one third of Navy and Marine Corps squadrons use the NALCOMIS OMA.

�

Figure 6-11 NALCOMIS Local Repair Cycle [ROGERS95]

The program’s management approach featured the use of integrated program teams (IPTs) empowered with self-management to achieve goals and deliv�xe "Naval Aviation Logistics Command Management Inform"�er products in support of program cost, schedule, and performance guidelines. Risk management was accomplished through periodic review and assessment of key metrics by the Program Office, the Navy Management Systems Support Office (NAVMASSO) and program IPTs. The 20% critical software issues that take 80% of the developer’s time were constantly prioritized to achieve a timely production baseline. Weekly NAVMASSO release planning meetings were held to review development status.

Development status meetings in which the user p�xe "Major Automated Information System Review Council"�artook provided true participative risk management. The users, full members of the development team, dealt first hand and at all levels with all facets of the development, including internal testing, documentation development, training preparation, in addition to code development. This provided a unique insight into how cohesive development tradeoff decisions were made among the entire team. This aided effective communication, one of the hardest, but most important, development tasks. Software development remains a fragile process that is part systems engineering and part hu�xe "Navy Management Systems Support Office (NAVMASSO)"�man resource management. People management was 80% of the challenge in the NALCOMIS OMA development. Using an integrated program team approach built team consensus and led to integrated technical, business and oversight approaches.

�

Figure 6-12 One Third of All Navy/Marine Squadrons Use NACOMIS OMA

B-1B Computer Upgrade Risk Management Method and Example�tc "<Head 3 (14)>B-1B Computer Upgrade Risk Management Method and Example"�

Since it’s inception as the B-1A bomber, the B-1 has been the subject of negative press coverage. When President Ronald Reagan made the decision to produce the B-1 as the low-level penetrator B-1B variant in October 1981, the barrage of negative coverage intensified. The majority of negative press coverage has focused on avionics problems, which have largely been the result of software problems. In June 1992, the Air Force called for new conventional roles for the primarily nuclear deterrent bombers, the B-1B and the B-2A. According to First Lieutenant Daniel Stormont, the B-1B will require a systematic series of upgrades over the next fourteen years, nearly all of which will require the development of additional weapons delivery software. Managing the upgrade of the B-1B’s computers and associated software, will require judicious risk management procedures in all phases of the upgrade program.

�

Figure 6-13 Risk Management Filters Through All B-1B Upgrade Phases

Identified Risks�tc "<Head 4 (12)>Identified Risks"�

Many risk management lessons were learned on the B-1B upgrade program. One risk, true for any �xe "Reagan, President Ronald"�acquisition program, is funding. Make sure your limited available funding is not squandered on mistakes or misdirections. This requires a good, well-defined set of requirements and active management involvement in the upgrade. Maximize the use of COTS technology to help reduce program cost risk.

Another risk item is the recent initiative from �xe "Perry, SECDEF William J. Jr"�Secretary of Defense William J. Perry [see Chapter 2, DoD Software Acquisition Environment]. The B-1B upgrade is one of the first programs to implement this policy. Essentially, the directive requires the use of best commercial practices wherever possible and to apply MilSpecs only when no suitable commercial standard exists. In some cases, this is very simple to do: the military standard for the Ada programming language (�xe "MIL-STD-1815A"�MIL-STD-1815A) is also an ISO standard. In other cases (i.e., �xe "DoD-STD-2167A"�DoD-STD-2167A), equivalent commercial standards and practices were (at that time) difficult to identify. [See Volume 2, Appendix D for a list of government and commercial software standards.] The issue is made more difficult by the fact that many companies bidding on military contracts do not do commercial work as well (at least not in the same division), thus they frequently are not familiar with current commercial practices.

Finally, the computer upgrade is still required to comply with the (then) appropriation public law mandating the use of the Ada programming language. If modifications to existing code and new code exceed 33% of the size of the CSCI, then the existing JOVIAL code must be converted to Ada. A new processor that cannot support the MMP ISA will also require conversion of the code to Ada. This is a good step to take from a supportability standpoint, but it does require regression testing and recertification, especially for terrain-following and nuclear software.

