�tc "<>"�

CHAPTER�tc "<>CHAPTER"�

 �tc "<> "�16�tc "<> 16"�

The Challenge�tc "<>The Challenge"�

EDITOR’S NOTE: Graphics quality will improve when printed.�tc "<Head 3 (14)>"�

CHAPTER OVERVIEW�tc "<Head 3 (14)>CHAPTER OVERVIEW"�

Success is only to be obtained by simultaneous efforts, directed upon a given point, sustained with constancy, and executed by decision. — Archduke Charles of Austria

	In this chapter you will learn that, in addition to detailed technical insight, a high-level, big picture perspective is needed for successful software acquisition management. Closely tied to the technical competence needed for good management is the confidence that you are being supported. From the governing documents, sources for schools and tools, through the white papers and acquisition program examples, to the guidelines and philosophical insights on selected subjects found in these Appendices, you have a wealth of practical information to assimilate and ingest. The Vision for Software expressed here encompasses the promise that you have a software infrastructure to support your management activities. Your challenge is to make use of these resources (e.g., tools, schools, repositories, programs, technology, professional workforce) to ensure the success of your program as it supports the DoD mission.

	There are three stages of acquisition management in which all DoD software programs fall. If you are managing a new-start program, your challenge is to follow all the advice found in these Guidelines with the objective of attaining excellence, customer satisfaction, economy, efficiency, and process improvement. If your program is a smooth running on-going effort, your goal is to relentlessly improve your process. This is accomplished through rigorous self-assessment and the introduction of new processes, tools, improved methods, and advanced technologies.

	If your on-going program is in trouble, you must first assess the extent of your problems. This assessment is accomplished by defining your process and then quantifying it. You must then establish a measurement baseline and implement a metrics program focused on your problem areas. The cure for a troubled program can only be achieved by identifying the causes of your problems, removing them, and preventing their recurrence. While you are focusing on a cure, there are some bandaid efforts you can employ to get back on track until the sources of problems are identified and remedied. As Benjamin Disraeli, former British prime minister, proclaimed, “He who gains time gains everything.” Increasing your schedule will gain you time, productivity, and decrease defects, as will reducing the size of the software to be developed. If you determine, however, that your program is beyond repair through detailed cost/benefit analyses, do not think twice, stop it dead in its tracks!

	Throughout these Guidelines the underlying theme has been quality through process improvement. Your job is never over, nor is your program ever so successful that it cannot be made better. Process improvement means there is a definable, measurable process to improve. The bottom line for improving software development is measurement. You must be able to determine where you stand today, to determine how to improve for tomorrow. This includes establishing a baseline and measuring progress from that point in time. Measurement should include all facets of your process for which improvement is possible, and for which metrics can be applied as a normal part of everyday activities. Benchmarks are useful for comparing your effort with other successful programs, and for setting realistic goals for improvement.

	These Guidelines are your opportunity for success. They provide you with information you can use to enhance and support your management efforts. You will find no secrets here — only better ways of doing business based on common sense and learning from our mistakes. Remember that success can only be obtained through simultaneous efforts. Your challenge is to take what you have learned here and direct it to your given program. With sustained constancy and sound management decisions, you will help achieve the Vision for Software.

�

�tc "<>"�

CHAPTER�tc "<>CHAPTER"�

 �tc "<> "�16�tc "<> 16"�

The Challenge�tc "<>The Challenge"�

SEIZE THE OPPORTUNITY�tc "<Head 2 (14)>SEIZE THE OPPORTUNITY"�

In an interview with the Washington Post, General Colin L. �xe "Powell, GEN Colin L"�Powell described how to attain success.

There are no secrets to success; don’t waste your time looking for them...Success is the result of perfection, hard work, learning from failure, loyalty to those for whom you work, and persistence. You must be ready for opportunity when it comes.

[POWELL89]

As a software-intensive system acquisition manager, these Guidelines provide you with a significant opportunity for success. During this critical period of transition for the American military, managers must aggressively look for better ways to increase productivity, reduce costs, and improve product quality. This motivation comes by learning from failure, loyalty to those for whom you work (and who work for you), a persistence to achieve quality through hard work, and a desire for perfection. �xe "Software engineering"�Software engineering is the basis upon which this opportunity resides. The proven paradigms, methods, and tools presented in these Guidelines allow you to take full advantage of this technology.

A software acquisition infrastructure has been established to provide a framework for applying software engineering technology to your program. This infrastructure was designed to be flexible, to take advantage of software state-of-the-art and from management practices that work and will provide you the greatest opportunity for success. However, as �xe "Mosemann, Lloyd K., II"�Mosemann explains,

Software problems will not be solved purely by policies, by standards, or even by education. An integrated DoD software technology strategy that includes both software management and technology initiatives will make a much larger difference in resolving DoD’s current and future software problems. [MOSEMANN93]

Mosemann warns that institutional changes simply do not happen by mandate; there has to be buy-in at every level. Your commitment to turn around the software acquisition problems you learned about in Chapter 1, Software Acquisition Overview, is the most important buy-in of all! To do this, all of you who are affected by the infrastructure must participate in its evolution. Incentives must be provided to our industrial partners, along with education and training for our managers, practitioners, and team members. Measurement is an integral part of the framework, as cost/benefits must be understood and quantified. Ways to exploit our valuable cache of legacy software assets through reuse and re-engineering must be explored. Our systems must be open and have well-defined generic architectures so they can evolve and endure. Our customers must be enlightened and our suppliers must be certified. If you are ready for success, the opportunity is yours!

Embrace the Software Vision: Make It Work for You�tc "<Head 3 (14)>Embrace the Software Vision\: 	Make It Work for You"�

�tc "<>"�

Although we have turned the tide of failure and experienced some success, we must never be satisfied with the status quo. We must be dedicated to never-ending software process improvement. The Vision is to continuously improve software quality and predictability through diligent application of engineering discipline. The way we plan to achieve this Vision is a twofold approach of which you are an integral part. One facet of the Vision encompasses the institutionalization of software engineering practice throughout all software development programs DoD-wide. Having read these Guidelines, you have a solid foundation from which to make your contribution to this Vision by institutionalizing the practice of software engineering within your program. Because education and training are key to achieving the Vision, you, as a software manager, must place high priority on keeping your software professionals trained and educated in software engineering discipline.

The other facet of the Vision is the establishment of a software engineering infrastructure. As illustrated on Figure 16-1, this infrastructure is based on a concept created by the Japanese some 20 years ago — the �xe "Japanese software development:House-of-quality"�house-of-quality. Used as a �xe "Total quality management (TQM)"�TQM communication tool, the structure shows how all the pieces of a system are needed to build and provide support to the whole. The importance of the pillars to each other in supporting the ceiling (the Vision) is an inter- and co-related set of methods, techniques, technologies, and organizations. Your side of the equation — using software engineering discipline to build your pillar — needs parallel balance and support from the infrastructure to achieve the Vision for the whole. Here, the purpose is ultimately to help you and other software professionals by actively addressing software issues surfacing within your programs. Part of the infrastructure is the gathering of a software work force within which communication, learning, and education are cultivated and where exchange of corporate knowledge flows freely through technology transfer and the sharing of lessons-learned. Infrastructure resources are dedicated to continuous improvement through working groups and agent (software organizations) support. The infrastructure also brings consistency, repeatability, and currency to software development through the implementation of software policies and management plans.

�

Figure 16-1 Vision for Software

You must realize that the software engineering for which you are responsible is a relatively young discipline. At first it may seem little more than a hodge podge of rules, methods, and disparate pieces of information. The Vision provides the unifying theme that brings the ingredients for success into a single software engineering framework. The separate pieces, such as metrics, reuse, models, tools, Ada, prototyping, open systems, re-engineering, risk management, and architecture are interrelated and merged into an integrating foundation permitting us to build quality into our software through the application of technology and practical know-how. This discipline provides an understanding of what it is we are trying to do, and how to go about doing it.

At the foundation of the Vision, holding it all together and making it work, is �xe "Process:Improvement"�process improvement. The commitment and contribution to this concept must come from your program office, your contractor(s)’, your colleagues’ programs, and your counterparts within the software infrastructure. The Vision is to select those contractors who have in-hand a predictable, mature, software development process with demonstrable, built-in mechanisms for its continuous improvement. Although this Vision is within our grasp, we must never be satisfied to grab the brass ring. Rather, we must continue polishing it to make it shine, to make it better.

