�tc "<>"�

CHAPTER

 5

Ada: The Enabling Technology�tc "<>Ada\: The Enabling Technology"�

EDITOR’S NOTE: Graphics quality will improve when printed.

CHAPTER OVERVIEW�tc "<Head 3 (14)>CHAPTER OVERVIEW"�

No other software language complements and facilitates the software engineering process better than Ada. Ada combines, in a coherent manner, the best features of many previous languages used by DoD to remove errors early, to improve software reliability, to permit software reuse, and to simplify system maintenance. As Mosemann explains,

We use Ada because Ada facilitates software engineering and we need engineered software. But let me suggest it is not only military software that must be engineered. Management information systems, process control, telecommunications — every large scale commercial application of which I can conceive requires the robustness and complexity control of engineering techniques. The military requirement for engineered software is not unique. And since Ada is, for the foreseeable future, the language for software engineering, a strong and wide-ranging Ada capability is vital to the Air Force, to the US Defense industrial base, and the country as a whole.

[�xe "Mosemann, Lloyd K., II"�MOSEMANN89]

Although initially developed by DoD for military applications, Ada offers advantages for many other application domains due to the methods its developers used to arrive at the final definition of the language. [NATO86] The latest version, Ada 95, embodies object-oriented programming and is suited for all application domains. In this chapter you will learn why Ada’s features make it the best language choice where safety and reliability are paramount, how Ada enables the principles of software engineering, the advantage’s of Ada’s use, technology considerations, new features found in Ada 95 (an ISO standard and the world’s first internationally standardized object-oriented programming language), and development and management pitfalls to avoid. Ada implementation is discussed in light of whether your program is a new start, on-going, or you are responsible for the maintenance of legacy software-intensive systems.

Ada is a language designed to incorporate the principles of software engineering that enable the fulfillment of software engineering goals [discussed in Chapter 4, Engineering Software-Intensive Systems]. Ada contains a full set of control structures and statements to produce reliable software while reducing life cycle costs. It differs from other languages in its ability to define types and subprograms, and by its strong support of tasking, real-time and systems programming, and packaging. Ada accomplishes system-level programming by enforcing strong control over data representation and access to system-dependent properties. Ada packages are collections of logically-related entities (types, data, subprograms, and tasks). Ada enables modularity by allowing data, types, and subprograms to be packaged and compiled separately. This leads to physical modularity that permits independent development and testing of small packages before they are integrated into the larger application. The Ada package is made up of two parts: the specification (information visible to the user and other units) and the body (details invisible to the user and other units). This separation of specification and body within the package enables logical modularity and allows other units to access only the logical properties (not the implementation details) of the package. [ALLEN92] All these features enable software that is reliable, supportable, and reusable.

There are several technology issues to consider if you are developing a new system or upgrading an old one. These include compiler maturity, run-time efficiency, support tools, impacts on requirements and design, porting to other resources, and re-engineering [discussed in Chapter 11, Software Support]. Selecting a compiler is a serious management decision to be addressed in your Risk Management Plan. You need to select a mature, validated compiler that fulfills your program-specific requirements. You should use support services and available benchmarks to help in your selection. Ada applications must interface with other systems; therefore, development of open system environments are essential. Operating systems, databases, graphics, and windowing environment technology issues demanding your attention are covered here.

�

�tc "<>"�

CHAPTER

 5

Ada: The Enabling Technology�tc "<>Ada\: The Enabling Technology"�

Ada: Because it’s safe�tc "<Head 2 (14)>Ada\: Because it’s safe"�

One of the main design goals in developing the Ada language was to facilitate safety in weapon systems. Lieutenant General Robert �xe "Ludwig, Lt Gen Robert H"�Ludwig (USAF) underscored this when he stated:

Ada is the language of choice where human life is at stake. Sometimes software people spend so much time staring at their computer screens, they forget that our fellow warriors are strapping on your software and putting their lives on the line. When human life is at stake, the question is not what language is the easiest to use or the most popular, it is what language will give us the highest safety and reliability. NASA, the FAA, commercial airliner companies, and many others all chose Ada for the same reason. [LUDWIG921]

Ada’s Eagle — Our Safest Bird of Prey�tc "<Head 3 (14)>Ada’s Eagle — Our Safest Bird of Prey"�

If you have to go to war today, there is probably no better place to fight it than from the cockpit of an �xe "F-15 Strike Eagle"�F-15 Strike Eagle, touted as being “one of the most capable, most cost-effective, and safest aircraft now available.” With an air-to-air combat record of 96.5 wins to zero losses, and with a loss rate from all other causes (excluding combat) of approximately 2.6 per 100,000 flight hours, the Eagle is the safest fighter in the US inventory. [AW&ST94] This version of the F-15 is referred to as “Ada’s Eagle” by the joint program team who built the �xe "Ada-based Integrated Control System (ABICS)"�Ada-based Integrated Control System (ABICS) for her athletic airframe. Beefed-up and souped-up, Ada’s Eagle can turn-and-burn with the best of them. In addition to a quick reaction capability, the Ada-based integrated flight and fire control technology allows for highly lethal air-to-air gunnery prowess, in addition to mighty air-to-surface muscle (the Strike Eagle can unleash up to 24,500 pounds of ordnance with an accuracy that rivals any purebred bomber.) [DANE92]

�

Figure 5-1 Ada’s Eagle: Our Safest Fighter

The new F-15E has approximately 2.3 million lines-of-code, a good portion of which enables the weapon systems officer (WSO) [called the “wizzo”] to easily select targets, plot intercepts, and choose munitions, allowing the pilot to perform his mission undistracted. Equipped with �xe "Low Altitude Navigating Infrared for Night (LANTIR"�LANTIRN night attack systems and �xe "APG-7 radar"�APG-7 radar, the Eagle can locate a vehicle in a jungle or select and hit the door of a house in the middle of town. [AW&ST90] The crew can perform their mission with confidence and accuracy because Ada is governing their aircraft’s mission-critical and flight-critical systems which manage its flight controls, fire controls, navigation, and sensor systems. As Lt Gen Ludwig remarked, “It is truly amazing that today two people in that F-15E can accomplish in one sortie what it took a thousand men in 100 bombers, with many lost lives on every mission, to do in World War II.”

NOTE:	See Chapter 1, Software Acquisition Overview, for more Ada success stories about the F-22 and Boeing 777.

Ada: BECAUSE IT’S SMART�tc "<Head 2 (14)>Ada\: BECAUSE IT’S SMART"�

Saving lives is one of the many end-products of why we use Ada. How we achieve that product is another reason why Ada is the language of choice for DoD. General Ronald �xe "Yates, Gen Ronald W"�Yates (USAF retired) defined Ada as “more than a common language. It is an enabling technology for software engineering.” [YATES91] The Software Engineering Institute (�xe "Software Engineering Institute (SEI)"�SEI) states:

Ada is unlike other languages, however, in the degree to which it fosters and supports the practice of software engineering principles. These design principles are believed to lower software development costs, increase software quality, and lower maintenance costs, especially for large or complex systems. In effect, these features and the structure of the language make it easier to develop software that is more understandable and more maintainable. [SEI90]

�

Ada Is for All Domains�tc "<Head 3 (14)>Ada Is for All Domains"�

As technologies have evolved, the similarities among weapon system, C3, and MIS domains have outweighed any differences, making Ada a best practice for all. Although originally developed for real-time weapon systems applications, Ada has been used in developing MISs in both the government and private sectors since the first Ada compilers became available. In fact, the new version of Ada, �xe "Ada:Ada 95"�Ada 95, includes advanced features for enhancing the Ada MIS environment.

Another indicator of why Ada is not just for weapons systems is the phenomenal growth in its use within the �xe "Ada:Commercial market"�commercial sector. The US market for Ada hardware and software products was $975 million in 1989. If current growth trends persist (20% increase per year), by 1996, the market is expected to reach between $1.8 and $2.9 billion. [DIKEL91] This growth in Ada use has occurred because major corporations are increasingly embracing Ada where safety and reliability are their bread and butter. The majority of Ada’s non-weapon system applications are for core business capabilities, such as manufacturing process control, industrial design, telecommunications, and diagnostic analysis. Ada is used in a wide spectrum of industries, such as transportation, finance, health care, energy, and national security. [See the section below “Ada: Who’s Using It?” for examples.]

While Ada’s original focus was to be a single, flexible (yet portable) language for real-time embedded systems, its application domain has expanded to include many other areas, such as large-scale information systems, distributed systems, scientific computation, systems programming, telecommunications, process control and monitoring systems. [INTERMETRICS95] As with embedded weapon systems, Ada is the language of choice for other application domains where safety and reliability are paramount and a system abort is intolerable. Examples of large-scale �xe "Management information system (MIS):Ada MIS"��xe "Ada:MIS systems"�Ada MIS systems abound throughout the services. The Marine Corps has developed many MISs to include: paycheck systems (and upgrades), bar code scanner systems, materiel management systems, supply accounting systems, financial disbursement systems, and inventory tracking systems. The Army, requiring Ada for all software developments, used Ada to build two major MISs: the Standard Installation/ Division Personnel System-3 (SIDPERS-3) and the Standard Finance System Redesign (STANFINS-5R). The Air Force has numerous program management systems, a word processor, training systems, data manipulation systems, accounting systems, and other financial information systems — all in Ada. [REED89]

It is to your advantage to realize that Ada is the language of choice for military and commercial software engineers who are building mission-critical, safety-critical, or security-critical systems that demand sturdy, supportable, portable, and transparent software. The DoD’s interest in engineered software translates directly into its interest in Ada. [GROSS92]

Ada’s Background�tc "<Head 3 (14)>Ada’s Background"�

The main issue with higher order languages (HOLs) has been standardization. When HOLs first became popular, hundreds of languages were developed and supported — many for specialized applications on specific computers. In DoD alone, some 400 different HOLs were used. Many of these languages were not well-suited for mission critical systems and other large military applications. Also, they were not controlled, so dialects proliferated. [NATO86] A standardized language became a necessity.

�

Standardization. �xe "Language, programming:Standardization"�Standardization of a language implies a stringent definition for �xe "Syntax"�syntax (or grammar; i.e., the way terms are combined) and �xe "Semantics"�semantics (what the terms mean). Any changes to the language must be rigorously controlled. The language’s compilers must be standardized, since any compiler deviation becomes a de facto language deviation. A standard language must also be portable (i.e., usable on different computers without modification). Agencies involved in language standardization include: the �xe "International Standards Organization (ISO)"�International Standards Organization (ISO), the �xe "American National Standards Institute (ANSI)"�American National Standards Institute (ANSI), the �xe "Institute of Electrical and Electronics Engineers"�Institute of Electrical and Electronic Engineers (IEEE), and DoD. DoD’s solution to the standardization problem was finally reached on January 22, 1983 when �xe "American National Standards Institute (ANSI):ANSI/MIL-STD-1815A"�ANSI/MIL-STD-1815A, Ada Programming Language, was put into effect — marking the standardization of the �xe "Ada:Standardization"�Ada language which was developed by DoD to standardize software development and support.

A standardized language had three benefits for DoD. First, software personnel in DoD and its contractor community had become fragmented with the proliferation of languages used for military software prior to 1983. This meant software professionals were very specialized and could not move readily from one program to another. Second, so many languages meant that DoD had difficulty in transporting software across computer environments. In addition to the cost of rehosting software, the diversity of development languages meant DoD could not easily reuse what it had as a capital investment of pre-developed, pretested legacy software components. Finally, the large number of languages meant that few commercial software tools were available for any given language. With the consolidation of the considerably large DoD software market into one language, tool makers would have a larger, single market upon which to concentrate their efforts. Thus, they would have the incentive to produce more and better tools competitively priced for DoD. To summarize, DoD anticipated significant savings in personnel, training, software reuse, and tools by consolidating its software into one standardized language — Ada. [SEI90]

It is normal practice for ANSI to automatically review a standard every 5 to 10 years for continued applicability. In 1988, the decision was made to revise Ada 83 and update the ANSI and ISO standards. [INTERMETRICS95] The culmination of this revision occurred on February 15, 1995, when Ada 95 became an ISO standard (ISO/IEC 8652:1995), making Ada the world’s first internationally-standardized object-oriented programming language!

An example of the benefits achieved by using a standardized language is the re-engineering of the 20-year old �xe "Standard Army Management Information Systems (STAM"�Standard Army Management Information Systems (STAMIS) to run in Ada. A pilot re-engineering program was conducted which included a part of the STAMIS called the �xe "Installation Materiel Condition Status Reporting S"�Installation Materiel Condition Status Reporting System (IMCSRS), which was written in �xe "Language, programming:Higher order (HOL):Common Business Oriented Language (COBOL)"�COBOL. By using a standardized language, the Army was able to bypass coding many of the modules by using components from the �xe "Reuse:Repository:Reusable Ada Products for Information Systems Deve"�Reusable Ada Products for Information Systems Development (RAPID) library [now the �xe "Reuse:Repository:Defense Software Repository System (DSRS)"��xe "Defense Software Repository System (DSRS)"�Defense Software Repository System (DSRS)] [see Chapter 9, Reuse]. They were able to submit reusable generic modules developed for STAMIS to the library for use in future DoD programs. Programmer work loads were also drastically reduced — two programmers with no previous Ada experience built the IMCSRS in a record 4½ months.

In an interview with Government Computer News, �xe "Paige, Emmett, Jr"�Emmett Paige, Jr., Assistant Secretary of Defense for C3I, reasserted his support of Ada. He stated, “I think the problems that brought us to Ada still exist.” He emphasized that the real cost of software-intensive systems lies in supporting the system after it is deployed, not in its development. “That’s where Ada was supposed to help us,” he said, “and I believe it has.” [PAIGE93]

Ada: BECAUSE IT ENABLES SOFTWARE ENGINEERING�tc "<Head 2 (14)>Ada\: BECAUSE IT ENABLES SOFTWARE ENGINEERING"�

The Ada language was developed to support software engineering goals through built-in features that draw on the software engineering principles. However, using Ada alone will not automatically result in the production of well-engineered software. It must be used in conjunction with the application of software engineering principles. As Lieutenant General Albert J. �xe "Edmonds, Maj Gen Albert J"�Edmonds (USAF), while Director for Command, Control, Communications, and Computer Systems, Joint Chiefs of Staff, stated, the �xe "F-22 Advanced Tactical Fighter"�F-22 Dem/Val program “wasn’t a success only because of the selection of Ada as the programming language. It was a success because leadership was committed to a disciplined approach to software development.” [EDMONDS932] If you thoroughly understand the principles of software engineering and apply them to your program, the use of Ada can help you effectively achieve the software engineering goals.

NOTE:	See Chapter 4, Engineering Software-Intensive Systems, for a discussion on software engineering goals and principles.

Software Engineering Principles and Ada�tc "<Head 3 (14)>Software Engineering Principles and Ada"�

Ada was developed to directly support the principles of software engineering [discussed in Chapter 4, Engineering Software-Intensive Systems]. It aids in the development of software solutions that are modifiable, reliable, efficient, and understandable. In an interview with Government Computer News, �xe "Leong-Hong, Belkis"�Belkis Leong-Hong, acting director of DISA’s Center for Information Management, explained how Ada relates to software engineering.

If you think back to the time when Ada was first put forth, it was a very valiant effort on the part of DoD to say, what we really have is a software development discipline...that says if you adhere to the software engineering discipline upfront, ultimately the cost of maintaining software is going to be significantly lower. Everything is predicated on the fact that you’re going to do things right at the beginning. You’re going to have traceable code. You’re going to have modularity. All of these are good things that the principles of software engineering are founded upon. [LEONG-HONG93]

Ada: The Great Facilitator�tc "<Head 3 (14)>Ada\: The Great Facilitator"�

The principle advantages of Ada are in the way it facilitates �xe "Software engineering"�software engineering, particularly in the areas of software design and implementation. Ada provides facilities for reducing two major problems associated with large scale software developments: poor component interfaces and interference between components sharing global data.

Multiple component �xe "Ada:Component interfaces"��xe "Interface:Between Ada components"�interfaces. Multiple interfaces between separate software components often lead to the production of incompatible components by different programmers. Ada requires that interfaces between separate components of a software application be precisely defined to ensure the compatibility of components produced by different programmers. This is accomplished by enforcing the same interface definition for all modules via the specification. This differs from C header files, because the interfaces defined in a C header file need not be used by module users.

The YF-22 prototype development was an excellent example of how using Ada solves interface problems. Software for the aircraft (comprising 35% of the total avionics development cost) was developed by eight geographically-separated subcontractors. All the Ada code, including ground systems and test mock-ups, were written using different Ada compilers and hardware platforms. The 12 major avionics subsystems, such as flight systems monitoring, navigation, weapons control, and defense systems, comprised over 650 Ada modules.

�

Figure 5-2 Ada Component Interfacing Facilitated FY-22 Fire Control Software Demonstration

The eight teams brought their software together at least six times for major demonstrations, such as the fire control software demonstration. As explained by Lieutenant General �xe "Edmonds, Maj Gen Albert J"�Edmonds,

Picture this. 12 subsystems, 650 modules, and millions of lines-of-code...stack ‘em up...And listen to this part: how long do you think it took to integrate this job? All this software. A year? Six months? No. Six weeks? Think again: 650 modules, 12 subsystems, and millions of lines-of-code — a lot of code, and a lot of “stuff,” and a lot of places — and a lot of states. ...How long do you think it took to integrate this software? If you guessed three days, you’re right. Three days. T, H, R, E, E days!