The best teacher is experience. Therefore, the B-1B Conventional Weapons team has tried to apply lessons-learned during the initial procurement of the B-1B. The lessons most appropriate to the current upgrade include:

·	You can never have enough spare memory and throughput;

·	Never rely on contractor claims that any firmware item will not require change over the system’s life cycle; and

·	Conducting a flight test program with a fly/fix/fly strategy is very inefficient.

Contractor Risk Management Teams�tc "<Head 4 (12)>Contractor Risk Management Teams"�

One of the tasks the prime contractor assumed was to set up and administer a risk management program. Their approach has been to set up a system of integration control teams (government/contractor) to identify and manage risk areas, as illustrated on Figure 6-14. In addition there are risk management efforts to identify and track risks at the product level by the product teams and at the systems level by the Systems Engineering Team.

�

Figure 6-14 Contractor Risk Management Teams [STORMONT95]

Program Office Estimate�tc "<Head 4 (12)>Program Office Estimate"�

An important task in the process of getting CMUP on contract was the �xe "Program Office Estimate (POE)"�Program Office Estimate (POE). This required an in-depth cost and schedule analysis of each major task in the program. For the computer upgrade, the software was modeled using the PRICE-S parametric estimation model [discussed in Chapter 8, Measurement and Metrics] and was validated against the past performance of the contractors on sustainment efforts. The hardware was estimated using module-level development and production costs for the �xe "F-15 Strike Eagle:VHSIC Central Computer (VCC)"�F-15 VHSIC Central Computer (VCC), since this computer was considered a good representation of a typical system currently in the field. Life cycle costs were also estimated for both hardware and software. In addition to allowing the SPO to prepare the most accurate budget request possible, this estimate helped identify areas of potential cost and schedule risk.

Integrated Risk Management Process�tc "<Head 4 (12)>Integrated Risk Management Process"�

The �xe "Risk:Integrated Risk Management Process (IRMP)"�Integrated Risk Management Process (IRMP) is a new Aeronautical Systems Center (ASC) initiative. The B-1B CMUP was the first program to successfully incorporate the IRMP as part of the contracting process. The IRMP extends and augments the program office estimate discussed above by combining it with independent potential risk area evaluations. Experts from the engineering and financial communities at ASC were brought in to take an independent look at the technical content, budget, and schedule of the program. The resulting assessment was provided to the B-1B SPO. Members of the SPO then worked with the evaluators to mitigate risk areas identified in the IRMP. This integrated process provided a vehicle for honest evaluations and analysis of program risk without the finger-pointing that frequently occurs when an outside agency evaluates a SPO’s efforts. The assessment from the IRMP identified several areas requiring the SPO’s attention which were addressed before CMUP contract award.

Chief Engineers’ Watchlist�tc "<Head 4 (12)>Chief Engineers’ Watchlist"�

	

The B-1B program is using a new spin on the old watchlist technique. While risk item lists are being maintained by the product and systems engineering teams, this list allows contractor chief engineers and the SPO to identify and track risk items of particular interest or importance. These items may not be on any other watchlists. Often the product teams or the systems engineers at the working level may not recognize a risk apparent to technical personnel at the management level. This list ensures these items are not overlooked.