Nothing is of greater importance in time of war than knowing how to make the best use of a fair opportunity when it is offered. [MACHIAVELLI21]

In the heat of fighting your daily management battles, remember the Vision. As you are engineering your software, a software infrastructure provides you the opportunity to do your job better, to help you succeed. This infrastructure is comprised of policies to keep you in tune with initiatives to improve the way we develop our software and manage our acquisitions. DoD and Service policies and instructions are there to make sure we build uniformity and predictability into our systems. Organizations within the infrastructure are there to assist in implementing reuse and metrics, to evaluate our tools and our contractors, and to research new technologies to improve the way we do our jobs. Training programs and software courses provide the opportunity to advance our skills, and to increase our understanding of the software engineering discipline. Make use of the tools, the repositories, the education, the programs, the technology, the agents (labs, institutes, and centers), and the software work force discussed throughout these Guidelines. They are offered as your fair opportunity; use them to your best advantage. Remember, you are not on a solo mission — a mighty team is there to back you up.

Make the Commitment to Excellence�tc "<Head 3 (14)>Make the Commitment to Excellence"�

Embracing the Vision also means making a commitment to excellence. Excellence in management and excellence in your product. Excellence in software is �xe "Defect:Zero defects"�zero defects. People are conditioned to believe defects in software are inevitable. For the foreseeable future, software will continue to be built by humans; however, humans are believed to have a built-in defect factor. Most commercial software development organizations allow 20% of sales for scrap, rework, warranty repairs, complaint handling, service, test, and inspection. [SCHULMEYER92] Human �xe "Error"�errors cause this waste. To eliminate waste in software development, we must concentrate on preventing the errors and defects that plague us. There must be a commitment to zero defects for all programs.

In his book, �xe "Cost:Of quality"��xe "Quality:Cost of"�Quality is Free, Cosby explains that a defect which is prevented has no cost. It needs no repair, no examination, no explanation. [COSBY79] Defect prevention techniques [discussed in Chapter 15, Managing Process Improvement] can include peer inspections, process action teams, Cleanroom engineering, software quality assurance (SQA), early testing, COTS, reuse, prototyping, and demonstrations. A serious defect prevention program is comprised of combinations of techniques, each chosen for its ability to prevent a different class of defects. Remember, zero defects is a state of mind. Sun Tzu explained:

The principle on which to manage an army is to set up one standard of courage which all must reach. [SUN500BC]

You must set up a �xe "Excellence:Standard-of"��xe "Standards:Of excellence"�standard-of-excellence which all team members strive to reach. All must commit to the goal of zero defects throughout the development process, and this pledge must be based on a management commitment from you. In some human endeavors we might be willing to accept imperfection. In others, where the success or failure of our mission (or human life) is at stake — defects must be absent!

Although a state of mind, zero defects is not a motivational program. Zero defects must be a �xe "Performance:Standard"��xe "Standards:Of performance"�performance standard. Goals and measurable objectives must be part of the process improvement paradigm. Making the management commitment to zero defects in the software you produce is measurable and obtainable. You can accomplish this through sound software engineering discipline and interminable process improvement that progresses towards fewer and fewer defects. Lt. Gen. �xe "Edmonds, Maj Gen Albert J"�Edmonds expressed this attitude when talking about building software for the F-22.

Now is the time for discipline and software. Now is the time for doing it right, not just because of saving money, but for the war fighter — because it’s the right thing to do. [EDMONDS93]

PROGRAM MANAGEMENT CHALLENGE�tc "<Head 2 (14)>PROGRAM MANAGEMENT CHALLENGE"�

We are aware that all our readers are not at the same stage in their acquisition programs. The issues with which you are challenged and how you deal with them will, therefore, differ. Your program may be a new start, may be many years into a long acquisition cycle, may be running smoothly, or plagued with the problems cited in Chapter 1, Software Acquisition Overview. You might be tasked with the maintenance of newly delivered software, or software that has been in use for 20 years or more built with other-than-Ada code. Or you might be supporting a combination of new Ada software that has to run with older non-Ada applications, or a combination of COTS or NDI. These different management challenges are addressed in the following sections, or in the chapters cited, and are listed as the following:

·	Ada-specific challenges encountered with a new-start, on-going, and PDSS program [see Chapter 5, Ada: The Enabling Technology],

·	Cleanroom engineering for new-start, on-going, or troubled programs [see Chapter 15, Managing Process Improvement],

·	Managing a new-start program,

·	Managing an on-going program,

·	Managing a PDSS program [see Chapter 11, Software Support], and

·	Managing a troubled program.

Managing a New-Start Program�tc "<Head 3 (14)>Managing a New-Start Program"�

If you are managing a new development, follow these Guidelines as completely and fully as possible. Your challenge is to apply proven software engineering practices and streamlined procurement methods to your acquisition program. They should reflect the concept that we are interested in not only buying product, but process. We have attempted to assemble a variety of lessons-learned experiences on a range of programs to give you insight into what works and what does not. It is also sound advice to research lessons-learned from programs similar to yours within your domain to arm yourself with as much knowledge as is possible. Never forget, software acquisition is one of the toughest management battles you will ever fight. Be armed, prepared, and well-trained. You must always plan, measure, track, and control with quality as your number one goal. Capers Jones expressed this theme when he stated:

Quality, reliability, and user satisfaction are factors that separate the leading-edge [organizations] from the laggards. On a global basis, high quality is the main driving force for high-technology products. The [organizations] that recognize this basic fact are poised for success in the twenty-first century; the [ones] that do not recognize it may not last to see the twenty-first century. [JONES91]

Another major issue to address in your new acquisition is to make sure the new software you are building today is not a maintenance nightmare tomorrow. Well-engineered software must be reliable, understandable, and modifiable. The maintenance burden of tomorrow’s legacy software will be lightened by the success of your efforts today.

Managing an On-going Program�tc "<Head 3 (14)>Managing an On-going Program"�

Today, there are very few major new-start software-intensive acquisitions in DoD. Therefore, most of the readers of these Guidelines are either managing on-going programs, or programs in PDSS [discussed in Chapter 11, Software Support]. If your program is on track, do not be tempted to sit back and rest on your laurels. As Brigadier General Marshall explained:

Success is disarming. Tension is the normal state of mind and body in combat. When the tension suddenly relaxes through the winning of the first objective, troops are apt to be pervaded by a sense of extreme well-being and there is apt to ensue laxness in all of its forms and with all of its dangers. [MARSHALL47]

No one has ever reached and/or maintained a state of perfection in software development. If your program has successfully achieved its first objectives, do not become disarmed by success. There is danger in relaxing your management efforts through a sense of well-being. Your challenge is to relentlessly improve your process through an investment in resources and effort to increase and mature your development capabilities. To improve your process, consider the following axiom.

If It Ain’t Broke, Break It!�tc "<Head 4 (12)>If It Ain’t Broke, Break It!"�

In an ever-changing, demanding management environment, conventional wisdom says: “Play it safe; don’t question success; and if-it-ain’t-broke, don’t-fix-it!” In his book, If It Ain’t Broke...Break It!, Robert J. Kriegel, a performance psychology pioneer, explains that the don’t-fix-it syndrome is very bad advice. [KRIEGEL91] In our highly competitive global environment, following the old axioms of the past could leave you idling in the hangar. To be competitive in the 90’s, managers can no longer rely on what worked yesterday. Old thought patterns and definitions of success do not work in a fast-paced, modern world. Even if the past is just 6 months ago, today’s rules are different. The plans we made yesterday can be inhibitors to innovation, growth, and maneuvering for the lead. In an interview with the Washington Post, General �xe "Schwarzkopf, GEN H. Norman"�Schwarzkopf expressed the unpredictable, chaotic military environment.