[EDMONDS931]

Key to integration success were the shared Ada package specifications with their enforced interfaces. No other language could have supported this level of distributed development on such a large, complex program. “Nothing,” Edmonds exclaimed, “can compare with its [Ada’s] ability to integrate different efforts.” [EDMONDS932]

�xe "Interference"��xe "Ada:Language features:interference"�Interference between components sharing global data. Interference can be created between components written by different programmers using global (shared) data incorrectly modified by various program units. Ada’s �xe "Ada:Language features:package"�packaging feature helps reduce the need for global data, and through its data hiding capabilities Ada minimizes the possibility of interference. Ada also reduces problems because it is a strictly controlled �xe "Standards:Ada"�standard for which its standard was issued before proliferation of compilers. Each Ada �xe "Compiler"�compiler must be periodically validated (usually annually) against an extensive set of tests to check conformance with the Ada standard. This procedure ensures software developed in Ada, for any given system, can be reused in other systems without the need for significant re-development. It also ensures that it will interface with other Ada software, regardless of the Ada software engineering environment (SEE). This results in reduced development time, higher productivity, and significant cost savings.

In contrast, 18 different companies develop and market C++ compilers and they all call them “C++” — however, they all operate on proprietary versions of the language. C++ written with one company’s compiler is not necessarily portable to another C++ software environment.

Ada: Facts and Fallacies�tc "<Head 2 (14)>Ada\: Facts and Fallacies"�

According to �xe "Reifer, Don"�Don Reifer, former Chief of the Ada Joint Program Office (AJPO), the basic reason you hear about problems surrounding Ada is popularity. Old habits are hard to break. The AJPO has had to counter every argument against Ada: pricey tools, no training, no bindings, too hard, etc. The following is a list of common Ada fallacies and the facts that negate them.

Fallacy:	No one is offering any courses in Ada.

Fact:	There are 302 universities offering Ada as its primary course on programming languages. There are 550 Ada courses being offered this year to fulfill curriculum requirements in Computer Science I and II. Both the Air Force Academy and West Point are teaching Ada in their computer science departments. The Air Force Institute of Technology is solely Ada for their computer science and software engineering courses. At the Naval Academy, Ada courses are mandatory for all computer science graduates, and at the Naval Postgraduate School (a leader in Ada software engineering) Ada is the initial programming language taught. [More about Ada training and a wealth of other information (including FREE tutorials) is available from on the Ada Information Clearinghouse (AdaIC) Web server. See Volume 2, Appendix B for the AdaIC’s Web address.]

Fallacy:	Ada is too hard to learn.

Fact:	Ada is not too hard to learn, especially for those with an understanding of software engineering principles. If that is not the case, do you really want them developing your software? Addendum A gives estimates on the length of time to learn Ada. In addition, there are many educational resources available.

Fallacy:	Ada will force me to abandon my existing libraries.

Fact:	Ada 95 defines set interfaces with C, COBOL, and Fortran. Ada programmers can invoke libraries of these languages and use them until they decide to re-engineer. This standard binding capability has made Ada much less objectionable to people with large legacy systems.

Fallacy:	Ada tools are either too expensive or nonexistent.

Fact:	Ada tools are currently more expensive because the market is smaller. The AJPO has been actively working with industry to increase the number and availability of Ada tools, compilers, and environments by increasing the commercial Ada market. As the market gets bigger through the commercialization of Ada, there will be more venture capital for competitive tools and prices will come down. [See the discussion on the “Ada Technology Insertion Program-Partnership” in Chapter 10, Software Tools.] Note that for some platforms there are low-cost, or even free, high-quality Ada compilers. Also, be sure you are comparing equivalent capabilities; many users of other languages buy additional tools to check for errors that Ada compilers automatically detect at no additional charge.

Fallacy:	It takes longer to program in Ada than it does in other languages.

Fact:	According to the AJPO, there are data to the contrary. The AJPO’s philosophy is, the time allotted to program applications independent of language is too short. The albatross around most programmers’ necks is impossible schedules. Neither C++ nor Ada is going to solve that problem. What will provide a solution is an incremental development paradigm — the method where we build a little, test a little, field a little, and repeat the process. [See Chapter 3, System Life Cycles and Methodologies.]

Fallacy:	The reuse initiative is a waste of time. Ada code will not be reused. It will be put in a big pool or library and forgotten.

Fact:	The AJPO is not after code; they want to pool architectures. Placing code in a library is like putting a book in the Library of Congress. It just sits on the shelf and gathers dust. What the AJPO wants to do is bring the best-sellers to the user so when he goes to the library with his architecture he pulls the right books. As Reifer explains the concept is simple,

		Bring the product-line manuscript concepts from industry into the Defense Department. There are places where reuse has shined like on the restructured �xe "Navy Tactical Data System (NTDS)"�Navy Tactical Data System (NTDS) program. Look at the lessons-learned from the Army’s �xe "Field Artillery Tactical Data Systems"�Field Artillery Tactical Data Systems and the lessons the Swedish Navy has learned with its Corvette system. They made a major investment in the future when they built it in Ada. Now they can retarget the software built for one class of ships to other classes with 70% reuse. [REIFER95]

Fallacy:	The majority of programmers prefer any language to Ada and for the most part are Ada illiterate and plan on staying that way.

Fact:	According to the AJPO, there are only a few pockets of Ada illiterates. Of course, it depends on whether you are talking about weapon systems or MIS. For example, the �xe "Naval Command and Control Ocean Surveillance Cente"�Naval Command and Control Ocean Surveillance Center (NCCOSC) RDT&E Division (NRaD) Center communications programmers, like many others, are firm believers in Ada. In the MIS area, Ada shines on the Army’s �xe "Sustaining Base Information Services (SBIS)"�Sustaining Base Information Services (SBIS) program, the first major user of Ada 9X [now Ada 95].

Fallacy:	Ada is only good for building large weapons systems. Everything else is better done in a less complicated language.

Fact:	The services recognize the need for a world-class sustaining base of software, not differentiating between tactical and MIS software, which is counterproductive. Presently our sustaining base is antiquated and must be brought up to a level that meets the needs of the warriors in the field. We must migrate our best legacy systems up to world-class. With Ada’s bindings [discussed below], we can migrate legacy software to new applications — without doing everything over from scratch.

Fallacy:	There really are not very many Ada programs either completed or in the works.

Fact:	The next section “Ada: Who’s Using It?” answers this fallacy.

�

�tc "<>"�

CHAPTER 5

 Addendum A�tc "<Head 1 (16)> Addendum A"�

How Long Does It Take to Learn Ada?�tc "<>How Long Does It Take to Learn Ada?"�

�xe "Quann, Eileen Steets"�Eileen Steets Quann

President, Fastrak Training, Inc.

A Common Query�tc "<Head 2 (14)>A Common Query"�

As a provider of Ada �xe "Training"�training for the last seven years, we are frequently asked the same question: “How long does it take to learn Ada?” Since this question continues to be asked, it suggests that the answer is neither obvious nor simple. I believe that the difficulty of providing a succinct answer springs from it being the wrong question. This becomes more apparent when the question is changed slightly.

Suppose I ask instead, “How long does it take to learn algebra?” Most people immediately see that the answer is, “It depends.” What kind of a math background do the students have? What do they need to be able to do? What kind of mathematical aptitude do the students have? How confident are they of their ability to learn?

Concepts in algebra are taught in the middle schools and continue through advanced courses in college. When have they “learned” algebra? Depending on answers to the questions above, it could be argued that it takes between a few hours and many years.

The Students and Their Jobs�tc "<Head 3 (14)>The Students and Their Jobs"�

How do we answer the question about Ada? At Fastrak, we begin by asking the client two questions: “Who are your students?” “What do they need to be able to do?” If you tell me that they have a strong background in software engineering, a solid understanding of concepts like abstraction, information hiding, and encapsulation; that they are comfortable with strong data typing, use Pascal now, are highly motivated to learn, and have good software processes already in place, I will give you one answer.

Suppose instead you say that they are high school graduates, with virtually no knowledge of software engineering concepts and little design experience; they are experienced with only one language and an old one at that (COBOL or FORTRAN). They are resistant to using a new language and will be working on a large system with poorly defined processes, addressing complex design issues. It doesn’t take a rocket scientist to know that you’ll get a different estimate. While these may be the extremes in the software industry, we encounter students at both ends of the spectrum and many in the middle.

What backgrounds and experiences make Ada easier to learn? I believe that two criteria exert a bigger influence on the individual programmer’s ability to learn Ada than anything else. Because Ada is an evolutionary rather than a revolutionary language, we have discovered that the people who already know several languages, regardless of what languages they are, learn Ada most quickly. They draw upon a broader experience base, and they learn quickly by analogy.

Two Kinds of Maturity�tc "<Head 3 (14)>Two Kinds of Maturity"�

A common perception is that younger people have an easier time learning Ada than the more “mature” audiences. My observation has been that people who are accustomed to learning new things continuously will learn more quickly. This is because they know how to learn, are not intimidated by something new, and have confidence in their ability to learn. The only “old dogs who can’t learn new tricks” are those who think they are.

The maturity of their software organization is another important factor. We have found that the higher the maturity level of the software organization, the faster and easier they learn Ada and the more receptive they are to using it. They already understand and appreciate the importance of software engineering and process. More mature organizations also foster the learning environment, which addresses the other two criteria. (Perhaps if only Capability Maturity Model Level 3 organizations were allowed to use Ada, the answers would be much simpler.)

Other Considerations�tc "<Head 3 (14)>Other Considerations"�

What do they need to be able to do? Do you need software engineers to design and develop systems in Ada or coders to implement the designs of others? Will there be someone to help them when they get stuck? Will they use sophisticated tools, or do they just need to compile and execute their programs?

What about the training media? Do you intend to use all classroom instruction, individual reading, computer-based training (CBT), on-the-job training (OJT), or some combination? Each has its strengths and drawbacks, its champions and detractors.

A Range, Not an Absolute Figure�tc "<Head 2 (14)>A Range, Not an Absolute Figure"�

The good news is that the answer to the Ada question has a more narrow range than the algebra question. The bad news is that, because of the state of the software industry, the limited training software developers have had in the past, and the large number of Level 1 organizations, the answer is often higher than people want to hear. This is not because Ada is so difficult to learn, but because they need to learn so much before they get around to learning Ada if our goal is to grow software engineers.

Here are a few guidelines to estimate training time. Some people will claim that these are high, others will argue that they are optimistically low. The estimates are for classroom training only; CBT would be shorter but generally more expensive because of the upfront development costs, follow-on OJT with knowledgeable mentors and good documentation is assumed but not included. The ranges represent the range of skill levels, motivation, and ability of typical students. Atypical students are outside these ranges. Table 5-1 shows typical course duration for teaching various skills.

SUBJECT�DAYS��Software engineering concepts and process�5-20��A new design methodology�4-10��Software development tools (per tool)�3-5��Basic Ada programming skills�5-10��Advanced Ada concepts for designing systems�5-15��Table 5-1 Software Engineering Course Length

The estimates are generally cumulative but may be reduced in a well-planned and well-executed training program. To define the needs of your organization, you must first answer the key questions: “Who are the students?” “What do they need to be able to do?” Your answers bound your question, “How long does it take to learn Ada?” [NOTE: See Volume 2, Appendix A for information on how to contact Ms. Quann at Fastrack, Inc.]

�Ada: Who’s Using IT?�tc "<Head 2 (14)>Ada\: Who’s Using IT?"�

We have all heard the question, “Who’s really using Ada?” as well as its follow-on statement, “No one uses Ada.” The truth is, there are many major programs that chose Ada over other programming languages. This section provides a collection of Ada examples from DoD (including all the service components) and industry (including major American and European programs) which should conclusively answer the question “Who’s really using it?” Also included are discussions of other programs successfully using Ada:

•	Seawolf Submarine’s AN/BSY-2 Project,

•	NCTAMS-LANT Project,

•	NCPII Re-Engineering Project,

•	Theater Display Terminal (TDT),

•	Ada for Windows Project, and the

•	Intelsat I-VII Satellite Project where an industry team chose Ada for a critical and complex industry program solely because of Ada’s capabilities and the way it supports software engineering principles.

NOTE: 	If you are interested in more information on any of these examples, or would like to find additional examples, contact the Ada Information Clearinghouse [see Volume 2, Appendix A for the address and phone number] or view information online [see Volume 2, Appendix B for the Web address]. Now you will be prepared the next time someone says, “No one uses Ada!”

Ada Use in DoD�tc "<Head 3 (14)>Ada Use in DoD"�

A Survey of Computer Programming Languages Currently Used in the Department of Defense, published by the �xe "Institute for Defense Analysis (IDA)"�Institute for Defense Analysis (IDA), also dispels the fallacy that Ada is not frequently used. The IDA report was based on 19914 data collected from 423 weapons systems programs and 53 major MIS programs, including R&D programs with budgets over $15 million and procurement programs worth more than $24 million. Collectively the sample systems amounted to 237.6 million SLOC. [HOOK95] [CONSTANCE95] Tables 5-2 and 5-3, taken from this report, indicate how Ada is gaining ground on older, better-established languages. Table 5-4 provides a synopsis of Ada programs by service as published by the AdaIC.

�

Table 5-2 Total SLOC by General Purpose 3GL for Weapons Systems

�

Table 5-3 Total SLOC by General Purpose 3GL for MIS

�

Table 5-4 New or On-Going Ada Programs Throughout DoD

�

Table 5-4 New or On-Going Ada Programs Throughout DoD (cont.)

Large-Scale Commercial Applications from Around the World�tc "<Head 3 (14)>Large-Scale Commercial Applications from Around the World"�

Table 5-5 lists large-scale commercial applications where Ada is the language of choice. Note the use of Ada on Boeing flight control software, an extremely safety-critical application.

�

Table 5-5 Large-Scale Commercial Ada Systems

�

Table 5-5 Large-Scale Commercial Ada Systems (cont.)

�

Table 5-5 Large-Scale Commercial Ada Systems (cont.)

Seawolf Submarine’s AN/BSY-2 Project�tc "<Head 3 (14)>Seawolf Submarine’s AN/BSY-2 Project"�

The Submarine Combat System for the �xe "USS Seawolf (SSN 21) Submarine"�USS Seawolf (SSN 21), the AN/BSY-2, is the largest mission critical, real-time shipboard software acquisition in the history of the US Navy. According to �xe "Sears, RADM Scott L"�Rear Admiral Scott L. Sears, commander of the Naval Underseas Warfare Center, not only is the BSY-2 program the largest Ada development in DoD, it is one of the largest in the world — and it is “truly an Ada Success Story!” The 6 million plus line-of-code acquisition (3.5 million of which is tactical) is turning the corner on DoD’s legacy of software-intensive fiascoes because the Navy pioneered the use of Ada and because “Ada provides the best intellectual control for the development of large systems.” [SEARS95]

�

Figure 5-3 Software-Intensive SSN-21 Seawolf Attack Submarine

The BSY-2 is an advanced, highly complex Ada system designed to handle all the signal and data processing of the Seawolf’s inboard electronics suites. It will take real-time data from thousands of sensors and convert, sort, and analyze those data to produce meaningful decision-coordination information to be used by 20 officers and technicians in the attack center by synthesizing ship maneuver and weapons deployment actions. The goal of the BSY-2 is to: (1) enable the submarine to detect and locate targets quicker, (2) allow operators to perform multiple tasks and address multiple targets concurrently, and (3) ultimately reduce the time between detecting a threat and launching weapons. [GAO89]

Demanding Software Requirements�tc "<Head 4 (12)>Demanding Software Requirements"�

The software requirements are demanding in that the system must be highly flexible and resilient in its ability to deal with unprecedented scenarios and data of unknown accuracy subject to erratic acoustic transmission through water. Software reliability and fault tolerance demands are also extremely high considering the cost and ramifications of a software failure while, for example, tracking an incoming torpedo. As RADM Sears explains, “If you have a software failure such that the system crashes, then the entire time you are bringing the system back up you are essentially running blind, deaf, and impotent!” [SEARS95] Also, because attack submarines are at sea months at a time with the combat system operational 24-hours a day, if the system fails it must be correctable at sea, or the ship’s mission must be aborted to return to port. Therefore, the system must provide for online diagnosis and fault location, graceful degradation and reconfiguration in the event of casualty, and an on-board training capability that provides realistic scenarios.

Stealth submarines only number in the tens, therefore, the software-intensive systems we build for them are unique, costly, and with expected useful lives of around 20 to 30 years. During that life time, hardware technology will turn over perhaps ten times, mission requirements will evolve, threats will change, and weapons systems will advance. Thus, the software �xe "Architecture"�architecture has to permit growth and change in an incremental, modular way. It must also provide intellectual control over an enormous, technically-challenging system and support concurrent development by multiple and diverse teams.

World’s Biggest, Unprecedented Ada Development�tc "<Head 4 (12)>World’s Biggest, Unprecedented Ada Development"�

The BSY-2 development contract was awarded in FY88, during the height of the Cold War when Ada 83 was still in its infancy. There were virtually no validated Ada compilers, especially none that would handle a real-time system with millions of lines-of-code. There were no proven CASE tools, no Ada-experienced software engineers, and no reuse libraries. No one had ever attempted to develop a software system of this magnitude and complexity. It included a new computer, a new operating system, a new programming language, a new user interface, a new distributed architecture, a new database approach, and a new design methodology — all to be developed in accordance with a new military standard, �xe "DoD-STD-2167A"�DoD-STD-2167. The contractor’s �xe "Software Development Plan (SDP)"�Software Development Plan (SDP) called for up to 900 software personnel, spread over seven years, with seven development organizations under the direction of the prime contractor. They proposed to partition the system into 113 work packages (or building blocks) each containing up to 75,000 lines-of-code. They also proposed an aggressive training program for both Navy and contractor personnel on software engineering principles and use of Ada.