Computer Resources Working Group�tc "<Head 4 (12)>Computer Resources Working Group"�

One of the most important risk management tools available to the B-1B SPO is the �xe "Computer Resources Working Group (CRWG)"�Computer Resources Working Group (CRWG) meetings held quarterly in Oklahoma City. [The B-1B is supported by the Oklahoma City Air Logistics Center at Tinker AFB.] In addition to the task of maintaining the �xe "Computer Resources Life Cycle Management Plan (CRL"�Computer Resources Life Cycle Management Plan (CRLCMP), the CRWG provides a forum for in-depth technical discussions among software developers, hardware vendors, Air Combat Command (ACC), SPO members, and interested outside agencies [i.e., Air Force Operational Test and Evaluation Center (AFOTEC), discussed in Chapter 14, Managing Software Development]. Open communications between all B-1 community members are encouraged in these meetings. Issues can be identified and frequently resolved at the working level through the CRWG. Any issues that can not be resolved at the working level are brought to the attention of upper management at the executive out-brief. The CRWG has been the B-1B SPO’s most valuable tool for software-intensive systems risk management. [STORMONT95]

Risk Management Planning�tc "<Head 2 (14)>Risk Management Planning"�

It is important to be aware of your software risk factors. It is also important to know about risk management methods and have one implemented on your program. However, the real key to software risk management is planning and implementing your plan. �xe "Risk:Risk Management Plan (RMP)"�Risk management planning is an on-going effort to identify all significant risk probabilities and take action to minimize their occurrence and/or impact. Planning prevents most risks from becoming problems. If you do not know your risks and their potential impacts, you are planning to let the risks fester. Furthermore, the events used as decision points in a contracted effort will have greater meaning if they correspond to those points when important program uncertainties become known. Good management not only entails reasonable estimation, it means leaving nothing to chance (or at risk) that you can control through planning. Keeping an historical perspective on what has and has not worked for programs similar to yours is vital. East Roman Emperor and general, Maurice, having defeated the Persians and Avars circa the year 600AD, taught us that

In battles and in every action against the enemy, the wise general, even the most courageous, will keep in mind the possibility of failure and defeat and will plan for them as actually occurring…The sharp general takes into account not only probable dangers, but also those which may be totally unexpected. [MAURICE600AD]

Risk Management Plan�tc "<Head 3 (14)>Risk Management Plan"�

The Risk Management Plan (RMP) is a controlling document that states how risk analysis and procedures are applied to your program. It describes all aspects of the risk identification, estimation, evaluation, and control process. The initial part of this plan is the �xe "Risk:Risk Estimate of the Situation (RES)"�Risk Estimate of the Situation (RES), based on the standard Navy �xe "Commander’s Estimate of the Situation (CES)"�Commander’s Estimate of the Situation (CES). [NAVY95] The RES clearly identifies four software-intensive program elements:

·	The objectives (measurable and controllable program goals);

·	The strategies (broad constraints or rules under which the goals of the program can be met);

·	The tactics (the specific actions, the what that happens during a given situation); and

·	The resources (constrain the tactics by dictating to use).

	

Each of these elements are spelled out in the �xe "Software Development Plan (SDP)"�Software Development Plan (SDP) [discussed in Chapter 14, Managing Software Development]. Grouping each of these element descriptions together aids in determining the variables and environment, both technical and nontechnical, in which the system under development’s is to operate. Early identification of false efforts and quick recognition of missing ones — both precursors to schedule delays and cost overruns — are the primary RES goals. The RES helps us understand how each element interacts with and affects other elements so we can determine how they contribute to overall program success criteria.

[CHARETTE89]

The second part of the RMP is the �xe "Risk:Risk Aversion Plan (RAP)"�Risk Aversion (or mitigation) Plan (RAP), a detailed plan for risk resolution after the general risk analysis process has been conducted. For each identified risk, it states what actions (i.e., risk avoidance, control, assumption, or transfer) will be taken for its mitigation. The RAP should include, as a minimum:

·	A breakdown of all program risk areas and representative risk factors in each area;

·	Identification of priority risk items with a ranking of importance in relation to program objectives;

·	Identified alternatives and their costs;

·	Recommended mitigation strategy for each risk item including action plans for each (risk items requiring no action should also be noted);

·	Integration strategy for individual risk aversion plans (with attention to combining action plans for more than one risk item);

·	An integration strategy for the RES, RMP, and RAP;

·	Assignment of resources needed to implement the risk aversion strategy which includes cost, schedule and technical considerations;