The analysts write about the war as if it’s a ballet...like it’s choreographed ahead of time, and when the orchestra strikes up and starts playing, everyone goes out and plays a set piece. What I always say to those folks is, “Yes, it’s choreographed and what happens is the orchestra starts playing and some son-of-a-[#*!$!] climbs out of the orchestra pit with a bayonet and starts chasing you around the stage.” And the choreography goes right out the window. [SCHWARZKOPF91]

Who would have predicted just 5 to 10 years ago that the American software community would be playing a desperate game of catchup in an industry we pioneered? As you learned from the �xe "Scientific American"�Scientific American article, “Software’s Chronic Crisis,” at the beginning of this volume, world-class rivals to the US software machine have their bayonets out, are chasing us around the stage, and are about to take world dominance in the software export industry. The practices of the past that enabled US software producers to achieve international supremacy simply are not working. If we do not throw our old management practices out the window, American software workers will lose their jobs to international competition, similar to what happened to the US automotive, steel, and electronics industries. Table 16-1 illustrates how, although we were once international leaders in software productivity, by 1991 we had started our downward slide.

�

Table 16-1 Software Engineering Productivity (1991)

Overseas, software management is more process-oriented, effort-driven, long-term, evolutionary, places importance on the organization’s people, and employs slow-growth improvement strategies. In contrast, US software managers are usually results-oriented, schedule-obsessed, performance-driven, short-term, innovative with giant-leaps-forward characterized by big-valleys-after-the-peaks, place importance on the organization’s technological/procedural capabilities, and employ fast-growth strategies. [ZELLS92] Table 16-2 illustrates how the United States share of the world software market ballooned to approximately 71% in 1982, leveled off to a slow climb of about +4% for the next two years, then took a major plunge of approximately -26% from 1990 to 1993.

�

Table 16-2 US Share of World’s Software and Services Market

NOTE:	Although one of the world’s fastest growing industries, software is a relatively virgin area in market analysis research. Presently, there are no standardized definitions of market segmentation. Consequently, as explained by the US �xe "Department of Commerce"�Department of Commerce, there is a lack of consensus among researchers about software market estimates.

The philosophical management differences between the United States and our world competitors has created a tortoise and hare competition. The US hare has had to slow down, panting, out of breath, while the tortoise methodically plods along passing us up. Actress Helen Hayes expressed why fast rising stars seldom sustain their glow.

This is a day of instant genius. Everybody starts at the top, and then has the problem of staying there. Lasting accomplishment, however, is still achieved through a long, slow climb and self-discipline. [HAYES68]

In the desire for increased productivity and decreased costs, the harder-faster-longer mindset simply is not working. The Critical Technologies Update 1994, issued by the �xe "Council on Competitiveness"�Council on Competitiveness states that:

Although the United States remains at the leading edge of most information technologies, increased competition can be expected in the future…India, for example, is now recognized for its expertise in software…while Taiwan is earning a reputation as a designer and manufacturer of personal computers and peripherals. The United States should closely monitor these and other countries as they build new information technology capabilities.

This racing, rushing, trying to do more in less time kills quality. People make more mistakes when in a hurry. Performance is poor. There is no time to think of new ideas when you have reached your limits — both physically and mentally. Innovation is nonexistent. Process improvement is impossible. The harder-faster-longer mentality simply will not open the gates to the future. As illustrated in Table 16-3, Jones statistics indicate that, as of 1993, the United States ranks third in producing quality software. Of the countries surveyed, we deliver 57% more latent defects in our code than Japan and 15% more bugs than Canada.

�

Table 16-3 Countries with Highest Software Quality

Kriegel says, to be competitive in a global market, we have to break the chains of the past and take an alternate, unconventional route. Unfortunately, managers usually do not change their tactics until they have to. They wait until things are broken and then desperately try to find a quick-fix, change strategies, anything to catch up. The problem is, you do not think straight when you are out of fuel, stalled, and in a flat spin. Poor decision making, lack of creativity, and low morale characterizes a development team trying to play catch up. It creates a vicious cycle that keeps them constantly behind.

CAUTION!	If, as a program manager (or a software developer), you work 11 to 14 hours every single day, take this as a warning! You are at the ragged edge with no flexibility to meet a real crisis. Stop now and consider whether you need to implement more of the concepts in these Guidelines.

Old habits, doing things the way they have always been done, are major inhibitors to innovation, growth, and progress. You must relentlessly improve your process and your management skills. The time to initiate improvement is not when things are broken, but when they are working well. Kriegel sums up Break-it Thinking in unconventional wisdom mixed with common sense. He explains:

•	To ride the wave of change, move before the wave hits you.

•	Always mess with success.

•	Speed kills quality, performance, and innovation.

•	The best time to change is when you don’t have to.

•	Playing it safe is dangerous.

•	Get in the habit of breaking your habits.

•	Round up your sacred cows and put them out to pasture.

•	Stoke the fire, don’t soak it; and,

•	If it ain’t broke, BREAK IT! [DRAKE93]

Introducing New Processes, Methods, and Tools�tc "<Head 4 (12)>Introducing New Processes, Methods, and Tools"�

�xe "Technology:Transitioning"�Transitioning a software development program into a mature, software production requires sound management practices, an unremitting obsession for process improvement, and a wise use of technology. Elevating your program’s software quality and productivity is neither simple nor cheap, but well worth the investment. New methods can include transitioning to Ada, adding new tools, or altering development methods and practices. As you have learned throughout these Guidelines, there are many practices, processes, methods, tools, and technologies that offer improvements. These transitions are not always free and may involve some initial schedule and cost impact. You and your contractor(s) should evaluate together the relative merits of the improved practices which seem to offer the greatest potential for reducing overall cost and schedule risk. They must also be assessed for their ability to decrease defects and increase the quality of your product. Software technology transitions are an opportunity for significant gains in quality and productivity, but poorly planned and executed transitions can result in serious program setbacks.

NOTE:	See Chapter 10, Software Tools, for a discussion on methods, models, tools, and support programs to help you in improving your process.

Successful implementation of “new ways of doing business” in on-going programs cannot be the exclusive province of either the contractor or the government program manager. Since these best practices were not foreseen at contract award, contract documents will not reflect their use and may (or may not) need to be modified. Generally, contractors will need to absorb some initial unplanned cost, and the Government will need to concede to some schedule delays. However, if technology transition planning is performed successfully, cost and schedule investments will reap substantial dividends.

The key is to enlighten your customer — educate your contractor — gain a consensus about “what to do” and “how to do it.” Be sure they read these Guidelines! Take advantage of the infrastructure of support organizations that are doing a lot of the homework for you. They are there to evaluate your needs and advise you on how to proceed. Remember the Vision; make it work for you and keep on pressing!

Managing a PDSS Program�tc "<Head 3 (14)>Managing a PDSS Program"�

If you are managing a PDSS program, you employ the same tactics as new-start and on-going programs. Follow the software engineering discipline discussed in these Guidelines with the ceaseless goal of improving your process. This can include re-engineering part or all of your code to Ada, incorporating reuse and COTS for enhanced functionality, or restructuring your code so it is more maintainable and modifiable.

Determining If Your Program Is In Trouble�tc "<Head 3 (14)>Determining If Your Program Is In Trouble"�

You most likely already know if your program is in trouble! Your developer is not providing orderly documentation, the �xe "Software Development Plan (SDP)"�SDP is inadequate, or not being followed. Your program is over budget, behind schedule, and the user-discovered defect rate in delivered modules is above the acceptable range. These are not uncommon problems where a program is on its way to a near disastrous situation. Programs in trouble can run into delays and budget overruns of 200% to 300%, and, in some cases, must be abandoned. [BENNATAN92]

Most software engineering methodologies focus on preventing (not correcting) these types of problems. Preventing problems is always easier and less costly than solving them. As you have learned throughout these Guidelines, problems become more expensive the further into the development they are discovered. Once neglected, problems propagate into other areas of the development process, making them more difficult and costly to reverse. Your challenge is to determine if your program can be salvaged by enacting a radical change that adopts the ingredients for success found in these Guidelines.

NOTE: 	If you are not sure whether your program is in trouble, look at �xe "Cost:Cost/Schedule Control System Criteria (C/SCSC)"�C/SCSC (or management metrics) variances. If the current set looks “abnormal,” you are in trouble!

You must first determine the cause of your program’s sickness and the severity of the disease, before you can make a decision about a cure. You must determine whether your program is so sick it should either be terminated, started over from scratch, or whether upgrading your technology and improving your process will provide sufficient remedy. To make this assessment, apply the same software engineering discipline used to prevent problems. The best way to identify and assess the severity of your problems is to go looking for them. As outlined in Chapter 1, Software Acquisition Overview, there are a few basic sources of problems common to most all DoD software programs in trouble. These include:

·	Software’s inherent complexity,

·	Our inability to estimate cost, schedule, and size,

·	Unstable requirements, and

·	Poor problem-solving/decision making (which includes reliance on Silver Bullets).