Challenging COTS Integration�tc "<Head 4 (12)>Challenging COTS Integration"�

To save on development costs, the Navy wanted to incorporate as many COTS products into the acquisition as possible. As Ada became more popular in the commercial market, CASE tools began to appear, but there were still few from which to choose. The main issue they faced with COTS products was scalability. Most of the tools out there were designed to work with around 50,000 source lines-of-code (SLOC). With each work package over 75,000 SLOC, they broke about every tool they attempted to use. Another issue was the real-time processing requirements. Few tools were designed to handle the durability and reliability criteria of a combat system. The contractor was finally able to piece together an interoperable set of commercial tools using software they built in-house linking them together.

The COTS database manager for the tactical system they chose was the fastest on the market. Even after extensive work with the vendor, they could never get the performance needed and the contractor had to build their own database manager out of Ada. In this instance, it was quicker and cheaper to build in Ada than to try to modify a COTS package. They had better luck with the commercial run-time environment supplied by the compiler vendor where the only modifications needed were for BSY-2 and Navy-specific hardware. The vendor was successful in working closely with the BSY-2 team in fixing problems and incorporating needed changes to their product. Due to this close relationship, the BSY-2 system tracked in lockstep with the vendor’s commercial versions until the Navy chose to baseline their system and freeze versions.

According the RADM Sears, the main thing they learned was that COTS software and hardware are not free. As these experiences with COTS illustrate, savings are only possible if the COTS product embodies requirements that closely reflect those of your application, especially where real-time performance is critical and exacting. In some cases it may be cheaper to modify a COTS package rather than start from scratch, but this is a make-or-buy decision that must be made carefully. [SEARS95]

NOTE:	See Chapter 10, Software Tools, for an in-depth discussion on the BSY-2 tools integration lessons-learned. Also see Chapter 14, Managing Software Development, for a discussion on why modifying COTS is NOT usually advised.

Ada and Engineering Discipline Are Key to Success�tc "<Head 4 (12)>Ada and Engineering Discipline Are Key to Success"�

The basis for this Ada success story is software engineering discipline. They proved that the larger the system and the more demanding its performance and reliability requirements, the more essential engineering discipline is to delivering a quality product. Ada provides the best intellectual control available today for managing the development of huge software systems through its packaging concept, strong typing, and separate compilation support.

BSY-2 Ada Lessons-Learned�tc "<Head 4 (12)>BSY-2 Ada Lessons-Learned"�

The Ada-specific lessons-learned on the BSY-2 program include the following.

•	Ensure memory utilization estimates include stack and heap along with the expanded source.

•	Fully exercise target code units to ensure they perform as intended on the host environment.

•	Debugging processes and compilation dependencies will be significantly reduced if nested subprogramming is avoided.

•	Group functionally-related messages into a single package to reduce start-up overhead and lessen dependencies.

•	Ensure all loops include a “time-out” condition for preventing resource deadlocks.

•	Enhance time-critical processes through the application of �xe "Rate monotonic analysis (RMA):Scheduling (RMS)"�Rate Monotonic Scheduling techniques.

•	Allow adequate ramp-up time for familiarization with the CASE tool environment.

•	Choose a mature compiler. Develop compiler performance measures (CPM). Establish a strong relationship with the compiler vendor. Schedule compiler upgrades.

•	Avoid Ada-incompatible single-thread-of-control by isolating COTS packages from Ada code through tasking or separate operating system processes.

•	Include source code rights in �xe "Commercial-off-the-shelf (COTS) software"�COTS licensing agreements. Avoid modifying COTS!

•	Establish regression test procedures for COTS version change.

•	Investigate COTS defect handling mechanisms and establish a mapping to the application program defect model.

•	Establish Ada exception handling methodology early and a global defect model for a more robust system.

•	Ensure explicit type checking is performed on external parameters.

•	Maintain control of data through Ada information hiding techniques.

•	Prototype message transfer schemes early in design. Use partial tasking where feasible to reduce Ada rendezvous overhead times.

•	Establish policies for dynamic memory management.

•	Factor actual and prototype data into timing analyses.

•	Prototype the target environment.

•	Ada experts should take the lead in solving complex problems and in establishing usage guidelines/procedures.

�

NCTAMS-LANT Project�tc "<Head 3 (14)>NCTAMS-LANT Project"�

An example of a successfully completed Ada program is the �xe "Navy Computer and Telecommunications Area Master S"�Navy Computer and Telecommunications Area Master Station — Atlantic (NCTAMS LANT) system. Their learning curve was painful, but in 1994, the program received the award for the Best Object Based Application Developed Using Non-Object Tools at the Object World Conference international competition. It took three years to re-engineer the Type Commanders Headquarters Automated Information System (THAIS) from COBOL to Ada using the AdaSAGE development environment. [AdaSAGE is discussed in Chapter 10, Software Tools.] With the re-engineering came the new name, �xe "TYCOM Readiness Management System (TRMS)"�TYCOM Readiness Management System (TRMS). The original THAIS consisted of 2,000 programs and 2.8 million lines of COBOL. It was a big program and the award marked a major accomplishment.

NCPII Re-engineering Project�tc "<Head 3 (14)>NCPII Re-engineering Project"�

The Fleet Interface for Navy Communications Processing and Routing is another program currently undergoing re-engineering to Ada. The re-engineered system, called NCPII, has been designed using object-oriented development (OOD). [See Chapter 14, Managing Software Development, for a discussion on OOD.] NCPII integrates a variety of COTS products: a trusted UNIX B1-Level secure operating system; a trusted relational data base management system (RDBMS); a trusted X-Windows system using compartmented mode workstations and software; and a trusted local area network. NCPII will take advantage of NIPRNET to connect to worldwide operational sites. [See Chapter 14, Managing Software Development, for a discussion on trusted and secure systems.]

Theater Display Terminal�tc "<Head 3 (14)>Theater Display Terminal"�

The story of the Air Force’s �xe "Theater Display Terminal"�Theater Display Terminal (TDT) during the �xe "Operation Desert Storm"�Gulf War is another example of why using Ada is smart. The TDT is a rapidly deployable missile warning system written in Ada for a Sun UNIX workstation environment. During the conflict, the US deployed the TDT to theater to warn of imminent Iraqi SCUD attacks. On January 11, 1991, CENTCOM personnel realized they needed to know the country-of-origin for all incoming SCUD missiles. Fighting in a volatile part of the world with varying and diverse levels of threats, the task force commander required quick determination of whether a SCUD was launched from Iraq or from some other hostile country. From January 12th to the 13th, Air Force Space Command revised an existing Ada country-of-origin algorithm, along with an Ada geopolitical database. On January 13th, these assets were integrated into a developmental system and on January 14th the enhancement was integrated into an operational system. On January 15th, the software modification was flown to theater and installed for use on the TDT. On January 16th, just 5 days after the requirement was identified, the new capability was up and running and was successfully used during an Iraqi SCUD attack on Israel!

The capability to expeditiously support rapidly changing, real-time threat scenarios was only possible because the TDT, the country-of-origin algorithm, and the geopolitical database were written in Ada. Integration of these assets was possible because of the Ada �xe "Ada:Language features:package"�package, which provides clean logical interfaces between modules. Had Ada not been used, the cost to support and develop code to fulfill the new requirement would have been substantial. The enhancement surely would not have been fielded within 5 days! The TDT experience proves that using Ada to produce high quality, supportable software for large, safety-critical applications is smart business.

Ada for Windows Project�tc "<Head 3 (14)>Ada for Windows Project"�

In May 1993, First Lieutenant Shannon Straffin was one of five programmers from the Advanced Computer Systems Flight of the Air Combat Command (ACC) Computer Systems Squadron (formerly the 1912th Computer Systems Group) who was given the task to develop Microsoft Windows programs quickly in Ada! The difficulty of the task is clearer when you realize that nearly all Windows development, and therefore, nearly all Windows training and support tools, are written in C. Ada for Windows was an unheard of concept that was largely considered not feasible.

Team Training Was An Innovative Effort�tc "<Head 4 (12)>Team Training Was An Innovative Effort"�

The programmers had been successful in developing DOS-based programs, several of which are being used throughout ACC today. However, their combined Windows experience was one person receiving 10 days of training at Microsoft University. After some hesitation, the newly developed Ada Windows team tackled the assignment enthusiastically. Using the products they had in hand — Meridian’s Open Ada for Windows compiler, Borland’s Resource Workshop and Microsoft’s Software Development Kit — the team began a proof of concept effort.

The first hurdle was the transition from DOS to Windows. “Windows programming is very different from DOS programming,” Staff Sergeant Jeff Whippo, who attended the Windows training, said. “You have to unlearn a lot of what you already know,” he said. “It takes a good two to three months of constant effort to really get the hang of the new environment. We had to acquire a talent to ‘read in C and write in Ada,’ because all the Windows support is geared toward development in C,” he said. This second hurdle, lack of applicable training, was overcome with time and teamwork. Armed only with their product documentation and Charles Petzold’s, Programming Windows 3.1, team members were ready to begin applying their new skills to the job at hand.

Lack of Ada Windows Tools Sparked More Innovation�tc "<Head 4 (12)>Lack of Ada Windows Tools Sparked More Innovation"�

The team chose to rewrite a DOS program it had just developed, the Sarah Message Distribution System, for its training program. Since the program’s logic was already written, the team was free to concentrate on the Windows implementation details. In the process, they discovered a third hurdle — a complete lack of Windows development tools for Ada. “There were no Ada tools available to do what we needed to do, so we built some of our own using existing Windows products written in C,” Master Sergeant Dave Jaffe, Non Commissioned Officer in charge of the team, said. “We were forced to rely on our own ingenuity,” he said. “Once we figured out that we could rewrite C header files and data structures in Ada to make C functions available to our programs, things became much easier.”

Team members made this discovery when they decided to improve on SMDS’s initial design by writing a Ada interface from their program to Microsoft’s Messaging Application Programming Interface (MAPI). This would enable the program to automatically mail messages directly to recipients. The effort paid off. After only four months, the team produced an undeniable success! Not only had team members proven they could write Windows programs in Ada, but they had improved on the design of their own product, saving their customers an additional two hours of work per day.

�

Lessons-Learned Applied to Other Efforts�tc "<Head 4 (12)>Lessons-Learned Applied to Other Efforts"�

The lessons-learned from MAPI worked well when applied to other efforts. The team wrote an interface for functions in the Borland C Run-time Library. This interface has not been completed, but the functions used most often are included. Adding access to another function, if needed, is a matter of adding a two-line entry into the existing interface. In addition, Senior Airman (SrA.) Jerry Wimer and Airman First Class Ken Foreman have developed Ada interfaces for Sequiter’s Codebase database engine for both FoxPro and Clipper style databases. This allows their team to develop databases without having to hand code common database functions, such as record locking and indexing.

New Skills Breed New Applications and Training Programs�tc "<Head 4 (12)>New Skills Breed New Applications 	and Training Programs"�

The Ada Windows team has since developed an automated phone directory, an electronic bulletin board, and a time tracking system. The team has also created dynamic link libraries, some of which have been used in FoxPro programs. Senior Airman. Curtis Worthington has documented the lessons his team learned and has developed training materials. He trained five other programmers in the new technology and is training two other programmers new to the flight.

Ada Windows Team Spreads the Wealth and Presses On�tc "<Head 4 (12)>Ada Windows Team Spreads the Wealth 	and Presses On"�

Word of the Ada Windows team’s accomplishments is spreading. Five people from �xe "Navy Computer and Telecommunications Area Master S"�NCTAMS LANT program [discussed above] in Norfolk, Virginia, visited in June. “We’re looking to move into Windows programming in Ada and we heard abut the work the Air Force had done through a vendor who was trying to sell us both the same product,” David Cuneo, head of the NCTAMS LANT software engineering branch, said. “It was great to get in touch with them and see what they had come up with,” he said. “There are so few people even attempting this sort of thing, which makes it so important for us all to be in contact with each other.” During the visit, Cuneo’s group saw a demonstration of the time tracking system developed in Ada for Windows and discussed the lessons-learned during its development. The Navy people took a copy of the reuse library and the training materials developed by the Ada Windows team with them.

The direction of the Ada Windows team will remain the same: master the best of new technology and use sound software engineering practices to provide the customer with the best possible automation solution.. Wimer has begun the work need to come up to speed in the new environment by writing the interface to the Microsoft SQL server and developed a test Ada program which can communicate with the server.

Despite this initial success, there is still much work to be done before the team will master the necessary skills. Working in ACC’s premier software development flight is demanding but rewarding. The Ada Windows team has done what many people said could not be done. Though the team has come a long way in the past year, team members will be the first to admit that there is still much for them to learn. [See Volume 2, Appendix A for information on how to contact Captain Randy Powell.]

�

Intelsat I-VII Satellite Project�tc "<Head 3 (14)>Intelsat I-VII Satellite Project"�

Intelsat is an international telecommunications consortium of approximately 122 members that builds and manages communication satellites. Since its first satellite was launched 27 years ago, it now has 18 operational satellites in orbit. In 1993, it launched its new-generation satellite, Intelsat I-VII — the first satellite developed completely in Ada. This extremely large software development is another example of why Ada was chosen because of its support for software engineering principles. Ada was also chosen because it promised the necessary robustness, flexibility, reliability, and maintainability required by a demanding cosmic-radiated, space-based environment. [RIEHLE94]

When Loral Space Systems won its contract to develop the I-VII in 1990, they selected the �xe "MIL-STD-1750A"�MIL-STD-1750A computer architecture because it had a standardized software instruction set across all implementations and was radiation-hardened. Although basically autonomous, ground stations need access to I-VII onboard software to upload modifications and upgrades throughout its life cycle. Thus, one of the software requirements was a command function which moves antennae, disables certain operational features, fires thrusters, and uploads new memory values. Other functions include operating system software (scheduler, power-up, and fault detection), attitude control and determination (one of the most difficult algorithmic functions), battery and thermal monitoring and control, telemetry transmission, and overall control safety.

Ada’s Package Feature Benefits�tc "<Head 4 (12)>Ada’s Package Feature Benefits"�

According to Richard Riehle, from AdaWorks (a firm hired to teach Ada software engineering methods to the development team), Ada’s package feature greatly contributed to the success of the program. Ada programmers, not restricted to working solely on the VAX, RS/6000, or Sun workstations, were able to do a considerable amount of creative programming. Because Ada is the same language no matter which processor used, programmers were able to write and compile Ada code on smaller, less-expensive MS-DOS PCs which was later merged into larger applications. Allowed to independently and freely develop code, programmers were able to experiment and test new ideas to achieve optimum results. Package components were divided into separate compilation subunits which were worked by individual team members. These independent units (packages and subunits) contributed to reliability. In addition, peer inspections [discussed in Chapter 15, Managing Process Improvement] are easier to conduct on smaller chunks of code.

The Ada method of task decomposition differs from that found in C, C++, or Pascal. The Ada compiler environment keeps track of the various components and enforces discipline on the process of creating, compiling, and linking application components. This is why Ada is best for large-scale programs, such as the I-VII, that require large design and programming teams, have a high degree of complexity, must be reliable, and are characterized by a long life cycle. The Ada compilation environment also provides a considerable amount of configuration control.

[RIEHLE94]

Ada’s Typing Feature Benefits�tc "<Head 4 (12)>Ada’s Typing Feature Benefits"�

Ada compilers check the consistency of every data name in a system to reduce the likelihood of incorrect assignments. They also perform syntax checking which makes programmers follow a stringent set of rules rigorously enforced by the compiler. The Ada compiler prevents collisions between variables having incompatible types, alerts programmers of potential out-of-range conditions, and ensures consistency among actual and formal parameters in subprogram calls. As Riehle explained, Ada’s typing feature prevented square pegs from going into round holes, and even prevented round pegs of the wrong size from going into round holes — an important safeguard for a highly reliable system. [RIEHLE94]

Why Ada for Intelsat I-VII?�tc "<Head 4 (12)>Why Ada for Intelsat I-VII?"�

When a application is large, complex, must perform under rugged conditions, with a minimum number of defects, Loral realized knowledgeable software engineers choose Ada. Although C is a simple, easy-to-understand language, it was not chosen because it allows programmers to write code in any style. It contains poor intrinsic support for consistency checking across modules and permits function calls with incompatible data types or incomplete parameter lists. It is heavily dependent on the use of pointer types, but allows pointers to behave in undisciplined and bizarre ways. Maintenance was also a major consideration in Loral’s choice of Ada. Satellites must remain operational for sometimes decades, but as technology and requirements change, their code must be modifiable. The more years that go by since the application was originally written, the harder it is to maintain. Ada puts demands on designers and programmers to create code that is easy to maintain. The big difference between Ada and C is that Ada takes the long-term into consideration, whereas C looks at developing code as a quick and easy solution.

Ada proved to be an investment in the future. The next Intelsat effort, Intelsat VIII, will reaffirm the consortium’s commitment to Ada. Loral is so proud of the Ada design and code it used on I-VII, it is leveraging that success to build another satellite, NSTAR, for Nippon Telephone and Telegraph in Japan. The new satellite will reuse much of that same Ada code. In addition, Intelsat has commissioned Loral to build a follow-on satellite, I-VIIA, also to be programmed in Ada. Ada in space systems is flying high! [RIEHLE94]

Achievable Success with Ada�tc "<Head 2 (14)>Achievable Success with Ada"�

The benefits of using Ada all relate to the factors that can make or break a software development program. Chapter 1, Software Acquisition Overview, emphasized that in the past performance, cost, and schedule failures on major software-intensive programs were usually traceable to the software component. What if you could find a way to increase programmer productivity, reduce defects, increase performance efficiency, keep within projected life cycle estimates, and reuse existing code? You could forge ahead in new directions by reversing demoralizing past trends. Ada, in concert with sound software engineering practices, could well be your opportunity to accomplish these goals. Data collected on 75 industry Ada programs, representing 30 million lines-of-code that indicate these goals are achievable, as illustrated in Table 5-6. Considering the substantial sample size, these figures are quite impressive.