·	Description of the Risk Management Team, its responsibilities, how it fits into the total program, and the person to be assigned the Risk Champion;

·	Implementation start date, schedule, and key milestones;

·	Criteria for success (i.e., when will the risk be considered mitigated) and the monitoring approach to be used;

·	Tracking, decision, feedback points, and monthly reports, including when the priority risk item list and plans are to be updated;

·	Contingency plans for each prioritized risk; and

·	Upper management sign-off of the RAP. [CHARETTE89]

Thus, your RMP consists of an integrated approach to each risk item you identify. It should be based on answering the standard questions of why, what, when, who, where, how, and how much. For example, if you plan to buy information by building a prototype on fault-tolerant features, that same prototype may be used to reduce latent software defect uncertainties or to involve the client in interface design. Also, your RMP must be thoroughly integrated into your SDP. If you have identified the need for a 10-week prototype development and demonstration period, that time must also be added to the overall program schedule so it is current and realistic. [See Chapter 12, Strategic Planning, for a discussion on schedule and cost estimating.]

Contingency Planning�tc "<Head 3 (14)>Contingency Planning"�

Napoleon’s Military Maxim Number 8 states:

A general-in-chief should ask himself frequently in the day, “What should I do if the enemy’s army appeared now in my front, or on my right, or on my left?” If he has any difficulty in answering these questions he is ill posted and should seek to remedy it. [NAPOLEON31]

Contingency planning addresses those risks that require monitoring for some future response should the need arise. �xe "Roetzheim, William H"�Roetzheim gives an example of when he was a program manager on a contract to develop a software-intensive system for the Navy. The system was to graphically plot specific target positions by monitoring tactical Navy data link circuits. He was told the Government would supply the software interface (to be designed by government personnel) to convert the existing electrical signals into a compatible format with his system. After interviewing the government design team, Roetzheim was convinced they did not have the necessary experience in the specialized Navy circuitry to successfully perform the task. He, thus, concluded that the probability of failure for this critical item was fairly high. The situation was further compounded by the fact that his software program was on a tight schedule, with final delivery culminating in an at-sea demonstration during a major fleet exercise. In short, the consequences of failure for his program were extreme. One month prior to the full-scale demonstration, his worst fears were confirmed. The government-supplied board failed dismally during the first live test run. Luckily, his contingency planning included the following actions:

·	He had company engineers rough out an initial interface design in case company in-house development was required;

·	Based on the initial design, the company archives were searched and all required technical data and specialized parts were located and on-hand;

·	Company individuals capable of performing the task were identified and their availability was confirmed if required for an emergency job;

·	Overtime for the engineering department was approved by management; and

·	A development plan, including all cost estimates and a statement of work, were prepared and all the information needed to write a delivery order was ready.

The afternoon of the live test run failure, Roetzheim convinced his Navy contracting officer to allow him to begin work on the interface in parallel with the government staff. Although, as feared, the government-furnished board never did work, the at-sea demonstration was successfully completed using the in-house developed interface. If he had not identified this high-risk item and performed adequate contingency planning, his software program would have been a high-profile, embarrassing fiasco — damaging his reputation and the possibly of future work for his company.

[ROETZHEIM88]

Fairley uses an example of late hardware delivery risk. His contingency plan was to monitor the hardware vendor’s progress, while developing a software emulator of the risky component. When contingency planning, you must also justify the added cost of preparing a contingency plan, monitoring the situation, and implementing action plans. If the cost is justified (as in Roetzheim’s case where the cost of failure was extreme), plan preparation and vendor monitoring might be implemented immediately. Whereas, the action to develop an emulator might be postponed until the risk of late delivery becomes a real threat (i.e., the vendor’s schedule slipped beyond some predetermined unacceptable threshold.) This, Fairley explains, brings up the issue of adequate lead time. When should you start to develop the emulator? The answer comes from early analysis of the probability of late delivery and its consequences. As the probability becomes greater, the urgency to build the emulator becomes greater. With proper contingency planning, you will establish a drop-dead date, set aside funds and personnel to implement your plan, while still staying within your preplanned delivery schedule. [FAIRLEY94] Contingency planning involves the following:

·	Specifying the nature of the potential risk;

·	Considering alternative approaches;

·	Specifying constraints;

·	Analyzing alternatives; and

·	Selecting an approach.