�xe "Lyons, Col Robert, Jr"�Colonel Lyons noted some addition problems:

•	Failure to recognize or accept that a software challenge exists,

•	Questionable developer capability, capacity, and tools,

•	Inadequate development process discipline; and,

•	Failure to manage subcontractors. [LYONS91]

Cost, schedule, and quality problems associated with software products are merely symptoms of problems in the process that produced them. Defects, design errors, and major schedule slips are not the causes of problems — they are the symptoms. Behind the symptoms, something was done by someone during the creation or evolution of that activity that caused the problem. By analyzing the cause (e.g., of design errors) and concentrating your resources on the software process, you can determine what must be done to improve that process, and thus, to solve your problems. [ARTHUR93] To determine where in your development process the cause of your problems lie, you have to quantify it. To accomplish this, you must:

•	Define your process,

•	Measure your process and product,

•	Analyze the metrics to determine deficiencies in your process and the quality of your product; and,

•	Institute the software engineering practices and methods discussed in these Guidelines.

Process improvement implies there is some definable and measurable �xe "Process"�process to improve. In software engineering, all processes at each development phase are targets for improvement. There are also ancillary processes, such as configuration management, software quality, test and integration, in-process reviews, and formal peer inspections. Each of these ancillary processes supports your overall development process, each of which can be improved.

To quantify your process, and thus improve it, you must have a �xe "Baseline"�baseline. This baseline is used as the measured starting point for each phase of problem solving. You must, therefore, become sufficiently organized to have a definable, quantifiable process that can be measured. [REIFER92] Once measurement data is collected, it must be pondered, analyzed, placed in a larger context, and woven into the fabric of where you have been and where you are going. �xe "Measurement/metrics"�Measurement information must be transformed into “insight” for it to be meaningful.

What to Do With a Troubled Program�tc "<Head 4 (12)>What to Do With a Troubled Program"�

�tc "<>"�

The following �xe "Software Program Managers Network (SPMN)"�Software Program Managers Network “Breathalyzer” questions will give you a quick-look into the status of your program’s health. At any time if you cannot answer any of these questions or must answer one or more with a “no,” you should schedule an immediate program review.

1.	Do you have a current, credible activity network supported by a �xe "Work breakdown structure (WBS)"�work breakdown structure (WBS)? As illustrated on Figure 16-2, an activity network is the primary means to organize and allocate work.

�

Figure 16-2 Activity Network Example

·	Have you identified your critical path items?

·	What explicit provisions have you made for work that is not on your WBS?

·	Does the activity network clearly organize, define, and graphically display the work to be accomplished?

·	Does the top-level activity network graphically define the program from start to finish, including dependencies?

·	Does the lowest-level WBS show work packages with measurable tasks of short duration?

·	Are program objectives fully supported by lower-level objectives?

·	Does each task on the network have a well-�defined deliverable?

·	Is each work package under budget control (expressed in labor hours, dollars, or other numerical units)?

NOTE:	A well constructed activity network is essential for accurate estimates of program time, cost, and personnel needs, because estimates should begin with specific work packages.

2.	Do you have a current, credible �xe "Schedule"�schedule?

·	Is the schedule based on a program activity network supported by the WBS?

·	Is the schedule based on realistic historical, quantitative performance estimates?

·	Does the schedule provide time for education, holidays, vacations, sick leave, etc.?

·	Does the schedule provide time for quality assurance activities?

·	Does the schedule allow for all interdependencies?

·	Does the schedule account for resource overlap?

·	Is the schedule for the next 3-6 months as detailed as possible?

·	Is the schedule consistently updated at all levels on Gantt, PERT, and critical path charts every two weeks?

·	Is the budget clearly based on the schedule and required resources over time?

·	Can you perform to the schedule and budget?

3.	Do you know what you have to deliver?

·	Are system operational requirements clearly specified?

·	Are definitions of what the software must do to support system operational requirements clearly specified?

·	Are system interfaces clearly specified, and, if appropriate, prototyped?

·	Is the selection of software architecture and design method traceable to system operational characteristics?

·	Are descriptions of the system environment and relationships of the software application to the system architecture specified clearly?

·	Are specific development requirements expertly defined?

·	Are specific acceptance and delivery requirements expertly defined?

·	Are user requirements agreed to by joint teams of developers and users?

·	Are system requirements traceable through the software design?

4. 	Do you have a list of your �xe "Risk:Top-10 List"�Top Ten risk items? If so, what are they? [See Chapter 6, Risk Management, for more information on the Top Ten List.]

·	Has a Risk Officer been assigned to the program?

·	Are risks determined through established processes for risk identification, assessment, and mitigation?

·	Is there a database that includes all non-�negligible risks in terms of probability, earliest expected visible symptom, and estimated and actual schedule and cost effects?

·	Are all program personnel encouraged to become risk identifiers?

·	Is there an anonymous communications channel for transmitting and receiving bad news?

·	Are correction plans written, followed-up, and reported?

·	Is the database of top-ten risk lists updated regularly?

·	Are transfers of all deliverables/products controlled?

·	Are user requirements reasonably stable?

·	How are risks changing over time?

5.	Do you know your schedule compression? (�xe "Schedule:Compression"�Schedule compression is an indication of the percent by which this program is expected to outperform the statistical norm for programs of its size and class.)

·	Has the schedule been constructed bottom up from quantitative estimates, not by predetermined end dates?

·	Has the schedule been modified when major modifications in the software take place?

·	Have programmers and test personnel received training in the principal domain area, the hardware, support software, and tools?

·	Have very detailed unit-level and interface design specifications been created for maximum parallel programmer effort?

·	Does the program avoid extreme dependence on specific individuals?

·	Are people working abnormal hours?

·	Do you know the historical schedule compression percentage on similar programs, and the results of those programs?

·	Is any part of the schedule compression based on the use of new technologies?

Has the percent of software functionality been decreased in proportion to the percent of schedule compression?

�(Nominal Expected Time is a function of total effort expressed in person months.)

For example, �xe "Boehm, Barry W"�Boehm found that: for a class of DoD programs of 500 person months or more:

Nominal Expected Time – 2.15 • [Expected Person Months].33

(Nominal Expected time was measured from System Requirements Review to System Acceptance Test.) [BOEHM81]

NOTE: 	Attempts to compress a schedule to less than 80% of its nominal schedule aren’t usually successful. New technologies offer additional risk in time and cost.

6.	What is the estimated size of your software deliverable? How was it derived?

·	Has the program scope been clearly established?

·	Were measurements from previous programs used as a basis for size estimates?

·	Were source lines-of-code (SLOC) used as a basis for estimates?

·	Were function points used as a basis for estimates?

·	What estimating tools were used?

·	Are the developers who do the estimating experienced in the domain area?

·	Were estimates of program size corroborated by estimate verification?

·	Are estimates regularly updated to reflect software development realities?

NOTE: 	Software �xe "Size:Estimation"�size estimation is a process that should continue as the program proceeds.

7.	Do you know the percentage of external �xe "Interface"�interfaces that are not under your control?

·	Has each external interface been identified?

·	Have critical dependencies of each external interface been documented?

·	Has each external interface been ranked based on potential program impact?

·	Have procedures been established to monitor external interfaces until the risk is eliminated or substantially reduced?

·	Have agreements with the external interface controlling organizations been reached and documented?

8.	Does your staff have sufficient expertise in the key program �xe "Contractor:Track record:Domain experience"��xe "Domain:Experience"�domains?

·	Do you know what the user needs, wants, and expects?

·	Does the staffing plan include a list of the key expertise areas and estimated number of personnel needed?

·	Does most of the program staff have experience with the specific type of system (business, personnel, weapon, etc.) being developed?

·	Does most of the program staff have extensive experience in the software language to be used?

·	Are the developers able to proceed without undue requests for additional time and cost to help resolve technical problems?

·	Do the developers understand their program role and are they committed to its success?

·	Are the developers knowledgeable in domain engineering — the process of choosing the best model for the program and using it throughout design, code, and test?

·	Is there a domain area expert assigned to each domain?