�

Table 5-6 Industry Experience with Ada [REIFFER92]

Ada versus the C++ Challenge�tc "<Head 3 (14)>Ada versus the C++ Challenge"�

You might ask, “Is Ada critical to obtaining the advantages found in the engineering of software? Are there not other languages that might be just as good as, or better than, Ada?” In the spring of 1991, the Air Force accepted this challenge and conducted a study, Ada and C++ Business Case Analysis, [Ada/C++91] to answer exactly these questions. Before going very far, it was determined there are only two serious languages for developing engineered software today: Ada and C++. A group of recognized experts from the software development community (DoD and industry) was formed to determine under what circumstances the DoD policy of exclusively using Ada should be waived in favor of C++. They looked at the issue from various perspectives: quality and quantity of tools and educational support, technical language factors, actual quantitative experience reported, and cost-effectiveness modeling a commercial enterprise might use. The results, even when comparing the 1983 version of Ada to the current C++, were decisively in favor of Ada! [You can obtain a copy of this report through DTIC or from the STSC.]

�xe "Tools:Ada tools"�Tools, �xe "Tools:Software engineering environment (SEE):Ada"��xe "Tools:Software engineering environment (SEE)"�environments, and �xe "Training:Ada"�training. When comparing Ada tools, environments, and training with those of C++, these support elements were considerably more mature for Ada. In 1991 there were 28 US companies supplying validated Ada �xe "Compiler:Ada"�compilers, whereas only 18 vendors offer C++ compilers. Ada compiler validation is a rigorous process, and is possible because Ada is standardized and has a validation suite that compilers must pass. [NOTE: On 15 Feb 1995, Ada became the first internationally standardized object-oriented programming language, (ISO/IEC 8652:1995).] In contrast, there is an effort to make a standard version of C++; however, that has not yet happened. Since it is not standardized, there is no validation for C++ compilers.

Both languages are supported on PCs and workstations. Regarding software engineering tools, a variety were found for both languages. Ada is taught in 43 states at 223 universities and 13 DoD installations. In 1991, C++ was taught in four states at four universities and at no DoD installations. Use of C++ has grown since 1991 and a wide range of training is now available. However, unlike Ada, which is an ANSI, an ISO, and a FIPS standard, C++ is only a draft standard. In 1985, Ada was evaluated by the �xe "Federal Aviation Administration (FAA)"�FAA by comparing 48 technical �xe "Ada:Language features"�language features (criteria) in six categories with four other languages. They concluded the long term benefits of using Ada were significant, as illustrated in Table 5-7.

�

Table 5-7 FAA Weighted Scores for 6 Criteria Categories

In 1991, a follow-on study was conducted by the �xe "Software Engineering Institute (SEI)"�SEI using the same methodology as that used for each of the 48 criteria as the FAA study for MIS and C3 applications. The 1991 weighted scores for the six categories are shown in Table 5-8.

�

Table 5-8
SEI Weighted Scores for 6 Criteria Categories (MIS/C3)

The conclusion reached by the team of experts conducting the language features study was that today (as was the case in 1985 with C) Ada is significantly more capable than C++. The relative efficiency of Ada has improved. Ada still scores higher in availability/reliability. The Ada advantage in maintainability/extensibility persists; and Ada has attained a significant advantage over C++ in lowered development risk.

Productivity and cost. A comparison was made on available �xe "Productivity:Ada"�productivity and �xe "Ada:Cost of"��xe "Cost:Of Ada"�cost data for Ada and C++. Four categories of applications were analyzed: environment/tools, telecommunications, test (with simulators), and other. All programs analyzed were new developments with an average size of about 100,000 source lines-of-code (SLOC). The results of the productivity analysis are illustrated on Table 5-9. The average cost across the four program categories are listed on Table 5-10. [These study figures tended to be skewed in favor of C++ because the team did not find C++ programs of equal difficulty with the Ada programs analyzed. The Ada programs were found to be more difficult in that they had to be in accordance with military standards and incorporate formal reviews, additional documentation, and engineering support activities, whereas the C++ programs did not.]

�

Table 5-9 Productivity Study Comparison (source lines-of-code/manmonth)

�

Table 5-10 Cost Study Comparison (dollars/source lines-of-code)

This study also included an analysis of �xe "Integration:Defect rate"��xe "Defect:Insertion rate"�integration defect rates [defects detected from start of �xe "Testing:Integration testing"�integration testing through completion of software �xe "Testing:Formal Qualification Test (FQT)"�Formal Qualification Testing (FQT)] and FQT defect rates (only those found during the FQT process). The results of the defect rate analysis are illustrated on Table 5-11.

�

Table 11 Integration of FQT Defect Rates

The conclusion the team of experts reached from the productivity/cost study was that the �xe "Language, programming:Standardization"��xe "Maturity:Ada"�standardization maturity of Ada is important. While Ada has a firm, well-policed standard, a stable C++ language specification has not yet been established. Individual vendors of the 18 C++ compilers and associated CASE tools will continue to offer their own enhanced versions of their products, making portability and reuse of C++ among commercial products difficult in the near future. Additionally, Ada programs have reported 15% higher productivity, with increased quality for double the average program size, compared to C++. If these data are normalized to comparably sized programs, the �xe "Productivity:Ada"�Ada productivity advantage is about 35%. It was concluded that C++ still needs significant maturation before it is a low-risk solution for any large DoD applications.

�xe "Ada:Cost of"��xe "Cost:Of Ada"�Corporate cost analysis. The corporate cost analysis performed by the team of experts was based on a typical real-world MIS/C3 systems program. They defined a set of maximally independent criteria, judged each language against those criteria, and translated those judgments into cost impacts to emphasize the importance of each criterion from a life cycle cost perspective. The rankings of the two languages, based on this analysis, are illustrated on Table 5-12. [0 = no support, 5 = excellent support.] The total scores represent a weighted sum of the rankings based on weights determined by the expert panel. The conclusions reached by this study indicate that the typical advantage of using Ada over C++ is life cycle cost savings of 35% during the Development Phase and 70% during the Maintenance Phase. It is expected that the new Ada 95 will tip the scales even further in Ada’s direction. [GROSS92]

�

Table 5-12 Corporate Cost Effectiveness Analysis

Historical �xe "Fault:Rate"�fault rates. Another study, conducted independently of the Ada versus C++ Business Case, is worth mention in this context. This study compared �xe "Ada:Fault rate"�Ada historical fault rates with those of C (the predecessor to C++). Ada was found to have a fault rate of 0.5, compared to that of 4.0 with C. This is an 8 to 1 difference. For example, where C would result in 8 faults per 2,000 lines-of-code, Ada would have only 1. [SBM93]

Ada versus the Assembly Challenge�tc "<Head 3 (14)>Ada versus the Assembly Challenge"�

In 1991, using another company’s advice, a DoD contractor [name withheld] assumed assembly language [described in Chapter 2] would be the best choice for a small communications application [about 2,000 lines-of-code (LOC) for a TI 320C15 digital signal processor (DSP) chip]. Although Ada was specified in the contract, the contractor convinced the DoD program manager that compiled Ada code would be slower and would consume 3.5 times as much ROM as assembly code would. The contractor, permitted to use assembly, completed the software application in about 18 months. The first version did not run fast enough so it had to be tweaked to attain the required performance.

The DoD focal point and weapon systems software integrator, upon reviewing the contract, noted that Ada was not being used as stipulated. He was curious if Ada code could be used for this application and if it could meet the systems requirements of occupying no more than 2K of ROM within a 500-microsecond run-time. He spoke with numerous experts: a chip manufacturer, an Ada vendor, an independent consultant, a government laboratory, and the �xe "Air Force Institute of Technology (AFIT)"�Air Force Institute of Technology (AFIT). The experts concurred that Ada could not be categorically ruled out for this application. He informed the DoD program manager and the contractor that either Ada had to be used or a waiver would have to be obtained. The contractor tried to obtain a waiver based on their findings, but without actual benchmarking, their justification was deemed inadequate. The contractor truly believed Ada could not do the job, and therefore, felt they were obliged to rewrite a portion of the application in Ada to prove that a waiver was justified.

To get their proof, the contractor had one programmer rewrite approximately 10% (one critical CSU) of the application using Ada. This programmer had limited Ada experience, having only written about 5,000 LOC for a previous employer. The programmer consulted the original, experienced assembly programmer, reviewed an Ada textbook and the original software design and wrote the first Ada version of the critical CSU. The Ada code consisted of 5 pages of Ada code and comments (about 100 lines-of-Ada). It was written (based on the original design document, not a translation of the assembly code) in 2 days.

As stated above, the assembly code was written for the TI 320C15 chip, but no Ada compiler was targeted to this chip. Tartan (an Ada compiler vendor) had a �xe "Compiler:Ada"�compiler targeted to a closely-related chip and agreed to test the newly developed Ada code at their facility. They discovered that the original Ada object code was somewhat larger and slower than the assembly code. The compiler, however, optimized the code for size (making the Ada code smaller) and for speed (making the Ada code run faster). Tartan had benchmarked their compiler at 1.3 to 1 compiled Ada size versus compiled assembly size. (This �xe "Benchmark"�benchmark was established by using 10,000 lines-of-assembly code written by an experienced assembly programmer compared to the same amount of Ada code written by an apprentice Ada programmer.) With some minor tweaking, the DoD contractor was amazed that the compiled Ada code was, in fact, faster and smaller than their assembly code for the same module!

With these profound results, the contractor no longer pursued the Ada waiver and proceeded to use 100% Ada for the program. Within 3 weeks, the rewrite of the assembly version was completed by one Ada programmer. These 700 lines-of-Ada took about 150 hours. (This was coding time only because the documentation did not have to be rewritten.) The original development in assembly had taken approximately 1,500 hours with 600 of those hours devoted to actual coding.

This example illustrates that an Ada programmer using a �xe "Compiler:Maturity"�mature Ada compiler has a very real advantage over an assembly language programmer. In this case, Ada technology advancements dispelled at least five common Ada myths by proving that:

•	Ada is very suitable for real-time applications,

•	Ada can be highly optimized for space,

•	Ada applications are cost effective, even for relatively inexperienced programmers,

•	Ada takes less time to produce, and

•	Ada compilers can compete and out-perform assemblers.

This was a significant milestone in favor of using Ada for formerly exclusive assembly language applications. Until then, Ada’s weakest showings were in real-time and relatively small applications where size and speed were critical. These results proved that Ada systems and capabilities had matured. The DoD contractor was thoroughly convinced of Ada’s capabilities and started using it extensively. They believe the use of Ada provides their company with a significant competitive edge. [ELAM92]

NOTE:	Ada compilers can also take advantage of new chip technologies through a simple recompile. In contrast, assembly code typically requires a rewrite of the actual source code. This feature of Ada compilers is very important, given the fast rate of hardware improvement and obsolescence.

Ada Versus the Fourth Generation Language (4GL) Challenge�tc "<Head 3 (14)>Ada Versus the Fourth Generation Language (4GL) Challenge"�

The IEEE defines �xe "Language, programming:Third generation language (3GL)"�third generation language (3GL) as:

A programming language that requires little knowledge of the computer on which the program will run, can be translated into several different machine languages, allows symbolic naming of operations and addresses, provides features designed to facilitate expression of data structures and program logic, and usually results in several machine instructions for each program statement. Examples include Ada, COBOL, Fortran, ALGOL, Pascal. [�xe "Institute of Electrical and Electronics Engineers:IEEE Std.610.12.1990"�IEEE Std.610.12.1990]

According to Daniel D. Galorath, the term fourth generation language (4GL) is poorly understood. All definitions claim that productivity with 4GLs is greater than with third generation languages (3GLs) (assuming the same environment, technology, and amount of reuse). The most robust and well-accepted definition of 4GL is that provided by the �xe "Institute of Electrical and Electronics Engineers"�Institute of Electrical and Electronics Engineers (IEEE):

A computer language designed to improve the productivity achieved by higher order (“third generation languages”) and, often, to make computer programming available to non-programmers. Features typically include an integrated database management system, query language, report generator, and screen definition facility…[IEEE Std.610.12.1990]

�xe "Martin, James"�James Martin, a software visionary, defined fourth generation language as, a “language 10 times more powerful than COBOL.” The word powerful is not defined. The Microsoft Dictionary defines fourth generation language as: “Languages designed for interacting with the programmer, often used to define languages used with relational databases.” The intent was to imply a step up from standard high level programming languages such as C, Pascal, and COBOL.

NOTE:	Even the term language in 4GL may be misleading since some 4GLs have no procedural language at all.

Key Points to Consider�tc "<Head 4 (12)>Key Points to Consider"�

The following key points should be considered when comparing the use of Ada with a 4GL [HOROWITZ95]:

·	4GLs are usually touted for increasing productivity over Ada and other 3GLs. While both Ada and 4GLs allow roughly the same degree of expressiveness (Ada a little more so because of facilities such as generics, exceptions, tasking, and types), 4GLs are much more permissive — they usually do not have a strong type system, and there is no module or interface checking.

·	Real productivity enhancement from 4GLs is derived from the tools supplied to support these languages. However, many of these tools are available in Ada-compatible manner, and need not be dependent on a 4GL. For example: XVT is an Ada-compatible GUI builder; bindings and support tools exist for Ada/SQL; and CORBA IDL/Ada translators exist. The availability of such tools gives DoD developers the best of both worlds: enhanced productivity with the safety and reliability of Ada.

·	Remember, development productivity is NOT the key consideration for mission-critical long-lived systems. Support costs will far outweigh development (up to 80% of the total cost is support cost), and that effort can best be reduced by catching errors early in development, through a “non-permissive” engineering development approach.

Ada May Be Cheaper Than 4GLs — 4GLs May Be Cheaper Than Ada�tc "<Head 4 (12)>Ada May Be Cheaper Than 4GLs — 	4GLs May Be Cheaper Than Ada"�

Galorath explains that 4GLs can be cost effective when used in the proper domain and when limitations are acceptable. Ada may be less expensive when reuse, middleware, other non-developed software, or other productivity enhancements are applied. SEER-SEM [discussed in Chapter 10, Software Tools] was used to analyze the environment as well as the language. This model did not always conclude that Ada is cheaper or more expensive than other alternatives. As illustrated in Table 5-13, requirements definition activities are usually cheaper when 4GL methods are employed due to the ease of change and the nature of appropriate applications.

�

Table 5-13	Comparison of When Ada or a 4GL Is More Cost Effective [GALORATH95]

�

Appropriate Domains for 4GL’s�tc "<Head 4 (12)>Appropriate Domains for 4GL’s"�

Galorath says 4GLs are usually not appropriate for embedded defense/aerospace applications, computer-to-computer processing, nor hardware-intensive applications. 4GL’s tend to be an option for defense user-oriented MIS systems, such as: information technology, reporting, user interfaces, and database applications. Although 4GL’s can be very productive for additional reporting of existing systems (i.e., database reporting), 4GL’s often require sacrifices in user requirements and design details. In analyzing 4GLs, SEER-SEM allows the general description 4th generation language or more specific identification of the language. Example 4GL and Ada scenarios show Ada reuse is the most cost effective, as illustrated in Table 5-14.

�

Table 5-14 When Ada Reuse is Most Cost Effective

Development Details�tc "<Head 4 (12)>Development Details"�

Figure 5-4 illustrates an example scenario, based on the examination of real-world programs, that shows full Ada reuse is cheaper than 4GL. In the real world, examine each program to determine which is cheaper.

�

Figure 5-4 Type Programs Where Ada Reuse is Cheaper Than 4GL [GALORATH95]

4GL Versus Ada Size Only (Impacts Of Software Technology and Environment)�tc "<Head 4 (12)>4GL Versus Ada Size Only (Impacts Of Software Technology and Environment)"�

The higher the number, the higher the cost per function point. Analysis results of software size were similar between 4GLs and 3GLs. To make this analogy, the SEER-SEM model focused on effort relationships. By using the size of line expansion, insight is provided into the relative cost, with all other factors remaining constant. Table 5-15 illustrates the relative impacts of new development in Ada and in 4GL’s.

�

Table 5-15 Comparison of Size Impacts Using Three Methods [GALORATH95]

What About Maintenance?�tc "<Head 4 (12)>What About Maintenance?"�

Vendor support of the environment can impact maintenance costs. Some 4GLs come and go and developers can be stuck with buggy, unmaintainable applications. Therefore, maintenance costs could be much lower with experienced Ada personnel than with inexperienced personnel attempting to maintain a 4GL. This risk was one of the early motivations for a standard language (i.e., Ada).

�

Lessons-Learned 4GL Estimation Versus Ada�tc "<Head 4 (12)>Lessons-Learned 4GL Estimation Versus Ada"�

•	Evaluate 4GL impacts for your particular program.

•	Ada may be cheaper and so may a 4GL.

•	Use function-based analysis for 4GL estimation. Do not rely on simple function-to-line counts.

•	Make sure definitions are in sync; the term “4GL” is ambiguous.

•	Use 4GL’s in their appropriate domain.

•	Choose a 4GL that will be supported for the long haul.