The Contingency Plan includes:

·	Risk factors;

·	Tracking methods;

·	Responsible parties;

·	Thresholds;

·	Resource allocations; and

·	Constraints. [FAIRLEY94]

Crisis Management Plan�tc "<Head 4 (12)>Crisis Management Plan"�

Contingency planning involves preparing a Contingency Plan which includes a Crisis Management Plan and a Crisis Recovery Procedure. Contingency Plans address risks not identified in the RMP action plans discussed above. The Crisis Management Plan is the backup plan used if the Contingency Plan fails to resolve the risk within a specified time. The Crisis Recovery Procedure is invoked when the crisis is over, whether it had a positive or negative outcome.

A crisis is an overall show-stopper! All program effort and resources must be focused on resolving the crisis situation. Once in crisis, you must muster your forces, go on the offensive, and attack! Because if you do not attack this type risk, it will attack you and win! As Frederick the Great told his generals before battle,

Gentlemen, the enemy stands behind his entrenchments, armed to the teeth. We must attack him and win, or else perish. Nobody must think of getting through any other way. If you don’t like this, you may resign and go home. [FREDERICK47]

A crisis occurs when your Contingency Plan fails to resolve an unforeseen event. If you do not act quickly to manage a major unforeseen negative event, you may as well resign and go home. This would have happened if perhaps Roetzheim were unable to allocate enough engineers or hours to develop the interface. Once the government-supplied one failed, he would have been out of time, over budget, and still not have the board he needed to complete the at-sea demonstration successfully. Before a crisis materializes, you may be able to define some elements of crisis management, such as the responsible parties and a drop-dead date, but you may be hard pressed to plan the exact details until the crisis occurs. Fairley explains what you must do in such a situation:

·	Announce and publicize the problem;

·	Assign responsibilities and authorities;

·	Update status frequently;

·	Relax resource constraints (fly in experts, bring on emergency personnel, provide meals and sleeping facilities to keep people on site until the crisis is resolved, etc.);

·	Have program personnel operate in burnout mode;

·	Establish a drop-dead date;

·	Clear out unessential personnel. [FAIRLEY94] [Also see Chapter 16, The Challenge, for a discussion on “What To Do With a Troubled Program.”]

Crisis Recovery Plan�tc "<Head 4 (12)>Crisis Recovery Plan"�

Once recovered, you must examine what went wrong, evaluate how your budget and schedule have been affected, and reward key crisis management personnel. During crisis recovery, you should:

·	Conduct a crisis postmortem, fix any systematic problems that caused the crisis, and document lessons-learned; and

·	Recalculate cost and time to complete the program, rebaseline, and update your schedule and cost estimates to reflect these new projections. [See Chapter 12, Strategic Planning.]

Risk Element Tracking�tc "<Head 2 (14)>Risk Element Tracking"�

Another important function is risk element tracking. �xe "Risk:Element tracking"�Risk element tracking involves identification of your program’s highest-risk issues and tracking progress towards resolving those issues through subsequent progress reports. The major risk management benefits are similar to those of cost/schedule/performance tracking plus the added ones of identifying and maintaining a high-level risk consciousness. Tracking becomes critical because the one risk attribute whose influence is difficult to predict is “time.” Generalizations about risk made early in the program can (and often do) decay with time. One reason for performing risk tracking is to keep a predictable, unpredictable, or unknown risk from becoming a known one. Tracking occurs after the decisions about mitigation strategies and tactics have been implemented to:

·	Check if the consequences of our decisions are the same as envisioned;