9.	Have you identified adequate�xe "People:Staffing constraints"� staff to allocate to the scheduled tasks at the scheduled time?

·	Do you have sufficient staff to support the tasks identified in the activity network?

·	Is the staffing plan based on historical data of level of effort, or staff months on similar programs?

·	Do you have staffing for the current tasks and all the tasks scheduled to occur in the next two months?

·	Have alternative staff buildup approaches been planned?

·	Does the staff buildup rate match the rate at which the program leaders identify unsolved problems?

·	Is there sufficient range and coverage of skills on the program?

·	Is there adequate time allocated for staff vacations, sick leave, training and education?

If you decide, after you have thoroughly analyzed your process and identified the root causes of your problems, that your program is salvageable, you might consider a 3-6 month hiatus to institute the guidance found in this book and get your house in order. By following the software engineering practices discussed here, there is a high probability you will gain back some or all of the hiatus time you invest in rescuing your program. The Air Traffic Control System in Canada is an excellent example. The program was in trouble. The contractor brought in a new manager whose first action was to educate the �xe "Customer"�customer. Then, it was agreed that a hiatus would occur. It lasted 8 months. During this time many changes were made, including the adoption of the �xe "Quality:Software Quality Framework"��xe "Rome Laboratory:Software Quality Framework"�Rome Laboratory Software Quality Framework, acquisition of the �xe "Tools:Design tools:Universal Network Architecture Services (UNAS)"�UNAS tool and the �xe "Rational:Environment™"�Rational Environment,™ and training of the software development team to a new mindset. As of this writing, the program is on schedule, at cost, and expects to recover most, if not all, of the hiatus time.

In addition, there are some quick-fix strategies (as opposed to long-term cures) you can employ if you are truly desperate. If these tactics work, you must, must implement software engineering discipline to sustain any permanent improvement. Remember, if quick-fixes work in the short-term, whatever in your process was causing your problems in the first place must be identified and rectified to sustain long-term improvement. If the root causes are not dealt with, your process will revert back to the problems you identified in your initial process assessment, on an order of magnitude worse. Of course, improving your process is the ideal solution. Quick-fix strategies include the following:

•	Increase your schedule, and

•	Reduce your software size,

Increase Your Schedule�tc "<Head 4 (12)>Increase Your Schedule"�

According to �xe "Brooks, Frederick P., Jr"�Brooks,

More software programs have gone awry for lack of calendar time than for all other causes combined. Why is this cause of disaster so common? [BROOKS75]

When you set your schedule to the minimum development time, effort is at its maximum to meet deadlines, but the number of defects is also correspondingly high. For the troubled (but salvageable) program, the temptation is to throw additional manpower at the problem and hold the schedule. This will not work! Instead of adding manpower in a desperate attempt to meet unrealistic schedules, extend the development time — without increasing or decreasing manpower. This can substantially reduce the effort (and associated cost) compared to what it would have taken to accomplish the task on the compressed schedule. In addition, the number of defects will drop. Regrettably, this is often not possible once the program is well underway. If your program is in the 12th month of a 12-month schedule, it is just too late to decide you should have planned in terms of a 17-month schedule. [PUTNAM92] Therefore, the sooner you decide to extend your schedule, the more likely it will be viewed as a credible move by those senior to you.

BEWARE!	Adding extra staff to reduce schedule has often not worked. In fact, studies show that it can increase your schedule and increase your defects. Brooks’ well-known observation rings true: “Adding manpower to a late software program makes it later.” [BROOKS75]

The �xe "Productivity:Index (PI)"�productivity index (PI) is a measure of efficiency dependent on variables, such as inherent application complexity and the overall effectiveness of the development organization, where:

�

The �xe "Resources:Manpower:buildup index (MBI)"��xe "Effort:Manpower buildup index (MBI)"�manpower buildup index (MBI) is an expression of time and effort:	

�

Figure 16-3 illustrates �xe "Putnam, Lawrence H."�Putnam’s minimum-development time concept. The intersection of the Size/PI line and the MBI line locates the minimum development time. For a 60,000-line MIS developed by an organization with a PI of 15, the minimum development time is 13 months. At this development time, the effort is 78 manmonths with a peak manpower of nine people. To the right of the intersection, marking the minimum development time, lies an area of feasible operating points, two of which are indicated by black dots. By extending the planned development time a few months, you can greatly reduce the effort.

�

Figure 16-3 Development Time versus Effort Tradeoffs

Increasing schedule shrinks the size of the effort with corresponding reductions in defects. Putnam’s statistics indicate that a 14-month schedule with a 51-manmonth effort (5 full-time programmers) extended by one month (about 8%) can yield a reduction in effort of 35%. Extending it by 2 months (about 15%) yields a 51% reduction in effort with corresponding reductions in defects. Thus, the tradeoff of development time for effort can be quite advantageous. [PUTNAM92]

Reduce Your Software Size�tc "<Head 4 (12)>Reduce Your Software Size"�

There is a distinct correlation between software size, as measured in SLOC or function points, and development time, effort (e.g., manmonths, man-years, cost), manpower, productivity, and the number of defects. (You can determine their precise relationships when measurement data are entered into a database of similar software developments, stratified by the type of application.) If your program is in trouble, reducing the size of your software will reduce development time, effort, the number of defects, and improve programmer productivity. Software size can be reduced by paring the less essential functions from your software, or by deferring the development of separate functions not needed for immediate delivery [i.e., strip the product (with the user’s involvement) to the most functions that can be delivered in the time available]. You can also reduce size by cutting the number of newly developed lines-of-code through reuse and implementing �xe "Commercial-off-the-shelf (COTS) software"�COTS for generic modules. [PUTNAM92]

Improve Your Process�tc "<Head 4 (12)>Improve Your Process"�

Improving your process will reduce effort, cost, development time, and the number of defects. This is the ideal solution because all management indicators improve. Remember, improving your process takes time and should not be considered a quick-fix. It takes a long-term strategic commitment. The software development process must be measured for improvements that are both objective and management-oriented. Through measurement, you can determine which are the best strategies to employ for improvement. Choosing a strategy that is, indeed, better will result in software developed in less time, with less effort and money, and increased quality. Improvement requires the ability to answer questions such as:

•	When in the software life cycle do errors/defects occur?

•	When and how are errors/defects detected?

•	What can be done to detect errors/defects earlier?

•	When are errors/defects corrected and at what cost?

•	What causes and what can prevent the errors/defects that do occur?

Solving software development problems is not just the application of a set of tools, methods, or motivational campaigns. It requires commitment and a dedication to a �xe "Quality:Vision-for"�standard-of-excellence. It is instituting a cultural change, and changing how your team members think and work. It involves understanding and enhancing the human process that underlies software development at all levels. Improvements can be achieved by changes in procedures, training of personnel, addition of tools, increased automation, and simulated faults insertion. [KENETT92] However, changing the way people think — cultural change — is the greatest challenge, upon which success with process changes depends.

Improvements only occur when rigorous software engineering discipline is applied to improve the human process. The human process must be organized around improvement objectives, properly supported by technology. Whatever it takes to cure your program, there must be no turning back to the old ways of doing business! DoD has seen its share of software fiascoes. Your challenge is not to let a fiasco turn into a catastrophe, which occurs when we have not learned from our collective mistakes. [REIFER92] There are many techniques and lessons-learned for solving software problems. A few have been introduced here. Others are being discovered daily. Your challenge is to find out what will work for you and implement them! Remember Vince Lombardi’s advice,

The greatest accomplishment is not in never falling, but in rising again after you fall

[LOMBARDI68]

What To Do With a Program Catastrophe?�tc "<Head 3 (14)>What To Do With a Program Catastrophe?"�

A program catastrophe occurs when the only viable solution is program termination. Examples of circumstances leading to program termination are:

•	The program appears to be technically infeasible; i.e., the work cannot be completed given the current state of technology.

•	The costs to complete the program far exceed the utility of the final system, or the software will be so costly to operate that the user is better off never implementing it.

•	The software will never be completed by a critical date, after which it will not be needed (e.g., an old system will be made to make-do).

•	The performance quality or maintainability of the software is so bad that the software will be useless when completed — the best way to correct the problem is to start over.

•	The software development process is so chaotic, and/or its personnel are so lacking in talent, as to provide no expectation of improvement within a reasonable time, at a reasonable cost.