•	Make sure you know the 4GL’s limitations and can live with the loss of design/implementation control that may occur.

•	Ada reuse can have great benefits if planned for during initial development.

•	Code generators for GUI, etc., can provide many 4GL benefits while working with Ada.

•	Remember DoD went to Ada in the first place to promote standardization. Do not risk lack of standardization due to language until you analyze costs and benefits. [GALORATH95]

	

REMEMBER:	4GL’s are not �xe "Silver Bullet"�Silver Bullets! The key to productivity improvements are reuse, tools, practices, and experience. 4GL’s can help in their own domains.

Ada Language Features�tc "<Head 2 (14)>Ada Language Features"�

The Ada programming language contains an abundance of effective tools for expressing the solution domain so it can directly reflect your view of the problem domain. With prior languages, the solution too often had to fit the language, rather than adapting the language to the solution. Those languages only got in the way of the primary goal — solving the problem. Because Ada can directly reflect your view of the problem domain, its implementation is understandable — helping in the management of complexity.

Ada is suitable for more than simply an implementation language. As a rich source of abstract expression, Ada can also serve as a vehicle for capturing design decisions. It provides a wealth of constructs for describing primitive objects and operations, and also offers a packaging construct allowing developers to build and enforce their own abstractions. Ada has unique features not found in many production languages, such as tasking, exception handling, and packaging. Figure 5-5 illustrates how Ada is comprised of various features that work together to support software engineering principles. [BOOCH94]

�

Figure 5-5 Ada Features Support Software Engineering Principles

�

NOTE:	See Chapter 14, Managing Software Development, for a discussion on object-oriented development and how Ada supports that approach. For an online tutorial on Ada, access the Ada Information Clearinghouse (AdaIC) at http://sw-eng.falls-church.va.us/AdaIC/ed-train/ under “Ada Short Courses and Seminars,” and select “Lovelace.”

Ada Program Unit�tc "<Head 3 (14)>Ada Program Unit"�

An Ada program is composed of one or more �xe "Ada:Language features:program unit"�program units that can be separately compiled. Program units consist of subprograms, tasks, packages, and generic units. All program units are normally structured into two parts, the �xe "Ada:Language features:specification"�specification and the body.

The specification defines the information visible to the user of the program unit (the interface). The �xe "Ada:Language features:body"�body contains unit implementation details that can be logically and textually hidden from the user. The specification and body can be separately compiled through separate compilation units. This feature is valuable in the development of large solutions. The developer can write the specification of high-level program units upfront, thus creating an enforceable design structure to the solution. Later in the development process, software implementation can be completed by independently adding and refining body units. Figure 5-6 illustrates the concept of the two-part program unit. The specification and body support the principles of abstraction and information hiding. The specification is an abstraction of the details found in the body. Implementation information is hidden from the user through the user interface.

�

Figure 5-6 Ada Two-part Program Unit

Ada Subprograms�tc "<Head 3 (14)>Ada Subprograms"�

The Ada �xe "Ada:Language features:subprogram"�subprogram provides a means for creating abstract operations. Subprograms are the basic execution unit in an Ada system and can be expressed as either procedures or functions. Similar to program units, subprograms have two parts, a specification and a body. The specification (the user’s interface to the subprogram) provides the name of the subprogram, its parameters, the parameter types, and whether the parameters are input, output, or both. The body is made up of a sequence of statements that implements the subprogram algorithm. The Ada subprogram feature supports the principles of modularity, localization, confirmability, and information hiding because subprograms can be compiled individually.

�

Ada’s Packaging Feature�tc "<Head 3 (14)>Ada’s Packaging Feature"�

An Ada �xe "Ada:Language features:package"�package contains a collection of logically-related computational resources. Packaging encapsulates (or puts a wall around) these resources. The package again consists of two parts, the specification and the body. The specification identifies the visible parts of the package and specifies which parts of the package can be employed by the user. It is not necessary for the user to understand how body objects and operations are implemented; thus, they are made invisible.

This structure directly supports the principles of modularity, abstraction, localization, and information hiding. Other languages have this feature, but Ada is different in that its packages enforce and encourage these principles. Ada language rules do not permit the user to do anything more with the package than the specification allows. Since the specification and the body can be compiled separately, the specification can be created early during software design with the body added later. Ada packages help developers control the complexity of software solutions by giving them the means with which to physically group related items into a logical picture.

Ada’s packaging feature significantly reduces software costs by keeping software changes as localized as possible. It also has a positive impact on software reuse because well-designed Ada packages separate the external environment from the package, making the packages more likely to be reusable. Ada’s packaging feature enables modularity by allowing data, types, and subprograms to be compiled separately. This leads to physical modularity, as small packages can be developed and tested independently. Figure 5-7 illustrates Ada’s packaging construct, where the user only has access to the specification. Implementation information is hidden in the body of the package, inaccessible to the user.

�

Figure 5-7 An Ada Package

Ada’s Tasking Feature�tc "<Head 3 (14)>Ada’s Tasking Feature"�

�xe "Ada:Language features:tasks"�Tasks are another kind of program unit. In real-time systems, many different activities often occur simultaneously. The �xe "Tyndall Range Control System (RCS)"�Tyndall Range Control System (RCS), a tactical C2 system used to conduct air operations over the Tyndall Gulf Test Range, is an example of a real-time system implementing Ada’s ability to handle multiple tasks simultaneously. RCS operations include the real-time control of aircraft during air combat training and weapons evaluation exercises. In this case, there are multiple sensors that report data to a central facility. The real world presentation of this problem domain is a system that performs multiple tasks concurrently.

Ada’s tasking feature allows the abstraction of each task to be expressed directly within the language. The RCS is closely modeled in Ada to provide realistic and accurate results to the users — the weapons controllers themselves. Ada’s tasking mechanism is based on the concept of communicating sequential processes. Tasks are defined as independent, concurrent operations that communicate with each other by passing messages among themselves. In software engineering terminology, Ada is called a “multi-threaded language” as it can perform multiple tasks simultaneously within the context of a single application. [BOLEN92] Ada’s tasking feature supports the principles of abstraction, modularity, localization, and confirmability.

Ada’s Exception Handling Feature�tc "<Head 3 (14)>Ada’s Exception Handling Feature"�

In mission, safety, or security critical software systems, it is imperative that the software has the ability to recover quickly and efficiently from defects or unusual conditions. In most programming languages, an input format mistake (e.g., a divide-by-zero input) will cause the software to crash and revert back to the operating system. In reliable systems, especially real-time embedded systems, for a program to terminate abnormally could prove costly, especially where human life is at stake.

To resolve such conditions, Ada allows developers to write exception handlers to capture unusual occurrences often caused by latent defects and/or stressed conditions. Exceptions can either be predefined (e.g., a numeric overflow) or user-defined (e.g., an overflowing buffer condition). If an exception occurs, normal processing will cease and program control will pass to the exception handler. Exception handlers can be found at the end of a block or in the body of a subprogram, package, or task. If a handler is not present at the site of the exception, control will continue to pass up to the next invoking level, until a handler (or ultimately the operating system) is found. Figure 5-8 illustrates Ada’s exception handling feature, where once an exception occurs, program control is handed over until the exception handler is found to resolve the problem. Exception handling keeps software systems from crashing under stressed conditions where undetected defects often surface. This feature supports the principles of modularity, confirmability, and localization.

�

Figure 5-8 Searching for the Exception Handler

�

Ada’s Generics Feature�tc "<Head 3 (14)>Ada’s Generics Feature"�

Ada was designed to handle large, complex software developments. Its special features were added to help manage �xe "Complexity"�complexity. One of these features is the ability to individually compile specifications and bodies as separate compilation units. Another capability Ada provides is the development of generic units to build reusable components. A telemetry processing unit is an example where several kinds of objects must be buffered. The data types are different, but the algorithm to process the buffers is the same. To create a generic program unit, a developer simply adds a generic part to a package or subprogram specification that defines all its generic parameters. Generic package creation occurs during compilation. This Ada feature promotes, in addition to reuse, productivity and maintainability. It also supports the principles of uniformity, completeness, confirmability, modularity, localization, abstraction, and information hiding. Table 5-16 summarizes Ada’s program unit features.

�

Table 5-16 Summary of Ada Program Unit Features

Ada Representation Specification�tc "<Head 3 (14)>Ada Representation Specification"�

It is sometimes necessary to exploit the underlying features of the computer hardware system. Unlike other HOLs, where separate assembly language routines must be written to accomplish this, Ada has features that specify implementation-dependent features and data representation. An example of such a requirement might be the need to improve disk drive efficiency by writing records of only a certain length or with a given packing specification. Representation clauses describe how entities in the solution domain are mapped to the underlying machine to increase efficiency. When these low-level features need to be applied, abstractions about them can then be created in Ada in high-level terms. Representation specifications can be placed in the declarative part of a unit or in the specification part of Ada tasks and packages. This feature implements the principles of uniformity and abstraction.

Ada Input/Output Packages�tc "<Head 3 (14)>Ada Input/Output Packages"�

Processors on embedded weapon systems usually do not interface with traditional I/O devices, such as printers or terminals. Instead black box interfaces are more common. To handle a range of such devices, Ada I/O is accomplished through several packages. These packages include high-level I/O, binary I/O, text I/O, and low-level I/O, supporting the principle of uniformity.

Ada’s Typing Feature�tc "<Head 3 (14)>Ada’s Typing Feature"�

In human language, the things we manipulate with verbs are called nouns. In Ada they are called “�xe "Object"�objects.” Every object has a set of properties (called its type and its subtypes) that indicate the values of the object and the operations that are applied to that object. Ada’s typing feature provides a vehicle for imposing structure on objects. Explicit typing is a fundamental feature of Ada that was designed to fulfill the software engineering goals of maintainability, understandability, reliability, and complexity reduction. A �xe "Type"�type is defined as the characterization of a set of values and a set of operations applicable to objects of a given type.

To say that Ada is a “strongly-typed” language means that objects of a specific type can only possess those values within that type’s definition. It also means that only operations defined for that type may be applied to it. Ada’s strong typing feature provides a margin of safety, since a particular type can only assume those values within the range of its definition. Strong typing also allows for the detection of more defects during compilation. This instills greater confidence that the program will be correct during its execution. Even if the typing definition is violated during execution, Ada has built-in exceptions to detect such defects programmatically. Ada’s typing feature supports the principles of uniformity, completeness, and confirmability.

Ada’s list of features, summarized on Table 5-17, makes it a comprehensive, universally applicable, �xe "Language, programming:Higher order (HOL)"�high order language. It was designed to be used in large, complex, frequently modified software systems that require optimum reliability, portability, reusability, and maintainability. Its vast range of useful features were designed to embrace the principles of software engineering by providing effective tools for managing the complexity of software-intensive system developments and to achieve the goals of software engineering, as illustrated on Figure 5-9.

�

Table 5-17 Summary of Ada Feature Benefits

�

Figure 5-9	Relationships Among Ada’s Features, Software Engineering Principles and Goals

Ada 95: Language for the 21st Century�tc "<Head 2 (14)>Ada 95\: Language for the 21st Century"�

In a speech to the Ada Dual-Use workshop, Emmett �xe "Paige, Emmett, Jr"�Paige, Jr., Assistant Secretary of Defense for C3I, spoke of Ada and the future.

Ada has been a standardized programming language since 1983. Since its introduction, DoD and the software engineering community have benefited greatly from Ada. And with the features that Ada 9X [now Ada 95] promises to bring to the table, things will get even better. While we took some early heat because of lack of quality and validated compilers in the early days, the results to date show quantitatively that Ada makes sense, both technically and from a business point of view. [PAIGE93]

Programming language development is a continuous process. American National Standards Institute (�xe "American National Standards Institute (ANSI)"�ANSI) requires that language standards be revised or reaffirmed every five years. Thus, Ada engineers have developed the next generation of the Ada language, Ada 95. The Ada 95 program constituted a revision of the language, not a redesign. �xe "Anderson, Christine"�Christine Anderson, on behalf of the �xe "Ada:Ada 95:Project Office"�Ada Joint Program Office, conducted the revision based on ANSI and ISO procedures. The ANSI- and ISO-approved standards for Ada 95 are �xe "International Standards Organization (ISO):ISO/OEC 8652\: 1995 (E)"�ISO/OEC 8652: 1995 (E) and �xe "American National Standards Institute (ANSI):ANSI 8652\: 1995"�ANSI 8652: 1995. The ISO approval makes Ada 95 the first internationally standardized, fully object-oriented programming (OOP). Ada 95 is also a Federal Information Processing Standard (�xe "Federal Information Processing Standards (FIPS):FIPS 119-1"�FIPS 119-1). Thus Ada 95 complies with DoD’s direction to use commercial standards. Ada 95 will never become a military standard.

Ada 95 was designed and developed by an international process of unprecedented scale for a programming language. A Board of Distinguished Reviewers representing six different countries and comprising 28 world-renowned leaders in academia and industry provided oversight and evaluation of the immense input from the international community of users. Over 750 recommendations were received by individuals and many of the world’s leading companies who were invited to submit Revision Requests. Conferences, workshops, small-group meetings, and one-on-one consultations were held with various segments of the Ada community, and advice was received from some of the world’s finest software engineers and government technology leaders. The entire revision process took over four years to complete.

The Ada 95 design gives the language more open and extensive versatility without losing the inherent integrity and efficiency of Ada 83, the first advanced building block language to assemble a host of important features while adhering to the demands of modern software engineering practice. That is, Ada 95 keeps all the software engineering capabilities while allowing more flexibility. New features include international character sets, improved generic templates, and a set of changes that will reduce the time needed to recompile large systems. Like Ada 83, Ada 95 is a strongly typed language with full support for encapsulation and information hiding. Increased functionality allows for support of smaller, more dynamic systems. Additionally, Ada 95 provides strong support for interfaces to other languages and facilitates calls to existing subroutine libraries and OO frameworks

The additions to Ada 95, contributing to its usability, include extended (or tagged) �xe "Type"��xe "Ada:Language features:typing"�types, a hierarchical library mechanism, and a greater ability to manipulate �xe "Ada:Language features:pointer"��xe "Pointer"�pointers (or references). Ada 95 incorporates the benefits of �xe "Object-oriented:Development (OOD)"�object-oriented languages without the insecurity wrought by a weak language foundation, as with C++. The tasking model is another area of significant Ada 95 change where the introduction of protected types allows for efficient implementation of shared data access. The benefit of speed, provided by low-level �xe "Ada:Language features:primitive"��xe "Primitive"�primitives (such as semaphores), is achieved without the risks incurred by unstructured primitives. Moreover, the use of protected types provides data-orientation in accordance with the object-oriented paradigm.

The Ada 95 standard is composed of a core, a library, and optional annexes. The library consists of a set of supplemental packages of general utility, including character handling, string handling, elementary functions, and random number generation. The annexes contain requirements to specify in detail things formerly found in Ada 83, that were not well-specified (e.g., timing requirements for immediate abort). These added specifications greatly increase performance predictability. The Ada 95 standard includes seven optional annexes covering the following topics:

•	�xe "System:Programming"�Systems programming. This covers a number of low-level features, such as in-line machine instructions, interrupt handling, shared variable access, and task identification.

•	�xe "Real-time"�Real-time. This annex addresses various scheduling and priority issues, including setting priorities dynamically, scheduling algorithms, and entry queue protocols. It also includes detailed requirements on the abort statement for single and multiprocessor systems and a monotonic time package (distinct from the Calendar which might go backwards due to time-zone or daylight savings changes).

•	�xe "System:Distributed"�Distributed systems. The core language introduces the idea of a partition, whereby one coherent “program” is distributed over a number of partitions, each with its own environment task. This annex defines two forms of partitions and inter-partition communications using statically- and dynamically-bound remote subprogram calls.

•	�xe "Management information system (MIS)"�Information systems. The core language extends fixed-point types to include basic support for decimal types. This annex defines a number of packages providing detailed facilities for manipulating decimal values and conversion to external format using picture strings.

•	�xe "Numerics"�Numerics. This annex addresses the special needs of the numeric community. One significant change is the basis for model numbers. These are no longer described in the core language but in this annex. Moreover, model numbers in Ada 95 are essentially what were called “safe numbers” in Ada 83. The old model numbers and the term “safe numbers” have been abandoned. Having both safe and model numbers did not bring benefits commensurate with the complexity and confusion they introduced. This annex also includes packages for manipulating complex numbers.

•	�xe "Safety"�Safety and �xe "Security"�security. This annex addresses restrictions on the use of the language and requirements of compilation systems used in safety-critical and related applications where security is vital.

•	�xe "Interface"�Language interfaces. This annex defines additional facilities for communication with applications in other languages, especially C, �xe "Language, programming:Higher order (HOL):Common Business Oriented Language (COBOL)"��xe "Common Business Oriented Language (COBOL)"�COBOL, and �xe "Language, programming:Higher order (HOL):Formula Translation (Fortran)"�Fortran.

�

�xe "Anderson, Christine"�Christine Anderson, former program manager for Ada 95 and coeditor of the revised standard reference manual, explained: “No other language has ever been created following written requirements refined by the world’s best in computer programming and software development. Ada 95 is the culmination of these efforts, thereby delivering the most viable, cost-effective language for the development of long-term software solutions.”