·	Identify opportunities for refinement of the RAP; and

·	Help provide feedback for future decisions about controlling those new or current risks not responding to risk mitigation or whose nature has changed with time. [CHARETTE89]

Risk Tracking Methods�tc "<Head 3 (14)>Risk Tracking Methods"�

As you will learn in Chapter 8, Measurement and Metrics, the most effective way to track risk is measurement. The significant risk reducing benefits achieved through a comprehensive measurement program cannot be overstressed. Metrics data provide the means to compare your risk elements with historical data, pinpoint risk drivers, and determine alternative risk reduction choices. You must aggressively track and control the risk drivers affecting your program.

Cost/schedule/performance tracking involves using techniques such as WBSs, metrics, quality indicators, activity networks, earned-value methods [discussed in Chapter 15, Managing Process Improvement] to determine and track program progress with respect to plans, schedules, and budgets. Cost/schedule/performance tracking is useful because potential schedule slippages, cost overruns, and performance shortfalls are identified early, and their impact on other interdependent system elements reduced. Other risk tracking methods are peer inspections, reviews, audits [also discussed in Chapter 15], and CRWG meetings [discussed above].

EXAMPLE:	One highly successful company, never more than 10% above or below predicted cost and schedule, established a Risk Management Database. For each risk it assesses impact (high, medium, low) and probability of occurrence (high, medium, low), and forces managers and engineers to agree on dollar and schedule impacts for each risk. For each program, each month, impact and probability (including quantified cost and schedule impacts) risk levels are revisited. The database is kept current, with the risk analysis data and mitigation plans. The status of risks and their actions, corrections of RAP deviations, and dissemination of risk management knowledge to all affected parties, including senior management, is tracked and monitored.

ADDRESSING RISK IN THE RFP�tc "<Head 2 (14)>ADDRESSING RISK IN THE RFP"�

Andy Mills, from the US Army Communications and Electronics Command (CECOM) Software Engineering Directorate, has defined a risk-based source selection approach where offerors’ proposed technical approaches are evaluated and awarded based on how effectively they address software risk management. In your RFP, he suggests you incorporate sufficient emphasis on both proposal risk and offeror’s performance risk to ensure risk will be managed throughout the acquisition. The offeror’s proposed approach must provide a step-by-step detailed execution plan, as well as a detailed organization, process, technology, and design strategy. To aid in the evaluation process you also need to employ your own risk management methodology from a Government perspective. A standard means to evaluate risk simplifies the evaluator’s job, provides a more thorough evaluation, and increases the effectiveness of acquisition streamlining. [See Chapter 2, DoD Software Acquisition Environment, for a discussion on acquisition streamlining.]

Offeror’s Risk Methodology�tc "<Head 3 (14)>Offeror’s Risk Methodology"�

The effectiveness of acquisition streamlining depends on the establishment of a planned acquisition path which manages risks. By requiring a risk-based approach, offerors’ proposals should state how they will plan and schedule software activities based upon realistic assessments of technical challenges and risks. They should describe how they plan to attack software risks through an appropriate choice of software architectures, reuse strategies, requirements management processes, metrics, development models, tools, and technologies. All these are elements must be addressed in offerors’ proposals. In fact, the offeror’s proposal is the initial plan for the software development. Subsequent adjustments of the approach often become necessary, as the focus of program risk shifts during development. However, a generic software approach that does not plan for program and product risks, will surely result in having to resolve otherwise foreseeable problems when resources are already spent or committed elsewhere.

�

Risk-Based Source Selection�tc "<Head 3 (14)>Risk-Based Source Selection"�

Proposal evaluation has traditionally depended on the opinions of teams of highly-qualified technical personnel participating in the source evaluation and selection process. Using a software risk evaluation methodology extends the capabilities of evaluation personnel by facilitating risk identification and by focusing attention on the feasibility and merits of each offeror’s approach.