Abandoning the Catastrophe�tc "<Head 4 (12)>Abandoning the Catastrophe"�

If your program is a catastrophe, you must recognize the problem as soon as possible! The nature of the catastrophe must be identified, and you should treat all efforts and costs expended to date as sunk. This decision is based on a cost/benefit analysis of completing the program, versus restarting it, versus canceling it. Contracting officials should be called in to see if any penalties or restitution to the Government is possible. Sunk costs must be completely disregarded on the common sense principle of don’t throw good money after bad. [ROETZHEIM88]

NOTE:	If you have to abandon your program, you should be praised for having the wisdom and fortitude to do so! But, remember, we are all still learning. So by all means, document your lessons-learned and send them to us at the address in the Foreword and last page of this Volume. The benefits of your insights may more than offset present financial losses by helping others to better understand the software management challenge.

THE CONTINUOUS IMPROVEMENT CHALLENGE�tc "<Head 2 (14)>THE CONTINUOUS IMPROVEMENT CHALLENGE"�

Standards must be established and maintained in the most routine matters...laxness in these and other routine matters invariably leads to a breakdown in control and discipline...Maintaining high standards requires persistent correction.

— Lieutenant General Arthur S. Collins, Jr. (USA) [COLLINS78]

As discussed throughout these Guidelines, to achieve continuous improvement you must establish a software improvement culture within your program. Everyone on the team (not just the software developers) must be committed to attaining the �xe "Standards:Of quality"��xe "Quality:Standard-of"�standard-of-excellence you set for your program. Because maintaining high standards requires persistent correction, process improvement should be a regular topic of discussion at all in-process reviews and peer inspections. It should also be on the agenda of working group and management meetings held at all levels. Process improvement metrics should be published, discussed, and assessed, the same as budget and schedule status metrics. Your management guidance must support a “software process first” philosophy. It is your responsibility to allocate the necessary resources to make improvement happen.

NOTE:	See the Addendum to this chapter, “Reflections on Success,” by Lt. Col. Tom Croak.

Measurement�tc "<Head 3 (14)>Measurement"�

The most critical factor in the process improvement equation is the collection of metrics. Software quality metrics must be collected and analyzed throughout software development. Once you specify a desired standard-of-quality for each element of importance to your program, achieved levels of quality must be measured at all predefined development milestones. These periodic measures will allow you to assess current quality status, predict the quality level of the final product, and determine where quality is below desired levels. They give you the ability to zero in on problem areas on which process improvement activities can concentrate.

NOTE:	See Chapter 8, Measurement and Metrics, for a discussion on how to set up a measurement program.

Baselines�tc "<Head 3 (14)>Baselines"�

A key element in a measurement program is the baseline. It gives you a quantitative view of where you are today. It provides a framework for comparing your development program with historical data, and a context for improvement and innovation. It identifies strengths and weaknesses of the existing process, and helps to communicate them to all stakeholders. [HETZEL93] Baselines are usually established at key milestone points. A meaningful baseline for process improvement must go beyond productivity and quality measures. A complete baseline involves all measurable and improvable facets of the process. These include human resources, organizational structure, user environment, software engineering environment (tools, procedures, technology infrastructure), cost, schedule, funding, management practices — all those things that impact your process. [RUBIN93]

NOTE: 	Baselines are discussed in Chapter 12, Planning for Success.

Benchmarks�tc "<Head 3 (14)>Benchmarks"�

Software benchmarking is a concept borrowed from the hardware manufacturing industry. Measurements (e.g., failure rates, specifications, time-to-market, cost to produce) are compared with those of competitors. Using these measures, understanding that your production process takes, for instance, 30% more time, costs 20% more, or produces 15% more latent defects than your competitors, makes you realize you are doing something wrong. These figures alone do not tell you what is wrong, they just tell you that you are doing something different that affects your competitive marketplace position.

Benchmarking is a method for establishing baselines by which your development process can be compared and rated against recognized industry leaders. This comparison is used to establish targets and priorities for improving your process to achieve benchmarked levels of performance and quality. [UTZ92]

NOTE:	See Chapter 8, Measurement and Metrics, for a discussion on the National Software Data and Information Repository (NSDIR), which contains data on software development benchmarks and optimum performance (such as the average number of defect found and corrected in specific software domains).

The quality approach is to fix the process causing the problem rather than fixing the product over and over again. Optimizing your development process can be accomplished by assessing the maturity of your software development capabilities [discussed in Chapter 7, Software Development Maturity]. Each time your capabilities are assessed, you will gain insight into those problem areas where you can concentrate your efforts in each subsequent round of process improvement activities. Studies show that process improvement goals continually mature your process, increase quality and productivity, and lower cost. Process improvement and control continues until it is finally time to abandon the process by making a technology transition to a superior process. [UTZ92] One of the most effective ways to transition is to automate all repetitive processes performed by humans. Properly applied, automated tools are one of the best ways to improve the development process. When software professionals are freed from manual labor, they have time to be more creative in their software solutions and process improvement activities.

BEWARE!	Studies show that programs operating at low levels of maturity tend to abandon long-term improvement plans when faced with short-term crises. [KRASNER91] See Chapter 10, Software Tools, for a discussion on how to improve your process through automation.

Quantifiable improvement of software development capabilities requires buy-in by all stakeholders in the product and by the owners of all aspects of the process. Improvement activities must be continued and sustained over the entire software life cycle. Improvements should be implemented on all DoD programs in a phased-in, incremental, well-planned manner. Incentives and rewards should be budgeted and granted for improving software capabilities. Your continuous improvement efforts should be sustained until the methods and procedures for improvement become so ingrained in your program’s culture that they are performed routinely, as an integral part of every day activities. Remember, “Success consists in the climb.”

[HUBBARD23]

The �xe "Aerospace Industries Association (AIA)"�Aerospace Industries Association (AIA) conducts an annual Quality Assurances Study that provides an opportunity for participating companies to benchmark their �xe "Quality:Software quality assurance (SQA)"�SQA performance with similar companies in the same business for self-examination purposes and to trigger analysis of significant variances. Also, companies participating in the study gain the opportunity to compare their own current year performance with prior periods for self-examination, assessment, and follow-up as appropriate. The focus of the study has been to quantify the SQA function/system in its role in controlling the quality of contractually deliverable products and services. The study concentrates on SQA manpower resources, SQA manpower allocation by function, ratios of SQA manpower to corresponding production labor, and ratios of quality engineering specialties to total quality engineering manpower. Other areas covered by the study include: the contractor’s supplier SQA cost as a percent of buy costs, and the normalization of comparisons of loss measurements which identify rates of in-house quality losses (i.e., rework, repair, scrap) to sales (excluding R&D).

Texas Instruments (TI) Benchmarking Process�tc "<Head 4 (12)>Texas Instruments (TI) Benchmarking Process"�

In 1994, Texas Instruments (TI) conducted a benchmarking study in which nine other major defense companies within their electronics domain participated to exchange performance data, identify industry benchmarks, and establish goals. The study focused on the following key quality metrics:

·	On time delivery,

·	Production test defects,

·	Cycle time reduction, and

·	Individual training.

Of the nine companies studied, TI found that:

·	Three companies did not measure defects and their reported defect probability range was from 3.5 to 4.0 sigma [see Chapter 15, Managing Process Improvement, for a definition of “sigma”];

·	Six companies reported test defects ranging from 3.6 sigma to 5.2 sigma;

·	Three companies had 6.0 sigma as a goal (of which two were on track); and

TI’s Defense Software Engineering Group was the Best in Class for an entire company average of 5.23 sigma. Figure 16-4 illustrates the results of this benchmarking study. [WILSON94]

�

�

Figure 16-4	TI Quality Metrics Benchmarking Summary (1994 Year to Date)

[WILSON94]

YOUR MANAGEMENT CHALLENGE�tc "<Head 2 (14)>YOUR MANAGEMENT CHALLENGE"�

There are not many true pioneers in software engineering, but few can dispute that �xe "Brooks, Frederick P., Jr"�Frederick Brooks ranks among them. In a now classic collection of essays, Brooks includes a line drawing of a prehistoric tar pit, where great, now extinct creatures are struggling to pull themselves from the gooey abyss. He explains:

The tar pit of software engineering will continue to be sticky for a long time to come. One can expect the human race to continue attempting systems just within or just beyond our reach; and software systems are perhaps the most intricate and complex of man’s handiworks. The management of this complex craft will demand our best use of new languages and systems, our best adoption of proven engineering management methods, liberal doses of common sense, and a God-given humility to recognize our fallibility and limitations. [BROOKS75]

Your challenge as a software manager is to use the information found in these Guidelines, take control of your acquisition, and develop software with predictable cost, schedule, performance, and quality. In an interview with Washington Technology, �xe "Paige, Emmett, Jr"�Emmett Paige, Jr., Assistant Secretary of Defense (C3I), summarized his vision for the future of software development from a DoD perspective.