[ANDERSON94]

The importance of the Ada 95 program to DoD was expressed by Emmett �xe "Paige, Emmett, Jr"�Paige, Jr. Upon taking office as Assistant Secretary of Defense for C3I, Paige sent an electronic mail message to the Deputy Assistant Secretary of Defense for Information Systems, the Air Force Deputy Assistant Secretary for Communications, Computers, and Logistics, and the head of DISA. In it he told them:

Ada is not dead, Ada is alive and doing well and is needed as much as ever, despite the views of some senior folks on the interview and speaking circuit. We cannot lock Ada [95] in a straight jacket with long drawn out extensive procedures for making changes. Please tell me what I must do to get the show on the road and rejuvenate the Ada effort, to include opening up the reuse repositories to industry and academia without any inhibitions. We must open the gates if we are to be successful in encouraging the use of Ada in the private sector. [PAIGE93]

Ada IMPLEMENTATION�tc "<Head 2 (14)>Ada IMPLEMENTATION"�

Ada was designed to support the development of major software-intensive weapons and MIS systems with extended life cycles. Typically, these applications are developed by large staffs divided among multiple contractors and/or organizations. The following guidance is based on lessons-learned from a range of major Ada development efforts. Regardless of the development stage of your program, this information will help you implement Ada, along with sound software engineering practices, into your development process. Never forget, Ada and software engineering go hand-in-hand.

Transitioning to Ada 95�tc "<Head 3 (14)>Transitioning to Ada 95"�

Change is seldom easy or instant; but in the case of moving to Ada 95, the benefits are worth the effort and programs are already leading the way. Two documents are available to help you make the transition from the AdaIC in paper copy or downloadable from their Internet host [http://sw-eng.falls-church.va.us].

·	Ada 95 Adoption Handbook. The Handbook explains the opportunities, issues, and answers involved in adopting Ada 95;

·	Ada 95 Transition Planning Guide. The Planning Guide helps managers who have decided to adopt Ada 95 create a detailed transition plan.

These documents cover a wide range of topics — among them are issues related to program planning; tools and environments; upward compatibility; technology transfer; software-development methodologies; commercial-off-the-shelf products, legacy software, and multi-language development; and the adoption process and personnel. Other publications available to guide your transition to Ada 95, all available online from the AdaIC, include

·	Ada 95 Adoption Handbook, (listed above) March 30, 1995,

·	Ada 95 Transition Planning Guide, (listed above) September 30, 1994,

·	Ada 95 Language Reference Manual,

·	Ada 95 Rationale,

·	Ada 95 Annotated Ada Reference Manual,

·	Ada Compatibility Guide, Version 6.0, January 1995,

·	An Overview of Ada 95,

·	Contrasts: Ada 95 and C++,

·	How to Program in Ada 95 Using Ada 83, and

·	Multiple Inheritance in Ada 95

Table 5-18 provides a list for determining whether it is too early, the time is right, or you are past due in transitioning to Ada 95.

�

Table 5-18 How to Know When to Transition to Ada 95

Adopt An Incremental Transition Strategy�tc "<Head 4 (12)>Adopt An Incremental Transition Strategy"�

When considering how to make the transition, the Planning Guide advises an incremental transition strategy, in which a few new Ada 95 features are introduced at first, and others are adopted later. This enables you to shorten the learning curve and lessen the impact on your program’s budget and schedule. If you adopt Ada 95 to exploit new technologies such as object-oriented programming, then making sure your team learns to use these new technologies will be a major risk item that can impact cost and schedule. These underlying technology shifts are present anytime there are changes in programming languages, tools, or development methodologies.

�
Write Ada 95-Compatible Code in Ada 83�tc "<Head 4 (12)>Write Ada 95-Compatible Code in Ada 83"�

One step in your transition can be to have your developer start writing Ada 95 code in Ada 83. [See in “How Can I Write Ada-95-Compatible Code in Ada 83?”, AdaICNEWS, Spring 1995.] Ada compiler vendors have released versions of their Ada 95 compilers. Many of these compilers process both Ada 83 and Ada 95 code and provide the user with a switch to choose the appropriate mode. A switch-selectable Ada 83/ Ada 95 compiler reduces program risk, because your software developer can use one tool to move back and forth from Ada 83 mode to Ada 95 mode until they completely transition to Ada 95.

NOTE: See “Choosing the Appropriate Ada 95 Compiler” under “Ada Technology Considerations” below.

Remember the Human Factor�tc "<Head 4 (12)>Remember the Human Factor"�

Remember that people are involved in the adoption process. Change can be difficult for any team. You should make sure that the adoption of Ada 95 is a participatory process and that your software developer is prepared for, and actively involved in, transition planning, as well as, the implementation phases. While this may seem to be a “soft” issue compared with the availability of compilers or the performance of Ada run-time kernels, one of the most important lessons of previous technology adoptions is that social and environmental changes are often the most important ones, with the greatest impact on transition success.

When transitioning from another language to Ada 95, the paradigm and mindset shifts are greater than they are when moving from Ada 83 to Ada 95. Each programming language brings with it a large collection of techniques and methods that reflect “how software ought to be built” using that language. Changing from one language to another is not as simple as switching from one make of automobile to another. Rather, it is more akin to switching from driving a car to piloting a jet. Therefore, you should take the following steps to make sure your software developer successfully adopts the Ada 95 culture:

·	Support technology transfer efforts that educate developers, not only to the syntax of the new language, but also to the way it should be used (its culture).

·	Provide mentors with Ada experience who can help guide the development team.

·	Hire experienced Ada personnel and seed them on the development team as group leaders who are responsible for showing the entire team how to create software “with an Ada mindset.”

Ada TECHNOLOGY CONSIDERATIONS�tc "<Head 2 (14)>Ada TECHNOLOGY CONSIDERATIONS"�

There are certain technology considerations you should evaluate when implementing your Ada development. These apply to all Ada programs, whether yours is a new start, an on-going development, or one in PDSS. These considerations include the following.

Ada Compilers�tc "<Head 3 (14)>Ada Compilers"�

A �xe "Compiler:Ada"�compiler is a software tool that translates a higher order language, such as Ada, into machine language. It usually first generates assembly language, then translates assembly language into machine language. An Ada compiler includes the compiler, program library system, linker/loader, run-time system, and debugger. Compilers not only support software development products and methodology, but program-specific procedures as well.

Compiler Selection�tc "<Head 4 (12)>Compiler Selection"�

Compiler selection is not to be taken lightly, the method for which depends on how you structure your RFP. You may choose to leave its selection up to the winning contractor, require its selection to be included in offerors’ proposals, or stipulate the use of the compiler you have pre-selected. In any case, you must take the time to educate yourself on available alternative choices to determine what is best for your program. Your compiler selection process starts with your �xe "Acquisition:Plan"�Acquisition Plan [discussed in Chapter 6] that establishes program requirements, budget, personnel, and schedule. Criteria for compiler selection are program-specific. (For example, execution time is not as critical in an MIS as it is for weapon systems software.) Benchmarks, checklists, and interviews with vendors and users should be employed as a means for assessing whether candidate compilers meet your requirements. Your evaluation should also include a limited number of alternative compilers with the potential for fulfilling your needs. [Contact the Ada Information Clearinghouse (discussed below) for their suggestions on which compilers to consider for your specific domain.]

The evaluation and selection of an Ada compilation system is a serious, critical process that should be addressed in your �xe "Risk:Risk Management Plan (RMP)"�Risk Management Plan. Careful assessment and selection of an Ada compiler package can greatly decrease overall program risk, cost, and schedule overruns. Be aware that evaluation and selection applies to the entire software development package, not just the compiler. Your selection process must include identification of key criteria and testing of candidate compilation systems against those criteria. There is no single test suite or set checklist that suffices for every program. However, there are several �xe "Benchmark"�benchmarks [discussed below] and �xe "Testing"�test suites that can be used to evaluate compiler implementation after program requirements have been identified. [Refer to SEI’s Ada Adoption Handbook: Compiler Evaluation and Selection, Version 1.0] [WEIDERMAN891]

NOTE:	Normally, you will have contractors propose a compiler; however, you should make this a specific evaluation criterion during source selection.

Compiler Maturity�tc "<Head 4 (12)>Compiler Maturity"�

The maturation of Ada compilers and software engineering environments, like fine wine, takes time. Using immature tools can negatively impact productivity if your software developers have to concurrently develop and maintain new applications, new tools, and new hardware. You should consider the extent to which a compiler has been used in production work when developing program milestones. When possible, select a widely used, mature compiler. [The STSC is a good source for information on compiler maturity.]

Compiler Validation�tc "<Head 4 (12)>Compiler Validation"�

All software development efforts are required to use a validated Ada compiler. Not only must you select a validated compiler, you must also verify that the compiler(s) you select is validated against the most current version of the validation test suite.

You should schedule procurement of your compiler to correspond with program start. During the program life cycle, as technology improves, you may want to upgrade operating systems, compilers, editors, and CASE tools to the latest version. However, it is your responsibility to wisely control upgrades because even minor upgrades can have serious impacts on program cost and schedule.

Compiler Evaluation�tc "<Head 4 (12)>Compiler Evaluation"�

Ada compilers can be evaluated using the �xe "Compiler:Evaluation:Ada Compiler Evaluation Capability (ACEC)"�Ada Compiler Evaluation System (AECS). The goal of formal evaluation is to provide comparative compiler performance data to vendors, procurers, and users of Ada products. These data give vendors a baseline for compiler performance improvement, give procurers implementation and configuration information for selecting the best compiler for their needs, and give users the means to identify the language features that are best to use or avoid for their particular requirements.

A word of caution about compiler evaluation can be learned from a �xe "1912th Computer Systems Group"�1912th Computer Systems Group team at Air Combat Command. They were tasked to port a highly visible C2 system from one hardware suite to another and assumed that because the system was developed in Ada, porting would be a relatively easy task. Unfortunately, they found that unless the designers and coders of a system use sound software engineering practices, the porting task can be extremely risky.

The subject system’s source and target hardware platforms were both produced by the same company, but with different operating systems. Once ported, the target compiler produced markedly different results than the original compiler. Although both the old and new compilers were made by the same company, they did not implement Ada in the same way. This suggested to the team, that while an Ada validation test suite [Ada Compiler Validation Capability (ACVC)] was used to verify that the compilers conformed with the Ada language standard, that particular test suite did not determine how well the standard was implemented. They found that a creative solution to compiler inconsistencies is for the developer to be required to successfully compile the software on three different compilers. Also, use of the ACES test suite would have helped to better identify potential compiler problems. [GAETANO92]

Compiler Benchmarks�tc "<Head 4 (12)>Compiler Benchmarks"�

Because all compilers are not alike, benchmarks give techniques and application examples with which to compare Ada compiler performance with other Ada compilers or with other language compilers. The results generated through execution of a benchmark program can also help test the characteristics of candidate compilers. Available compiler benchmarks include:

·	The Ada Compiler Evaluation System (ACES) benchmark measures performance, emphasizing execution speed, code size, compilation speed, system capacities, and capabilities of the system’s symbolic debugger, diagnostic messages, and library system.

·	The �xe "Compiler:Benchmark:Performance Interface Working Group (PIWG)"��xe "Performance:Interface Working Group (PIWG) benchma"�Performance Interface Working Group (PIWG) benchmark measures execution speed.

·	The �xe "Compiler:Benchmark:HARTSTONE"��xe "HARTSTONE benchmark"�HARTSTONE benchmark measures a system’s ability to handle HArd Real-Time (HART) applications. [WEIDERMAN892] [ALLEN92]

For some medium to large programs, you may not be able to rely on publicly available resources and may have to develop your own benchmarks that reflect your specific needs. If you are developing your own benchmarks, consider the following:

·	Benchmarks must represent and test system requirements and the environment selected;

·	Benchmarks must be a part of a planned, totally integrated and supported test suite;

·	Benchmarks must be maintained throughout the software life cycle; and

·	Benchmarks and benchmark requirements must be suitable for inclusion in a contract.

[Contact the SEI or a reference such as Camp’s Benchmarking for information about new benchmarks for Ada applications.] [CAMP89] [More information about benchmarks can be also obtained through the Ada Information Clearinghouse, discussed below.]

Choosing the Appropriate Ada 95 Compiler�tc "<Head 4 (12)>Choosing the Appropriate Ada 95 Compiler"�

�xe "Compiler:Ada 95"�Ada 95 compilers provide developers with new opportunities; however, these can lead to new risks. To reduce the risk associated with using new Ada 95 compilers, you, your development staff, and/or your contractors must take steps to assess compiler maturity and usability on upcoming programs. The most important techniques are:

·	Benchmarking the compiler using a set of standard tests;

·	Supplementing the standard benchmark tests with program-specific benchmarks reflecting high-risk areas of program concern (e.g., speed of compilation, execution speed of real-time features, size of generated code for generics, etc.); and

·	Running a pilot program that measures the compiler’s usability under typical run-time conditions.

Since the publication of the new Ada 95 standard, nine major vendors have announced they plan to validate and market Ada 95 compilers. Currently these vendors produce over 60% of the 839 current Ada 83 compilers. Table 5-19 lists these vendors and a point of contact.

�

Table 5-19 List of Current Ada 95 Compiler Vendors

Ada Interface Standards�tc "<Head 3 (14)>Ada Interface Standards"�

Ada must be able to interface with the resources end users need to control. Interfaces to these resources have been standardized to ensure Ada’s interoperability, portability, and reuse. Commonly used resources with which Ada must interface are:

•	Operating Systems. (e.g., POSIX�xe "Standards:1553 databus"�)

•	Databases. [e.g., �xe "Standards:Structured Query Language (SQL™)"�Structured Query Language (SQL™), �xe "Standards:Information Resource Dictionary System (IRDS)"��xe "Information Resource Dictionary System (IRDS)"�Information Resource Dictionary System (IRDS)]

•	User interfaces. (e.g., �xe "Standards:XWindows"��xe "XWindows"�XWindows, �xe "Standards:Motif"��xe "Motif"�Motif, �xe "Standards:OpenLook"��xe "OpenLook"�Open Look)

•	Graphics. [e.g., �xe "Standards:Graphical Kernel Systems (GKS)"��xe "Graphical Kernel Systems (GKS)"�Graphical Kernel Systems (GKS), �xe "Standards:Programmers Hierarchical Interactive Graphics Syst"��xe "Programmers Hierarchical Interactive Graphics Syst"�Programmers Hierarchical Interactive Graphics System (PHIGS)]

•	Networked resources. [e.g., Government Open Systems Interconnection Profile (�xe "Standards:Government Open Systems Interconnection Profile (G"�GOSIP), X.25, X.400, X.500]

•	Hardware. (e.g., �xe "1553 databus"�1553 data bus)

Both DoD and commercial standards are important to software development. However, conformance with commercial standards encourages �xe "Open systems:Environment (OSE)"�open system environments (OSEs) needed to attain functionality and to provide interoperability, portability, and scalability of software applications across networks of heterogeneous hardware and software. [Consult the Federal Information Processing Standards (�xe "Federal Information Processing Standards (FIPS)"�FIPS) (discussed in Chapter 2, DoD Software Acquisition Environment) for MIS technology requirements.]

�xe "Standards:Secondary"�Secondary standards provide interfaces to computational resources. These standards are used for computing mathematical functions, rational numbers, statistical functions, and decimal arithmetic. Secondary standards support reuse, interoperability, portability, and are commercially available to support Ada software development.

Ada Bindings�tc "<Head 3 (14)>Ada Bindings"�

For an interface standard to become an “international standard” it must be written in an abstract specification (e.g., VDM, SL, Z). (Until recently, interface standards could be written in an application language as an abstraction specification; e.g., �xe "Standards:Portable Operating System Interface for UNIX (POSI"�POSIX’s basic services were written in C.) For an application language to use the international standard, a language binding to the interface standard is required. �xe "Binding"�Bindings allow software applications to interface with other software products conforming to the same standard. Figure 5-10 illustrates how Ada bindings are used to connect Ada applications with computer resources through �xe "Standards:Interface"�interface standards. Development and standardization of bindings are the mission of national and international organizations such as �xe "American National Standards Institute (ANSI)"�ANSI and the �xe "International Standards Organization (ISO)"�International Standards Organization (ISO).

�

Figure 5-10 Ada Bindings

Ada bindings to an interface standard are usually in the form of an Ada �xe "Ada:Language features:package"��xe "Package specification"�package specification. To use the Ada binding, an implementation in the Ada package body is required. The Ada package feature provides an excellent vehicle for supporting interface standards. Thus, Ada is an ideal facilitator for OSEs. To support DoD’s migration to OSEs, commercially available Ada bindings support the following interface standards:

•	�xe "Standards:Ada Semantic Interface Specification (ASIS)"��xe "Ada Semantic Interface Specification (ASIS)"�Ada Semantic Interface Specification (ASIS),

•	�xe "Standards:Generic Package of Elementary Functions (GPEF)"��xe "Generic Package of Elementary Functions (GPEF)"�Generic Package of Elementary Functions (GPEF),

•	�xe "Standards:Generic Package of Primitive Functions (GPPF)"��xe "Generic Package of Primitive Functions (GPPF)"�Generic Package of Primitive Functions (GPPF),

•	GKS, �xe "Standards:Programmers Hierarchical Interactive Graphics Syst"�PHIGS, POSIX, �xe "Standards:Structured Query Language (SQL™)"��xe "Structured Query Language (SQL™)"�SQL,™

•	�xe "Standards:Transmission Control Protocol/Internet Protocol (T"��xe "Transmission Control Protocol/Internet Protocol (T"�Transmission Control Protocol/Internet Protocol (TCP/IP),

•	XWindows, Motif, Open Look, X.25, X.400, and X.500, and

•	Microsoft Windows.

[The Ada Information Clearinghouse Report, Available Ada Bindings, updated quarterly, gives a brief description of the standard and a point of contact for each commercial product supporting an Ada binding.]