To understand what is meant by requiring a proposal based on risk management, assume that every software development activity is traceable to the mitigation of one program risk or another. An offeror’s proposal should organize main software development risks by building their approach on exploiting opportunities for their mitigation whenever possible. Table 6-6 provides a typical list of proposal areas. These areas represent possible solution areas for mitigating software development risks. From industry’s perspective, the proposal tells the Government why the proposed approach is the best possible. For each element of the proposal, industry should point out in what manner the proposed activity contributes to risk reduction.

�

Table 6-6 Proposal Items or Solution Areas [MILLS95]

The first step is really not that far from current practice. Generally feasibility and risk are firmly addressed in proposals at present. However, the purpose of organizing the proposal around risk is to facilitate obtaining a well-planned software development approach which can be readily evaluated for its strength in the mitigation and management of program risks. A systematic method for risk evaluation is a logical second step. Current source selection teams perform an evaluation on each part of the technical proposal in a systematic manner, one step at a time. Additional risk identification should be employed, such as the SEI’s Software Development Risk Taxonomy, as illustrated on Table 6-7, and associated Taxonomy Based Questionnaire (TBQ). The TBQ addresses source selection and poses critical questions within each of the detailed taxonomy attributes which are intertwined within risk reduction and management activities for each taxonomy topic. This permits assessing the feasibility of a proposed approach in detail without prescribing required activities or practices.

�

Table 6-7 Taxonomy of Software Development Risks [CMU/SEI-93-TR-6]

To realize the benefits of risk-based acquisition we must permit industry to freely determine and apply best practices to leverage industrial competitiveness. Beyond past performance, strong proposal risk evaluation helps ensure that software developers impose sufficient process requirements and discipline upon themselves. For industry, a risk-based strategy provides a long awaited return on investment in corporate and enterprise capabilities. A risk-based methodology enables the use of nongovernment practices where and when they make sense for defense programs and gives an increased incentive to industry to submit proposals which can be managed without extensive oversight. A risk-based RFP enables better management of program risk, a more successful program, increased use of modern technical approaches, less documentation expense, effective partnering, and the benefits derived from increased program visibility and insight. [MILLS95]

�

Performance Risk Analysis Group (PRAG)�tc "<Head 3 (14)>Performance Risk Analysis Group (PRAG)"�

The PRAG must be staffed by senior-level individuals with the competence and experience necessary to clearly assess offerors’ competence and the relevancy of the offerors’ past contract performance as it compares to the efforts required in your RFP. Too often we have assigned these duties to junior personnel who lack the experience to make these critical judgments. For past experience to impact the source selection process, the data collected must be timely, relevant to the proposed acquisition, and useful to the decision-maker. Therefore, the first step in a successful PRAG is to select the appropriate senior people to staff it.

PRAG members must never accept at face value the write-ups they obtain from Contractor Performance Assessment Reports (CPARS) or questionnaires. They must, in all cases, ensure that they have personally contacted the government program managers and contracting officers to obtain the right level of detail to fully understand the type of effort performed under a reported contract and the rating. The PRAG needs first hand, accurate information to help ascertain relevancy and specific performances. PRAG members must also investigate and report to the Source Selection Authority (SSA), cause and effect of rating changes and any other inconsistencies in the data. The PRAG team and the quality of their analysis can be the difference between a good SSA decision and a mistake.

Software Risk Management Begins With You!�tc "<Head 2 (14)>Software Risk Management Begins With You!"�

This chapter has identified the need for risk management in the software acquisition and engineering discipline. It has also identified software risk factors, techniques and processes for managing risks, and formal methods you should consider for application to your program. This chapter further described the importance of risk management planning, risk element tracking, and addressing risk in the RFP. In short, you have the necessary information to implement software risk management on your program. It’s now up to you to identify your software risk factors, and take appropriate steps to implement formal methods to manage software risk. Software risk management begins with you!