I see a time during my tenure when DoD software engineers use Ada, not just by mandate, but by preference. They have the tools at their fingertips and other processes in place to make a difference. They have open access to quality reusable software components from our reuse repositories and reap the benefits from their controlled use. I see commercial software houses investing in and owning Ada because the market is there, and to do otherwise would be a competitive disadvantage. I see a steady stream of Ada-trained software engineers flowing out of our colleges and universities. I see the Department of Defense viewed as leaders, not followers, in software engineering technology exploitation. I see software costs continuing to go down and quality continuing to go up. And most importantly, I see desire compelling managers to select Ada because of business as well as technical justifications. [PAIGE93]

�xe "Mosemann, Lloyd K., II"�Lloyd K. Mosemann, II, Deputy Assistant Secretary of the Air Force for Communications, Computers and Support Systems, has tasked the software community with eight challenges. He remarks that the number eight is inadvertently prophetic in that the number eight is the number for new beginnings. There are seven days in a week and on the eighth day you start all over. Your generation of software managers are at a turning point in history as you have the opportunity to start all over with a new order of successful software management. The software community’s eight management challenges are:

•	To stimulate infrastructure investment,

•	To accelerate the pace of technology advance,

•	To adopt an architecture mentality,

•	To encourage functional managers to become more involved, and to address the fundamentals of how they do their business,

•	To advocate technology transition,

•	To make greater use of meaningful metrics,

•	To reduce the overhead burdens associated with software development, and

•	To have defined processes and to institutionalize engineering discipline.

Oliver Cromwell, a famous English statesman and soldier, was on the side of Parliament during the English Civil War. He created the New Model Army (the first professional army in British history), defeated the Scots and the Irish, destroyed the monarchy, executed King Charles I, and ruled England. This illustrious military leader’s motto was:

Not only strike while the iron is hot, but make it hot by striking. [CROMWELL47]

The iron is hot! You are equipped with the tools, the repositories, the education, the programs, the technology, the agents (labs, institutes, and centers), and the software infrastructure to help you do your job smarter and better. They are your opportunity to make the iron hot by striking!

ATTENTION! Software Manager, the missile’s in your bay! LAUNCH IT!

REFERENCES�tc "<Head 2 (14)>REFERENCES"�

[ARTHUR93] Arthur, Lowell Jay, Improving Software Quality: An Insider’s Guide to TQM, John Wiley & Sons, Inc., New York, 1993

[BENNATAN92] Bennatan, E.M., On Time, Within Budget: Software Project Management Practices and Techniques, QED Publishing Group, Wellesley, Massachusetts, 1992

[BROOKS75] Brooks, Frederick P., Jr., The Mythical Man-Month: Essays on Software Engineering, Addison-Wesley, Reading, Massachusetts, 1975

[COLLINS78] Collins, LTGEN Arthur S., Jr., Common Sense Training, Presidio Press, San Rafael, California, 1978

[COSBY79] Cosby, Philip B., Quality Is Free, New American Library, Inc., New York, 1979

[CROMWELL47] Cromwell, Oliver, Writings and Speeches of Oliver Cromwell, Harvard University Press, Cambridge, Massachusetts, 1947

[DRAKE93] Drake, Dick, review of the book If It Ain’t Broke, Break It! by Robert J Kriegel, August 18, 1993

[EDMONDS93] Edmonds, Lt Gen Albert, as quoted by Joyce Endoso, “Ada Gets Credit for F-22 Software Success,” Government Computer Week, April 26, 1993

[HAYES68] Hayes, Helen, On Reflection, An Autobiography, 1968

[HETZEL93] Hetzel, Bill, Making Software Measurement Work: Building an Effective Measurement Program, QED Publishing Group, Boston, 1993

[HUBBARD23] Hubbard, Elbert, The Roycroft Dictionary and Book of Epigrams, 1923

[JONES91] Jones, Capers, Applied Software Measurement: Assuring Productivity and Quality, McGraw-Hill, New York, 1991

[KENETT92] Kenett, Ron S., “Understanding the Software Process,” G. Gordon Schulmeyer and James I. McManus, eds., Total Quality Management for Software, Van Nostrand Reinhold, New York, 1992

[KRIEGEL91] Kriegel, Robert J. and Louis Patler, If It Ain’t Broke…BREAK IT! And Other Unconventional Wisdom for a Changing Business World, Warner Books, New York, 1991

[LOMBARDI68] Lombardi, Vince, as quoted by Jerry Kramer, Instant Replay, 1968

[LYONS91] Lyons, Lt Col Robert P., Jr., “Acquisition Perspectives: F-22 Advanced Tactical Fighter,” briefing presented to Boldstroke Senior Executive Forum on Software Management, October 16, 1991

[MACHIAVELLI21] Machiavelli, Niccolo, from 1521 writings, The Art of War, The Robbs-Merill Co., Inc., Indianapolis, 1965

[MARSHALL47] Marshall, BGEN S.L.A., Men Against Fire, 1947

[MOSEMANN93] Mosemann, Lloyd K., II, as quoted in Ada Information Clearinghouse Newsletter, Vol. XI, No. 2, August 1993

[PAIGE93] Paige, Emmett, Jr., “An Endorsement at the Top: DoD Needs to Increase the Appeal of Ada Beyond Its Own Halls,” Washington Technology, November 4, 1993

[POWELL89] Powell, GEN Colin L., as quoted in the Washington Post, January 15, 1989

[PUTNUM92] Putnam, Lawrence H., and Ware Myers, Measures for Excellence: Reliable Software on Time, Within Budget, Yourdon Press, Englewood Cliffs, New Jersey, 1992

[REIFER92] Reifer, Donald J., “Software Reuse for TQM,” G. Gordon Schulmeyer and James I. McManus, eds., Total Quality Management for Software, Van Nostrand Reinhold, New York, 1992

[ROETZHEIM88] Roetzheim, William H., Structured Computer Project Management, Prentice Hall, Englewood Cliffs, New Jersey, 1988

[RUBIN93] Rubin, Howard, “Putting a Measurement Program in Place,” Jessica Keyes, ed., Software Engineering Productivity Handbook, Windcrest/McGraw-Hill, New York, 1993

[SCHULMEYER92] Schulmeyer, G. Gordon, “Zero Defect Software Development,” G. Gordon Schulmeyer and James I. McManus, eds., Total Quality Management for Software, Van Nostrand Reinhold, New York, 1992

[SCHWARZKOPF91] Schwarzkopf, GEN H. Norman, as quoted in the Washington Post, February 5, 1991

[SUN500BC] Sun Tzu, Samuel Grifford, ed., The Art of War, Oxford University Press, New York, 1969

[UTZ92] Utz, Walter J., Jr., Software Technology Transitions: Making the Transition to Software Engineering, Prentise Hall, Englewood Cliffs, New Jersey, 1992

[WILSON94] Wilson, Jesse C., “TI Benchmarking Process,” briefing presented to Darleen Druyum, October 4, 1994

[ZELLS92] Zells, Lois, “Learning from Japanese TQM Applications to Software Engineering,” G. Gordon Schulmeyer and James I. McManus, eds., Total Quality Management for Software, Van Nostrand Reinhold, New York, 1992

�
�tc "<>"�

CHAPTER 16�tc "<>CHAPTER 16"�

 Addendum�tc "<> Addendum"�

Reflections on Success�tc "<>Reflections on Success"�

Lt Col Tom Croak (USAF)�tc "<Head 3 (14)>Lt Col Tom Croak (USAF)"�

After winning a Superbowl or the Indianapolis 500, everyone wants to know: “How did you do it?” What is the secret of your success? It is as if there were some formula or recipe that can be easily duplicated. The �xe "Air Force STARS Demonstration Project"�Air Force STARS Demonstration Project has been a tremendous success. Now we are getting those questions.

Our success is a direct result of people, process, and technology — focused by desire. If you think about it, the victors of the Superbowl and the Indianapolis 500 would probably have the same answer.

·	People. You need high quality people who are good at what they do. You could put me in Al Unser’s race car, and although I would love to try; I would never have the nerve to get it over 150 mph, about 75 mph lower than qualifying speed, let alone try it with other cars on the track.

·	Process. An Indi-500 pitstop is the ultimate example of a well-defined process with metrics based continuous process improvement. Fuel and four new tires in 16 seconds!

·	Technology. There is no doubt that technology is important! Even with the best driver and the best pitcrew, if you put Al Unser in an inferior car, he could finish the race, but would not win.

·	Desire. Attaining any high goal is only achievable with a strong motivation. Ours was that we sincerely believed we could deliver mission capability into the hands of the warfighters Faster, Better, and Cheaper.

I think you get the picture, you need a quality blend of people, process and technology with a strong desire to succeed. Here is a look at the AF/STARS demo project to see how we developed real command and control systems Faster, Better, and Cheaper. Hopefully, there are some lessons-learned that can help you apply STARS technology in your organization.

Success�tc "<Head 2 (14)>Success"�

The Air Force STARS Demonstration project, also known as the Space Command and Control Architectural Infrastructure (SCAI), has resulted in the creation of a product-line at the Space and Warning Systems Center, Peterson AFB CO, which has produced two command and control systems built in support of Cheyenne Mountain missions. Together, they amount to approximately one MLOC developed in two years, with extremely low defect rates. We have achieved reuse rates of better than 50%.

The demonstrated results of the project have already affected policy on software development. The program’s sponsor, Mr. Lloyd K. Mosemann II, Deputy Assistant Secretary of the Air Force for Communications and Computer Support, used our approach as the basic tenants of the new AFI 63-121, which mandates a product-line approach using architecture based domain engineering. We also understand the DoD Software Reuse Initiative has been restructured around product-lines based partially on the results of the Air Force, Army, and Navy STARS Demonstration Projects.

People�tc "<Head 2 (14)>People"�

Software development is a creative process which, simply put, is people centered. The higher the quality of the people, the better the results will be. Quality includes education, training, experience, ability to do abstract thinking, and the ability to communicate ideas. We have been blessed with very high quality people; much higher I believe than average. How do you get these high quality people? It helps if you can show them that you are a forward leaning organization, that is a leader in software engineering, that has the latest technologies, and has developed a nurturing environment that encourages people to try new things.

One of the most remarkable aspects of our success has been the small size of the team relative to the size of the efforts. A well-defined process supported by a Domain Requirements Model, a Domain Logical Model, and Domain reusable assets, all supported by some very powerful code generation tools, allows us to leverage the efforts of a very small group of people. This significantly lowers the number of lines of communication. Small team size also contributes to a level of team building not present in larger groups. Strong team spirit empowers our walkthroughs to be very productive sessions where the team works together to improve the product.

Another surprise is the ratio of non-programmers to programmers. We have found that the product-line approach shifts more people into support roles. Here is how we are organized: We have a Systems Engineering and Technology support branch which consists of about 12 people performing domain engineering, process engineering, metrics collection and analysis, technology transition and tools support. The Resources Management Branch consists of six people who manage the software engineering environment, perform planning and scheduling, financial management, contracts management, and personnel management. The Product-line branch consists of about 25 people spread across a quality section performing certification and configuration management, and a product section for each of two products currently being produced. Thus a team of only 43 people (16 programmers) was able to build about a million lines of high quality software in about two years.

The “guilt-free, blame-free” environment that makes our walkthroughs so effective is a hallmark of our culture, and it has allowed us to truly institutionalize continuous process improvement. If something goes wrong or we get unanticipated results, we focus on the process instead of the person. We always ask the question, “What was it about our process that allowed the condition to occur?”

A race car has logos pasted all over it so you know who the contributors are. We have a mix of people from lots of organizations, companies, backgrounds, and experiences and they have been molded into a great team. I would like to thank all the people who have contributed to our success from (alphabetical) Amadeus Software Research, Bishop Engineering, CACI, Canadian Forces, ccPD, CTA, Institute for Defense Analysis, Kaman Sciences, Loral FS, Mantech, PRC, Rational, Robbins-Gioia, SAIC, Software Engineering Institute, SET, Software Technology Support Center, TRW, US Air Force, and our users at USSPACECOM and NORAD. We also had great support from the STARS Center, Electronic Systems Center (ESC/ENS), and our own 21st Space Wing Contracting Squadron.

We believe our strong team spirit is due in large measure to our product-line process and the mix of technologies it integrates. Tools, methods and technology have all contributed to our unusually high productivity — but people are clearly our most important assets.

Process�tc "<Head 2 (14)>Process"�

Before coming to this project, I thought process was just another in a long series of proposed silver bullets that was going to “save software engineering.” I am now a process believer. My past experience was with monolithic approaches to software development where everyone on the team is working towards achieving the next milestone. In that environment, process can be quite simple and easily understood without tools or people assigned to it full time. In a product-line approach, process becomes a critical component for success. A product-line approach has been compared (rightly so) to a 10 ring circus. There are many simultaneous activities towards multiple milestones. A rigorous approach to process helps keep it all under control.

Our experiences with process, metrics based process improvement, and automated process enactment are noteworthy. With the help of the STARS program and especially the LORAL Federal Systems team, we have pioneered some areas of process- and refined others. These include process capture with the Process Information Organizer Templates we coauthored with the Software Engineering Institute. We have had significant experience using Integrated Computer-Aided Manufacturing (ICAM) Definition (IDEF) to model our processes. We have contributed to the development of both the ProDAT and PEAKS process modeling tools. Our project also contributed to the formulation of the Amadeus metrics collection tool and its use for process improvement. We have experimented with several approaches to automated process enactment.

The big lessons-learned I can pass on to you is that process takes commitment of resources and patience. Process also needs to be built up incrementally. While automated enactment is a fine goal, don’t forget to develop simple checklists that people can follow while you are working towards that goal.

In some ways, we have been the victim of our own success. As word of our success spreads, we have lost many people to other projects, both commercial and DoD. We have lost at least six people to MCI which has moved its software operations to Colorado Springs and is trying to implement development approaches similar to ours. I believe it is process that helps us maintain our high productivity rates in spite of turnover approaching 50%.

Technology�tc "<Head 2 (14)>Technology"�

We have been using leading edge technology (one person on the team calls it bleeding edge technology) which falls into three groups: process tools, domain modeling tools, and code design and generation tools. These tools support a hybrid methodology developed by combining object-oriented technology and Cleanroom development methods with the incremental build approach called for by Walker Royce’s Ada Process Model.

The process tools include ERWin, BPWin, and ProDat for performing IDEF modeling and translating the information into a form that can be used by the PEAKS process modeling tool. In the Domain Engineering area, we use Rational’s Rose to capture our systems’ characteristics within the framework of our common product-line architecture. We supplement this object-oriented view with an information model view using Cadre’s Teamwork.

Our design process essentially refines this domain-level information — using the same two tools. Other design tools are the same architectural infrastructure tools we use to generate much of our code: TRW’s UNAS tool to generate the software architecture skeleton, and the Reusable Integrated Command Center (RICC) tools Display Builder and Query Builder, to generate our display and database interfaces. Finally, our Ada development environment is Rational’s APEX. All runs on a mixed group of Sun and IBM file servers and workstations.

For more information on the technology used, check out our WWW home page at http://source.asset.com/stars/loral/scai.html. The last version of our experience report will be published by the end of the year.

Reflections�tc "<Head 2 (14)>Reflections"�

Our partnership with the STARS program has been an excellent one which has proven very beneficial to both sides. It may seem strange to talk about technology last when the prime emphasis of STARS has been on technology development and transition. STARS technology is a key component to our success, but by no means the only one. I felt it was important that the readers clearly understand that you cannot simply take STARS technology and give it to a project and expect them to have the results we did. It takes that blend of people, process, and technology all focused by desire. You have to really believe that your customers want software built Faster, Better, and Cheaper.

Versio