Operating Systems�tc "<Head 3 (14)>Operating Systems"�

An operating system is the software or firmware master control structure closest to the computer hardware that acts as a combination of scheduler and traffic cop (e.g., MS-DOS, UNIX, VMS). Operating systems reside on host and target processors. Host �xe "Processor:Host"�processors are usually used to develop software. Target �xe "Processor:Target"�processors run or execute the developed software. Most MISs and land-based military applications develop and implement software on the same processor or the same family of processors. When software is developed and executed on the same type processor, the operating system has an integrated �xe "Run-time:Environment (RTE)"�run-time environment (RTE). The application (compiled program code) is bound to the operating system at link time and the entire entity becomes the application.

Commonly in weapon system applications, the target processor is not the same as the host processor. For these systems, all system services are provided by the application operating system, the RTE. Ada has been very effective for applications with time-critical processing requirements on RTEs.

Validated Ada products must conform to the ISO/ANSI standard, but this standard does not address run-time issues. Due to Ada’s philosophy and structure, there is usually a difference between Ada’s run-time requirements and other languages that use more conventional operating system products. Most Ada run-time products are based on proprietary commercial operating systems and the bindings are usually written in a language other than Ada.

Databases�tc "<Head 3 (14)>Databases"�

SQL™ is an interface standard for use with a standardized language in �xe "Relational database management system (RDBMS)"�relational database management systems (RDBMSs). The major problem with SQL-compliant database programs is the use of extensions which tend to degrade portability. The �xe "SQL Ada Module Description Language (SAMeDL)"�SQL Ada Module Description Language (SAMeDL) is a binding from Ada to SQL-based databases. SAMeDL is designed to facilitate the construction of Ada database applications that conform to the �xe "Tools:Design tools:SQL Ada Module Extension (SAME)"��xe "SQL Ada Module Extension (SAME)"�SQL Ada Module Extension (SAME) architecture. It extends the module language defined by the ANSI SQL standard to better fit the needs of Ada. [Descriptions of SAMeDL and SAME can be found in SEI technical report CMU/SEI-90-TR-25.]

Graphics�tc "<Head 3 (14)>Graphics"�

The �xe "Standards:Graphics Standard Interface Standard (GSIS)"��xe "Graphics Standard Interface Standard (GSIS)"�Graphics Standard Interface Standard (GSIS) is a set of standards essential to the acquisition of next-generation computing systems for DoD. The GSIS aids in addressing a wide range of functionality for various levels of military graphics applications. An interactive graphics system is a set of hardware and software that works together to provide the following services and physical devices:

•	It accepts human input (e.g., via a mouse, keyboard, buttons, touch screen) and presents it to the application program through an accepted protocol (procedural interface) in an accepted presentation format; and

•	It presents data and information (e.g., display formats and images on cathode ray tubes) to users through a protocol adhered to the application program and the graphics system as the provider of graphics services.

Windowing Environment�tc "<Head 3 (14)>Windowing Environment"�

The �xe "Standards:XWindows"��xe "XWindows"�XWindows system is a hardware-independent and operating system-independent graphics standard designed to operate over a network or within a stand-alone machine. The libraries (Xlib and XT) are basic in scope and provide a communication protocol for XWindows which are in turn used by higher-level tool kits (e.g., �xe "Standards:Motif"��xe "Motif"�Motif, �xe "Standards:OpenLook"��xe "OpenLook"�Open Look) to facilitate the writing of user interfaces. [Ada bindings to the Xlib and XT XWindow interface are available free from the STARS repository, discussed in Chapter 4, Engineering Software-Intensive Systems. In addition, there are products which provide various levels of interfaces to Microsoft Windows. These include Screen Machine from Objective Interface Systems, Reston, Virginia and Janus/Ada Windows Toolkit from RR Software, Inc., Madison, Wisconsin.]

Ada Run-time Efficiency�tc "<Head 3 (14)>Ada Run-time Efficiency"�

Weapon system software must respond quickly and efficiently to external stimuli, and MIS applications must accomplish the most work possible on available resources. You should, therefore, carefully evaluate run-time efficiency. �xe "Ada:Run-time efficiency"�Run-time efficiency can be assessed through compiler evaluation, benchmarking, and prototyping.

NOTE:	See Chapter 10, Software Tools, for a discussion on Ada Tools, Methods, and Support Centers. Also see Chapter 9, Reuse, for a discussion on Ada Reuse.

Ada AND YOUR PROGRAM�tc "<Head 2 (14)>Ada AND YOUR PROGRAM"�

The size and complexity of major software-intensive weapon systems, MISs, and their upgrades present engineering and management challenges that take dedicated effort to comprehend and remedy. You need to integrate systems engineering, software engineering, standards, development methodologies, life cycle management, metrics, open systems, architecture, risk management, and reuse in your management process to ensure the software you develop is of the highest quality, on time, within budget. Simply using Ada does not guarantee quality software! What Ada can do for you is make the management activities you must perform [as outlined in Chapter 4, Engineering Software-Intensive Systems, and throughout these Guidelines] easier to institute and more controllable.

Ada and Your New-Start Program�tc "<Head 3 (14)>Ada and Your New-Start Program"�

If your program is a major new-start software development, you need to follow the guidance in DoDI 5000.2 and DoDD 3405.1 concerning Ada. However, before you stipulate in your RFP that all your code must be developed in Ada, explore the possibilities of how much of your functionality can be accomplished through �xe \b "Commercial-off-the-shelf (COTS) software"�COTS and �xe "Reuse"�reuse. The 100% custom developments of the past are not economical. Efforts such as domain engineering, which capitalizes on reuse and COTS, should be considered as a cost effective alternative. [See Chapter 4, Engineering Software-Intensive Systems, and Chapter 9, Reuse, for more information on Domain Engineering.] Another alternative might be to scale back on initial system requirements, and incrementally add functionality as the system evolves. [This incremental strategy is discussed in Chapter 3, System Life Cycle and Methodologies.] Of course, the decision you make will be based on the system requirements, acquisition environment, and the life cycle requirements.

NOTE:	During source selection, look for contractors who can demonstrate an executable Ada architecture using �xe "Tools:Design tools:Universal Network Architecture Services (UNAS)"�UNAS (or equivalent) and who have a robust software development environment like the �xe "Rational:Environment™"�Rational Environment™ (or equivalent). See Chapter 10, Software Tools, for a discussion on these two systems.

Ada and Your On-going Program�tc "<Head 3 (14)>Ada and Your On-going Program"�

If you are managing a major on-going software development that is not implementing Ada, you should consider your options. For the foreseeable future, DoD is committed to Ada. All software maintenance organizations will support Ada products. For your program to be successful, it must be maintainable. “Other than Ada” code represents the legacy of high-cost software we can no longer afford to support. You should conduct a life cycle cost analysis of the software products you are building to determine whether changing languages is financially practical. You will find developing software in Ada is always a good business decision in the long-term. Changing to Ada midstream may not always be economically feasible in the short-term, given today’s budgets and DoD’s incremental funding cycle. Regrettably, it is not always possible to spend a little more today to save a lot tomorrow.

However, if your software architecture is properly structured, those modules that are stand alone and yet to be built should be coded in Ada. The life cycle cost savings you are going to gain by doing so will greatly improve your program’s chances for success. Using Ada as your primary development language, combined with modern software engineering methods, will result in code that is reliable, supportable, and reusable.

Ada and Your PDSS Program�tc "<Head 3 (14)>Ada and Your PDSS Program"�

If you are managing the support of non-Ada legacy software, you have several options that can reduce your program costs and improve the quality of the product you are supporting. You must first conduct a life cycle cost analysis to determine whether it is best to continue patching your existing code, to start from scratch with a new Ada development, or to re-engineer your existing code to Ada
. [Consult the �xe "Software Technology Support Center (STSC)"�STSC for evaluations of life cycle cost models best for your program.]
 If you decide to continue to maintain your non-Ada code, major modifications should be coded in Ada and any localized, stand-alone changes should be performed in Ada.

NOTE:	See Chapter 11, Software Support, for an in-depth discussion on re-engineering legacy software to Ada.

Ada Upgrade Opportunities�tc "<Head 4 (12)>Ada Upgrade Opportunities"�

Because our future software support environments will depend mainly on Ada, it is smart for organizations to embrace opportunities to use Ada when upgrading existing resources. The benefits of using Ada for upgrades and enhancements to existing systems include ease of maintenance, reusable libraries, tool variety, and programmer productivity. When upgrading a current system, you should address the following technology considerations.

Mixing Ada with Other Languages�tc "<Head 4 (12)>Mixing Ada with Other Languages"�

Upgrades to existing systems are currently more common in DoD than new-start programs. A major challenge to program managers involved in these upgrades is to develop viable strategies for inserting Ada into existing systems. Alternative strategies can be evaluated by developing working hybrid models of the new structure. Some problems related to inserting Ada into existing systems are data handling, scheduling, and program libraries. It is sometimes more feasible, from a technical and operational perspective, to add processing elements that are pure Ada and to place greater emphasis on interchanging data. This alternative is illustrated in Figure 5-11 where Ada modules and non-Ada modules have separate compilation units which are then linked to produce the application. When using this approach, you must thoroughly address architectural concerns such as data, program libraries, degraded mode reconfiguration, and networking. Another alternative is �xe "Co-processing"�co-processing which is now progressing from an emerging technology to a practical solution.

�

Figure 5-11 Linking Ada to Non-Ada Modules

�

Porting with Ada�tc "<Head 4 (12)>Porting with Ada"�

Porting is the ability to use data and software on different computer hardware systems. Over the life of a software-intensive system, the host hardware environment frequently changes. These changes can be caused by hardware upgrades, modernization, transition of support management responsibility, or diminishing (or loss of) host processor vendor support. If these changes occur, application source code and program-developed software tools are candidates for porting. As with reuse, portability must be considered upfront when developing software and tools. Although Ada applications are generally more portable from one environment to another than other languages, you must take an active role in ensuring your software ports easily.

Requirements and Design Impacts�tc "<Head 4 (12)>Requirements and Design Impacts"�

When translating or converting existing code to Ada, the operating system must be an Ada run-time operating system or be compatible with the Ada run-time library and the Ada �xe "Run-time:Environment (RTE)"�run-time environment (RTE). If the operating system is incompatible with the Ada RTE, major changes must be made to the application and/or operating system’s design. If this type change is not identified and planned for in the very early stages of transition, through modifications to requirements and design, you may experience a negative return on investment.

ADDRESSING Ada IN THE RFP�tc "<Head 2 (14)>ADDRESSING Ada IN THE RFP"�

�tc "<>"�

It is imperative you select a high quality software organization that has demonstrated experience in exploiting the advantages of the Ada language. There are a growing number of software developers who have produced tools that enable them to develop full-scale operating models and prototypes of a proposed system’s capability (e.g.,
�
xe "
Tools:Design tools:Universal Network Architecture Services (UNAS)"
�
UNAS
 marketed
by
�
xe "
Rational:Environment™"
�
Rational Environment
™). This means you do not need to rely on “paper analysis” to evaluate the effectiveness of proposed designs. When you have offerors (identified through market and pre-award surveys) who can rapidly construct and demonstrate
working
�
xe "
Models:Ada"
�
�
xe "
Ada:Process Model"
�
Ada models
 based on an architectural skeleton, you should require such demonstrations as part of their proposal. Another approach when requiring these demonstrations is to carry a minimum of two contractors to PDR. This approach can be used where contractors need to develop engineering tools to maintain system control and data integration in the design and coding process. In this case, you can extend the PDR for some reasonable period to compensate for the extra development. With the ability to evaluate an operating model of the proposed application, the modest additional cost and schedule time pays for itself through beneficial risk reduction.. [BAKER92]

CAUTION:	The first Ada program performed by a developer can be problematic; therefore, when selecting your contractor, the more Ada experience the better. Insist that contractors describe their Ada experience and associated Ada software development environment as part of their proposal. Ensure that this is a major, if not THE major, risk consideration in source selection. ESC has prepared a supplement to the Software Capability Evaluation
[discussed in Chapter 7, Software Development Maturity]
 specifically addressing the maturity of a contractor’s Ada capability.
 [Also see Volume 2, Appendix M, Tab 1.]

Your RFP should require that bidders furnish historical data (size/time/effort) on 3-4 completed programs in the same domain and of comparable size and complexity. These data should then be used to assess the bidder’s productivity on those historical programs. RFPs should also require that offerors provide an �xe "Quality:Estimation of"�estimate of software quality (expected defects remaining) and �xe "Reliability"�reliability [�xe "Defect:Mean-time-to-defect (MTTD)"��xe "Mean-time-to-defect (MTTD)"�mean-time-to-defect (MTTD)] at delivery, along with an estimate of the additional time required to make the software 99.9% free of expected defects.

Assessing the software development capability of offerors provides a snapshot of their past process implementation, current process activities, and future process potential. Although these evaluations are an excellent way to assess the capability of potential contractors, most of the issues addressed are not specific to any particular language. An additional set of questions must be asked concerning Ada. There are six key process areas �xe "Software Capability Evaluation (SCE):Key process area (KPA)"��xe "Key process area (KPA)"�(KPAs) in the �xe "Software Capability Evaluation (SCE)"�Software Capability Evaluation (SCE) that can be tailored to include the assessment of the offeror’s Ada capability. The information gathered under “training program” and “software program planning” KPAs will show how well an offeror plans for Ada programs. “Software tracking and oversight,” “software product engineering,” “organization process definition,” and “software quality assurance” KPAs can be used to determine how well an offeror performs on Ada programs. [Volume 2, Appendix M, Tab 1 contains KPAs from the SEI CMM and questions for a SCE team to use in assessing a contractor’s Ada capabilities.]

Ada Waivers�tc "<Head 3 (14)>Ada Waivers"�

There might be times when a language other than Ada is proposed. Such proposals should be required to provide strong justification that the overall life cycle costs will be less than with the use of Ada. If a waiver (or exception) is considered, it must be obtained in accordance with �xe "AF Sup 1 to DoDI 5000.2"�DoD 5000.2-R and �xe "DoDD 3405.1"�DoDD 3405.1. Some of the lessons-learned from life cycle cost estimating efforts show factors which must be considered when submitting an Ada waiver request. These factors include:

Factor:	The overall cost to train programmers in Ada is less than normally projected.

Rationale: 	(1) Only a core group of programmers are kept from program to program. The rest are hired as needed or transferred from other parts of the company and must be trained anyway.

(2) 	The differences between C, or any other high-level language (HOL), and Ada are not difficult enough to prohibit programmers from learning to program in Ada at an acceptable rate. Programmers are normally exposed to several HOLs during their education and are able to grasp Ada concepts and constructs.

Factor:	The overall cost to purchase Ada software engineering environments (SEEs) is less than normally projected.

Rationale: 	(1) 	Whether Ada-oriented or not, companies always upgrade and acquire new tools and SEEs.

(2) 	SEE costs can be (and are often) shared between programs (including future programs).

Factor:	Language proficiency (i.e., programmer productivity) is language-independent and increases during the software life cycle. This increase must be factored into life cycle cost analyses.

Rationale: 	(1)	Proficiency evolves from low to high as the team works with the language.

(2) 	Every design change (e.g., block change cycle update) results in an increase in proficiency. After the first change, proficiency should move from low to medium; after the second change, proficiency should move from medium to high.

(3) 	Maintenance costs should be calculated at a low proficiency for the first year or two, at medium for the third to fourth year, and at high for the rest of the life cycle.

Factor:	Toolset and SEE proficiency increases during the software life cycle.

Rationale: 	Increasing tool proficiency must be factored into the total life cycle cost analyses. This can be done in a manner similar to language proficiency.

Ada: The language of choice�tc "<Head 2 (14)>Ada\: The language of choice"�

Rear Admiral Alfred T. Mahan authored a book in 1890, The Influence of Sea Power on History, that revolutionized naval strategic planning worldwide. In 1908 he made a statement that could be echoed today to express why we use Ada.

Whatever the system adopted, it must aim above all at perfect efficiency in military action; and the nearer it approaches to this ideal the better it is. [MAHAN08]

Ada increases the chances for success of every program manager of a major software-intensive system in DoD. If you are managing a new start program, you are using Ada and are equipped for success. Never forget, Ada and software engineering discipline go hand-in-hand. Only through a disciplined approach will you produce good Ada software. If you are managing an on-going non-Ada program, consider the total life cycle benefits of transitioning to Ada. Whatever your choice about your already developed code, any major new localized or stand-alone modules must be developed in Ada. If you are managing a program in PDSS phase, consider the economic life cycle benefits of re-engineering your legacy software to Ada. Be aware, all major modifications and enhancements to existing code must be performed in Ada. Figure 5-12 summarizes the benefits of Ada language features.

�

Figure 5-12 Summary of Ada Feature Benefits

Approaching perfect efficiency in today’s military environment is the ability to incur the greatest damage, while saving the most lives. During the �xe "Operation Desert Storm"�Gulf War, Ada software proved it can deliver on both counts. This is one reason why it is smart to use Ada. It is not, however, smart to just use Ada to destroy enemies and save lives. It is also smart to use Ada for any large, complex software-intensive system with a critical mission. Ada’s ability to support the principles of software engineering makes it an enabling technology that can produce reliable, supportable, and economical software. As Lieutenant General �xe "Edmonds, Maj Gen Albert J"�Edmonds emphasized,

We cannot forge ahead without a disciplined, reasoned approach to software development...Ada isn’t the perfect language. There never was such a thing, and I doubt there ever will be...[But] we can’t take anything away from Ada. It brought with it much of the discipline...The enabling environment is downright beautiful. The strong typing — the inherent and fixed capability of documentation as you go — the ease of maintenance — and integration that won’t quit...[and] the technical way of thinking...[Ada] is excellent in its ability to bring together, so smoothly, the efforts of many people and many software developers to get one solution. And most important, it embodies the commitment we’ve already made [to software engineering].

[EDMONDS931]

In his book Future Shock, Alvin Toffler states, “Technology feeds on itself. Technology makes more technology possible.” [TOFFLER70] This is exactly what Ada technology has accomplished in just over a decade. Tools to support the Ada language abound. In a mature Ada software engineering environment, every activity that can be automated should be. A well-managed toolset saves time and increases the quality of your product and the productivity of your team. Napoleon was known for saying,

The art of war is a simple art; everything is in the performance. There is nothing vague about it; everything in it is common sense. [NAPOLEON55]

We use Ada, not for Ada’s sake. We use Ada because it performs as an enabling technology to achieve the goals of engineered software and because it makes plain common sense!

REFERENCES�tc "<Head 2 (14)>REFERENCES"�

[Ada/C++91] Ada and C++ Business Case Analysis, Deputy Assistant Secretary of the Air Force, (Communications, Computers, and Logistics), Washington, DC, July 1991

[ALLEN92] Allen, Tim, “An Ada Tutorial,” CrossTalk, August 1992

[ANDERSON94] Anderson, Christine M., information provided by the Ada 9X Project Office, 1994

[AW&ST90] “Lantirn-Equipped F-15Es Post Strong Deterrence to Iraqi Threat,” Aviation Week & Space Technology, November 12, 1990

[AW&ST94] “F-15 Eagle: For the Long Run,” Aviation Week & Space Technology, December 12, 1994

[BAKER92] Baker, Emanuel R., “TQM in Mission Critical Software Development,” G. Gordon Schulmeyer and James I. McManus, eds., Total Quality Management for Software, Van Nostrand Reinhold, New York, 1992

[BOLEN92] Bolen, Scott, “Ada Software Development: Lessons-learned from the Range Control System Program,” white paper, Rome Laboratory/OCDS, Griffiss AFB, New York, June 1992

[BOOCH94] Booch, Grady and Doug Bryan, Software Engineering with Ada, Third Edition, Benjamin/Cummings Publishing Company, Redwood City, California, 1994

[CAMP89] Camp, Robert C., Benchmarking: The Search for Industry Best Practices that Lead to Superior Performance, ASQC Quality Press, Milwaukee, Wisconsin, 1989

[CONSTANCE95] Constance, Paul, “Survey Confirms Ada is Top DoD Language,” Government Computer News, May 1, 1995

[DANE92] Dane, Abe, “Strike Eagle,” Popular Mechanics, July 1992

[DIKEL91] Dikel, Dave, as quoted by Gary H. Anthes, “Ada Making Its Mark at Commercial Sites,” Computerworld, June 17, 1991

[EDMONDS931] Edmonds, Lt Gen Albert J., as quoted in Ada Information Clearinghouse Newsletter, Vol. XI, No. 2, August 1993

[EDMONDS932] Edmonds, Lt Gen Albert J., as quoted by Joyce Endoso, “Ada Gets Credit for F-22’s Software Success,” Government Computer News, April 26, 1993

[ELAM92] Elam, Terence W., and Lt Col Patricia K. Lawlis, “Ada Whips Assembly,” CrossTalk, March 1992

[GAETANO92] Gaetano, Vivian M., and Cap Carol E. St. Denis, “Ada Portability Problems?” CrossTalk, STSC, Number 38, November 1992

[GALORATH95] Galorath, Daniel D., “Ada Versus Fourth Generation Languages” briefing, Galorath Associates Inc., SEER Technologies Division, Los Angeles, California, July 7, 1995

[GAO89] Submarine Combat System: Technical Challenges Confronting Navy’s Seawolf AN/BSY-2 Development, Report to the Chairman, Subcommittee on Projection Forces and Regional Defense, Committee on Armed Services, US Senate, US General Accounting Office, March 1989

[GROSS92] Gross, Col Richard R., “The Air Force’s Ada Policy: Today and Tomorrow,” paper presented to Electronic Industries Association Committee Meeting, Hyatt Dulles Airport, Virginia, April 7, 1992

[HOOK95] Hook, Audrey, Bill Brykczynski, Catherine W. McDonald, Sarah H. Nash, and Christine Youngblut, A Survey of Computer Programming Languages Currently Used in the Department of Defense, IDA Paper P-3054, Institute for Defense Analyses, Alexandria, Virginia, January 1995

[HOROWITZ95] Horowitz, Barry M., personal communication to Lloyd K. Mosemann, II, December 1995

[INTERMETRICS95] Ada 95 Rationale, Intermetrics, January 1995

[LEONG-HONG93] Leong-Hong, Belkis as quoted by Joyce Endoso, “DISA Targets Data Standards, Ada Renewal,” Government Computer News, October 25, 1993

[LUDWIG92] Ludwig, Lt Gen Robert H., “The Role of Technology in Modern Warfare,” briefing presented to the Software Technology Conference, Salt Lake City, Utah, April 14, 1992

[MAHAN08] Mahan, RADM Alfred Thayer, Administration and War, Little, Brown, and Company, Boston, Massachusetts, 1908

[MOSEMANN89] Mosemann, Lloyd K., II, “Software Engineering and Beyond,” SEI Bridge, June 1989

[NAPOLEON55] Napoleon I, Christopher J. Herold, editor, The Mind of Napoleon: A Selection from his Written and Spoken Words, Columbia University Press, New York, 1955

[NATO86] What a Commander Needs to Know About Ada, SHAPE Technical Center, The Hague, The Netherlands, 1986

[PAIGE93] Paige, Emmett, Jr., “Ada Joint Program Office” memorandum addressed to SAF/AQK, June 29, 1993

[REED89] Reed, Gregg P., “Ada Use Increasing for MIS,” Ralph E. Crafts, ed., Anthology of Commercial Ada Applications: Usage and Issues for Non-Weapons Software Systems, Software Strategies and Tactics, Inc., Harpers Ferry, West Virginia, 1991

[REIFER95] Reifer, Don, as quoted by Diane Hamblen, “Ada: Dispelling the Myths,” CHIPS, July 1995

[RIEHLE94] Riehle, Richard, “Ada in Space Systems,” Embedded Systems Programming, November 1994

[SBM93] Software Business Management, Inc., study results reported in letter to SAF/AQK, February 25, 1993

[SEARS95] Sears, RADM Scott L., “The Ultimate Challenge: Software Engineering and the Navy’s BSY-2 Program,” speech presented to the 7th Annual Software Technology Conference, Salt Lake City, Utah, April 9, 1995

[SEI90] Carlson, Marthena, and Gordon N. Smith, Understanding the Adoption of Ada: Results on an Industrial Survey, SEI Special Report, SEI-90-SR-10, Carnegie Mellon University, Pittsburgh, Pennsylvania, May 1990

[TOFFLER70] Toffler, Alvin, Future Shock, Bantam Books, New York, 1970

[WEIDERMAN891] Weiderman, Nelson, Ada Adoption Handbook, Compiler Evaluation and Selection, Version 1.0, CMU/SEI 89-TR-13, ESD-TR-89-12, 1989

[YATES91] Yates, Gen Ronald W., keynote address presented to Tri-Ada ‘91 Conference, San Jose, California, October 22, 1991

��tc "<>"�

CHAPTER 5

 Addendum B�tc "<Head 3 (14)> Addendum B"�

Ada Users Throughout the World Tell: �tc "<>Ada Users Throughout the World Tell\: "�WHY Ada?

EDITOR’S NOTE�tc "<Head 3 (14)>EDITOR’S NOTE"�

This article is based on a new video, “Ada — The Language for a Complex World.” A 17-minute version was designed for Chief Technical Officers (CTOs) and a 9-minute version for Chief Executive Officers (CEOs). A limited number of copies of the videotape are available through the AdaIC, c/o IIT Research Institute, P.O. Box 1866, Falls Church, VA 22041.

If this monster was written in anything but Ada, I don’t know how we’d take care of it. — Ken James, General Supervisor, Weirton Steel Hot Mill

The “monster” in question is not a giant information system somewhere in the Department of Defense (DoD); it’s not a weapons system, or anything that might be covered by the DoD’s Ada mandate. It’s not in some government agency, or defense contractor. Nonetheless, the demands on this monster are as great as those on many weapons systems, and the consequences of failure will affect people immediately. This “monster” is Weirton Steel, a sprawling steel mill in Weirton, West Virginia. It’s an employee-owned company, and the economic health of the surrounding valley depends to a large extent on Weirton Steel. Ada was chosen for the software that runs Weirton because it works — because of the reliability of code written in Ada, because of the ease of modifying it to suit changed needs.

Ada Code Is Reliable�tc "<Head 2 (14)>Ada Code Is Reliable"�

…the software keeps running. It’s capable of regenerating and going ahead.

— Bill Zickefoose, Weirton Steel, Process Automation Engineer

It was Ken James, General Supervisor of Weirton’s Hot Mill, who referred to the Weirton system as a monster. “I don’t get a lot of phone calls in the night,” said Bill Zickefoose, process automation engineer. “Even though we have 24-hour coverage via beepers and things like that, we don’t get very many calls. The reason we don’t get a lot of calls is not because they’re going to sit there with the mill down. It’s because the software keeps running. It’s capable of regenerating and going ahead.”

�
Ada Code Is Reusable�tc "<Head 2 (14)>Ada Code Is Reusable"�

For the air traffic control system in Oslo, Norway, Ceselsa has achieved “close to 80% of reuse.” — Diego Macia, Ceselsa, ATC Systems Manager, International

The need for reliability is even more pressing for air traffic control — highly distributed, real-time systems; but that absolute concern doesn’t mean that people in air traffic control ignore economics. In fact, the two work together in the case of reuse. Ceselsa is working on air-traffic control centers all over Spain. “All the centers are totally interconnected and integrated,” said Javier Ruano, Ceselsa’s ATC System Manager for Spain, and “the software is 95% in Ada.” Diego Macia, ATC Systems Manager, International, noted that they are also working on the air-traffic control system for Oslo, Norway. There they have achieved “close to 80% of reuse.” And with other programs, they are reaching an even higher percentage — with programs under development in Amsterdam, Bombay, New Dehli, Hong Kong, and Frankfurt.

The High Quality and Low Errors of Ada Code �tc "<Head 3 (14)>The High Quality and Low Errors of Ada Code "�

I’d really find it hard to run this company without Ada. —Peter Wannheden, co-founder, Paranor Software

One of Ada’s virtues is that it makes it easy to integrate the work of large, scattered groups of programmers, working over long periods of time. But Ada works equally well for small companies working with tight deadlines — and gives them a competitive edge in competing with the big guys. Paranor Software had only 15 people and five months to start from scratch and develop a pilot to compete against two large companies for a program of the post, telephone, and telegraph (PTT) administration in Switzerland. The PTT acts as a banking system, as well as a phone and postal service, and it needed to computerize its financial records for a half-million customers.

Said Paranor’s co-founder, Peter Wannheden, “One contributing factor may be that we convinced the customer that our software methodology — including the use of Ada — would guarantee a high-quality product.” And that has turned out to be true. “We’ve had a very, very low rate of errors which were determined after installation of the software,” said Mr. Wannheden. “I’d really find it hard to run this company without Ada. I don’t know what we would have here.”

Quality Compilers Are Available�tc "<Head 2 (14)>Quality Compilers Are Available"�

It had compilers of the quality which we absolutely must have to develop safe and essential systems. — Vin Joag, Smiths Industries, FMV Software Manager

Ada’s strengths are not merely in the software-engineering principles it supports, but that it’s a standard. Users don’t buy merely a language; they buy and use compilers. The process of validating compilers contributes to Ada’s usefulness on the job. For Vin Joag, FMV Software Manager for Smiths Industries, this was “one of the major reasons we selected Ada ... we found that the language is very defined. It had compilers of the quality which we absolutely must have to develop safe and essential systems.”

Ada Code Is Portable�tc "<Head 2 (14)>Ada Code Is Portable"�

The Ada has been written just once, and we’re then using three different compilers. — Noel Wright, GEC Marconi Avionics, Engineering Manager

The Ada standard has also encouraged portability. When we think of portability, most of us probably think of using code on one platform successfully and then later porting it to another. At least one company, however, found themselves using the same code in the same program on three different processors.

The flight-control system for the Boeing 777 uses three different processors for redundancy. “The Ada has been written just once,” said Noel Wright, Engineering Manager at GEC Marconi Avionics, “and we’re then using three different compilers. One of the big things of Ada was to make sure that you could actually port it around very easily.”

Ada Supports Tasking�tc "<Head 2 (14)>Ada Supports Tasking"�

Our application has a few hundred concurrent threads. ...there just isn’t any good way to manage that, except Ada.

— John Malcolmsen, JEOL, Assistant Manager/NMR Software R&D

Going from the skies down to the microscopic world, you’ll find Ada doing jobs that can’t be done otherwise. This was the case for JEOL, the fifth-largest analytical-instrument company in the world. In one case, they’re looking for the structure of protein molecules. This information is used in studying diabetes and other diseases. “With Ada, we were able to build software that became intuitively obvious,” said Bill Bearden, operations manager. John Malcolmsen, assistant manager/NMR software R&D, pointed out that, “We needed to have tasking, and the only we way we were going to get tasking was to go with Ada. Some applications may have a few dozen concurrent threads; our application has a few hundred concurrent threads. And with that level of concurrency, there just isn’t any good way to manage that, except Ada.”

Ada Tasking Can Be Fun, Too�tc "<Head 2 (14)>Ada Tasking Can Be Fun, Too"�

Ada has been really the reason that you can make Paintball here.

— Dave McAllister, Silicon Graphics, Inc., Visual Magic Division, Enabling Technologies Program Manager

But neither Ada nor tasking has to be all work and no play. In fact, it can be a game - in this case, at Silicon Graphics, Inc. (SGI). Dave McAllister, Enabling Technologies PM at SGI’s Visual Magic Division, explained Paintball: “The basic premise of this was a multi-player, multi-tasking, virtual reality game. We actually presented it to the rest of the engineering team here at SGI, and we were told ... that it was a great concept, but it would never work.” That might have been a sound judgment — except for Ada. “Ada has been really the reason that you can make Paintball here,” according to Mr. McAllister. “Ada itself is the first language designed for multiple processing, and we’re actually running on a system with four CPUs in it.” He pointed out that there are “anywhere from 200 to a thousand Ada tasks appearing, doing something inside the graphics.” And just as reuse worked with air-traffic control, it worked with games — and with a game quite different from Paintball. Fireflight is a “very different problem, a mission-planning scenario,” said Mr. McAllister. But Fireflight “reused roughly 65% of the code we wrote for Paintball.”

And Now We Get The Benefits of Ada 95�tc "<Head 2 (14)>And Now We Get The Benefits of Ada 95"�

With the advent of Ada 95, additional benefits are on the way. Bill Carlson, vice president/CTO of Intermetrics, Inc., said that, “the main thing that has changed” since 1983 is the ready availability of compilers. “Today, anybody can get a good Ada compiler, and in fact, you can get one for free” — referring to the Ada 95 GNAT compiler available on the Internet.

Tucker Taft, Chief Language Designer for Ada 9X (Ada 95), pointed out that Ada 95 builds on Ada 83’s excellence in handling “a large system where you had relatively well understood requirements and a very disciplined engineering process.” Ada 95 continues that, “but it’s also oriented towards, let’s say, the smaller system. The more dynamic system, the system where the requirements aren’t as well defined in advance. I don’t think you should think of Ada [95] as a new language. It’s really Ada 83 with some restrictions removed, some new features added, and basically sort of a more open feel.” Author John Barnes, in updating one of his books on Ada, offers that the “delightful” point is that “old difficulties have been cast aside” and he found himself on “much friendlier ground.”

Ada 95 — Building on Strength�tc "<Head 3 (14)>Ada 95 — Building on Strength"�

Many of the strengths of Ada 95 are based on the strengths of Ada 83 — one of which was strong typing. According to Stuart Liroff, Engineering Manager at Silicon Graphics:

“One of the reasons Ada 95 is so powerful is due to the strong typing, and the inheritance that it offers you from derived types.” He noted that, “the reason this is so important is because typing allows you to characterize the objects that you’re modeling in your environment or your application. And Ada 95 has strong typing — much stronger typing than any of the other languages.”

The result, said Mr. Liroff
, is that “you’ll find that with strong typing, you will get more correct and more true code out of your engineers.”

��tc "<>"�

CHAPTER 5

 Addendum C�tc "<Head 3 (14)> Addendum C"�

The Ada 95 Philosophy�tc "<>The Ada 95 Philosophy"�

NOTE: 	This article is found in Volume 2, Appendix O, Additional Volume 1 Addenda.

�tc "<>"�

CHAPTER 5�tc "<>CHAPTER 5"�

 Addendum D�tc "<Head 3 (14)> Addendum D"�

Ada Implementation Lessons-Learned from SSC and CSC�tc "<>Ada Implementation Lessons-Learned from SSC and CSC"�

S. Tucker Taft

NOTE: 	This article is found in Volume 2, Appendix O, Additional Volume 1 Addenda.

Version 2.0

CHAPTER 5 Ada: The Enabling Technology

5-� PAGE �
68
�

Version 2.0

5-� PAGE �
69
�

Version 2.0

CHAPTER 5 Addendum A

Version 2.0

CHAPTER 5 Ada: The Enabling Technology

Version 2.0

CHAPTER 5 Ada: The Enabling Technology

Version 2.0

CHAPTER 5 Addendum B

Version 2.0