REFERENCES�tc "<Head 2 (14)>REFERENCES"�

[AUGUSTINE83] Augustine, Norman R., Augustine’s Laws, American Institute of Aeronautics and Astronautics, New York, 1983

[BLUM92] Blum, Bruce I., Software Engineering: A Holistic View, Oxford University Press, New York, 1992

[BOEHM91] Boehm, Barry W., “Software Risk Management: Principles and Practices,” IEEE Software, January 1991

[CHARETTE89] Charette, Robert N., Software Engineering Risk Analysis and Management, McGraw-Hill Book Company, New York, 1989

[CHURCHILL99] Churchill, Sir Winston, The River War: An Historical Account of the Reconquest of the Sudan, 2 Volumes, Longmans, Green, and Company, London, 1899

[EVANS94] Evans, “Thread of Failure: Project Trends That Impact Success and Productivity,” NewFocus, Number 203, Software Program Managers Network, Naval Information System Management Center, March 1994

[FAIRLEY94] Fairley, Richard, “Risk Management for Software Projects,” IEEE Software, May 1994

[FREDERICK47] Frederick II the Great, “Instructions to His Generals,” 1747, included in T.R. Phillips, editor, Roots of Strategy, Book 1, Stackpole Books, Harrisburg, Virginia 1985

[HALL95] Hall, Elaine M., and F. Carol Ulrich, “Streamlining the Risk Assessment Process,” paper presented to the 7th Annual Software Technology Conference, Salt Lake City, Utah, April 1995

[HIGUERA95] Higuera, Ronald P., “Team Risk Management,” CrossTalk, January 1995

[LATIMES88] “B of A’s Plans for Computer Don’t Add Up,” The Los Angeles Times, February 7, 1988

[LEE33] Lee, GEN Robert E., as quoted by J.F.C. Fuller, Grant and Lee: A Study in Personality and Generalship, Eyre and Spottiswoode, London, England, 1933

[MARCINIAK94] Marciniak, John J., Editor in Chief, Encyclopedia of Software Engineering, Volume 2, John Wiley & Sons, Inc., New York, 1994

[MARSHALL41] Marshall, GEN George C., address to the first officer candidate class, Fort Benning, Georgia, September 18, 1941

[MAURICE600AD] Maurice, Flavius Tiberius, The Strategikon, circa 600AD.

[MILLS95] Mills, Andy, “Software Acquisition Improvement: Streamlining Plus Risk Management,” paper presented to the Seventh Software Technology Conference, Salt Lake City, Utah, April 1995

[NAPOLEON31] Napoleon Bonaparte I, The Military Maxims of Napoleon, 1831, David Chandler, editor, George C. D’Aguilar, translator, Greenhill Books, London, 1987

[NAPOLEON55] Napoleon Bonaparte, as quoted by Christopher J. Herold, editor, The Mind of Napoleon: A Selection from His Written and Spoken Words, Columbia University Press, New York, New York, 1955

[NAVY95] Taught in the Employment of Naval Forces course, “The Military Planning Process,” US Naval War College, Newport, Rhode Island, 1995

[PRESSMAN93] Pressman, Roger S., “Understanding Software Engineering Practices: Required at SEI Level 2 Process Maturity,” Software Engineering Training Series briefing presented to the Software Engineering Process Group, July 30, 1993

[ROETZHEIM88] Roetzheim, William H., Structured Computer Project Management, Prentice Hall, Englewood Cliffs, New Jersey, 1988

[ROGERS95] Rogers, CAPT Wayne, (USN), “A DoD Incremental Development Success Story: NALCOMIS OMA,” paper presented to the Seventh Software Technology Conference, Salt Lake City, Utah, April 1995

[STORMONT95] Stormont, 1st Lt Daniel (USAF), “Risk Management for the B-1B Computer Upgrade,” paper presented to the Seventh Software Technology Conference, Salt Lake City, Utah, April 1995

Version 2.0

CHAPTER 6 Risk Management

6-� PAGE �37�

Version 2.0

6-� PAGE �2�

