
Appendix M

Software Source Selection�tc "Preface"���tc "<>"�
APPENDIX�tc "<>APPENDIX"�
 �tc "<> "�M�tc "<> M"�

Software Source Selection�tc "<>Software Source Selection"�

CONTENT	PAGE

Tab 1:
SOURCE SELECTION UNDER ACQUISITION REFORM	M-3
Tab 2:
SOFTWARE CAPABILITY EVALUATION (SCE)	M-4
	SCE Implementation Guidelines	M-4
	Evaluating Ada Experience During SCE	M-6
	Subprocess Area Selection Tables	M-7
	SCE Text for Inclusion in Instructions to Offerors	M-14
Tab 3:
SAMPLE RFP PREPARATION CHECKLISTS	M-16
	Sample Questionnaire for Site Visit Preparation	M-16
	Program Profile Outline	M-16
	Proposal Evaluation Checklist	M-17
Tab 4:
SAMPLE PARAGRAPHS FOR RFP INCLUSION	M-19
	Software Quality Requirement	M-19
	Software Testing Requirement	M-19
	Software Life Cycle Development and Support Environment Requirement	M-19
	Software Life Cycle Development Technology Scalability Requirement	M-19
	Reusable Software Requirement	M-20
Tab 5:
SOURCE SELECTION FOR SOFTWARE SUPPORTABILITY	M-21
	Instructions to Offerors (Section L)	M-21
		Supportability Issues	M-21
		Additional MIL-STD-498 Considerations 	M-21
		Additional AFSCP/AFLCP 800-45 Considerations 	M-22
		Sample Section L	M-22
	Proposal Evaluation Supportability Criteria	M-25
	Source Selection Evaluation Considerations	M-26
		DoD-STD-1467 (AR) Considerations 	M-26
		AFOTEC Pamphlet 99-102, Volume 3, Considerations 	M-27
		Additional Considerations	M-37
		Software Language Considerations	M-27
		AFSSI 5100 Considerations 	M-28
		MIL-STD-498 (or Industry Equivalent) Documentation Requirements, Considerations	M-28
		AFOTEC Pamphlet 99-102, Volume 5, Software Support Resources Evaluation, Considerations	M-28
		Other Supportability Source Selection Considerations	M-28
�Tab 1�tc "<Head 2 (14)>Tab 1"�

Source Selection Under Acquisition Reform�tc "<>Source Selection Under Acquisition Reform"�

	Under acquisition reform, the offeror’s process and past performance are considered as significant criteria. Therefore you, as software acquisition managers and software engineers participating in source selection, must evaluate the contractor’s processes and experience to select the best offeror capable of providing a quality system with the lowest development and life cycle risks. The newly revised DoD Directive 5000.1, Defense Acquisition, 15 March 1996, describes “broad management principles that are applicable to all DoD acquisition programs.” It states the following about acquiring software-intensive systems:

Software is a key element in DoD systems. It is critical that software developers have a successful past performance record, experience in the software domain or product-line, a mature software development process, and evidence of use and adequate training in software methodologies, tools, and environments.

	Regardless of acquisition size, you should evaluate these areas during source selection. Remember, while it is necessary for a contractor to have a mature software development process, you should examine the process that particular division or component within the organization proposes to use on your program. The parent organization as a whole might have a mature process; however, certain divisions or components within the organization might not be as experienced in or knowledgeable of that process. To assess this, you should ask if the division or component you are evaluating has successfully adopted the parent organization’s process. You should also examine the division’s or component’s specific experience in using these processes in your application domain.
	One last consideration is source selection for post-deployment software support. If you perform a source selection at this time, you must make sure the proposed post-deployment software support process will provide at least the same level of quality software as the development process provided. To do this, you should use the same rigorous methods for source selection of the post-deployment software support organizations that you used for the development organization.
�Tab 2�tc "<Head 2 (14)>Tab 2"�

Software Capability Evaluation (SCE)�tc "<>Software Capability Evaluation (SCE)"�

	As mentioned in Volume 1, Chapter 7, Software Development Maturity, there are two software development capability assessment methods effective for determining the maturity of an organization’s software development (and support) process — the Software Development Capability Evaluation (SDCE), developed by Aeronautical Systems Center, and the Software Capability Evaluation (SCE) developed by the Software Engineering Institute. While this section provides information on how to implement the SCE, if you are acquiring a C3 or ground electronics system, your are encouraged to contact Electronic Systems Center (ESC) for assistance in conducting the SCE [see Appendix A, “Evaluating C3 Systems”].
	While this section does not address the SDCE, you can find out more information (including about training) by contacting Aeronautical Systems Center (ASC) [see Appendix A, “Evaluating Embedded/Avionics Systems”]. For additional assistance with MIS acquisition, please contact the Standard Systems Group (SSG) [see Appendix A, “Evaluating MIS Systems”]. For Air Force in-house software development organizations with questions on Software Process Improvement and Software Maturity Assessments, contact the Air Force C4 Agency [see Appendix A, “Software Process Improvement and Software Maturity Assessments”].
SCE Implementation Guidelines�tc "<Head 2 (14)>SCE Implementation Guidelines"�

General�tc "<Head 3 (14)>General"�
	Software Capability Evaluation (SCE) offers a means to evaluate an organization’s software process capability, that is, how well an organization manages the process it uses to create software. SCE provides a way to compare a development organization’s software process against a predefined standard. The purpose of these guidelines is to standardize the application of SCE on source selections. The Software Engineering Institute’s (SEI) Capability Maturity ModelSM (CMMSM) is the basis for this SCE appraisal. The SCE appraisal is intended to be considered as an integral part of the source selection evaluation, however, the SCE evaluation team may operate independent of other area/factor source selection evaluators. SCE results should be evaluated consistent with evaluation criteria specified in the Request For Proposal (RFP).

Applicability�tc "<Head 3 (14)>Applicability"�
	SCE applies to all source selections for Management Information Systems (MIS) and Command, Control, Communications, Computer, and Intelligence (C4I) Systems with software development costs greater than $10 million. Software development includes: development of new code, modification of existing code, and integration of software modules. Source selections with software development costs less than $10 million should consider the use of SCEs based on a cost/benefit tradeoff and the goal of acquisition streamlining. An SCE should always be performed on prime contractor Offerors. The only exception is when the proposed prime does not do, and never has done, software development, and is acting as only a “general contractor.” In this exception, the proposed prime must not impose any process guidance on proposed subcontractors that affect the sub’s software development activities.
	Conducting multiple SCEs on an Offeror’s team is encouraged if one or more proposed subcontractors are to perform significant software development. All proposed subcontractors performing more than $10 million or 35% of the software development using their own processes should be evaluated. SCEs are normally not applicable for source selections for the acquisition of commercial-off-the-shelf (COTS) or non-developmental item (NDI) software. SCEs should be performed when NDI software modifications to satisfy Air Force requirements or “glue code” development to link COTS packages will cost more than $10 million.

SCE Appraisal�tc "<Head 3 (14)>SCE Appraisal"�
	The source selection related SCE appraisal should investigate/cover, as a minimum, all Key Process Areas (KPA) and goals for the Repeatable and Defined maturity levels described in the CMM.SM The appraisal should not tailor the KPAs or goals specified in the CMM.SM The SCE appraisal team may be independent but is part of the source selection team. The SCE appraisal should be conducted as soon as possible after a competitive range decision is made and discussions with contractors are authorized. Normally, each SCE includes a 4-5 day site visit, in addition to preparation and wrap-up time for each site visit for a total of up to ten (10) days.
	The SCE appraisal should be conducted by a team trained in the CMMSM version to be used and comprised of members from the Air Force and/or an Air Force approved independent organization. If a contractor is used to conduct the SCE appraisal, FAR Subpart 9.5, Organizational and Consultant Conflicts of Interest, shall be adhered to. In selecting programs for review, the priority should be programs currently being worked, or recently completed, by the Offeror rather than programs most similar to the acquisition. The programs must be from the same organization. The reviewed programs should be approximately the same size, from the same development site, and from the same broad domain. Offeror must be put on notice in the Request For Proposal (RFP) that process documentation from selected programs must be available at the unclassified level.
	An Offeror’s software engineering/development practices should be considered validated if: (1) a written and approved procedure for a practice exists; (2) the procedure implementation is effective for the organization; (3) evidence exists showing that procedures are followed; (4) evidence exists that training for the procedure is planned, funded, scheduled, required, and accomplished in a timely manner; and (5) the procedure has been institutionalized. An institutionalized practice or procedure is one that has been in place and practiced for greater than 12 months. Practices and procedures less than six months old may be considered a process improvement activity. Practices and procedures in place and practiced for less than 12 months but longer than 6 months may, by SCE team consensus, be considered institutionalized.
	There are three components of the CMMSM reference model that can be rated: goals, KPAs, and maturity level. SCE results are documented as KPA findings of general observations, strengths, weaknesses, and process improvement activities. A strength is a particular part of the software process capability that is sufficiently robust to mitigate the development risk due to software process. A weakness is a particular part of the software process that has characteristics that increase the risk due to software process. A process improvement activity is a practice or procedure that is not yet institutionalized and indicates potential mitigation of risk due to software process. Maturity level ratings are optional since the rating itself provides minimal visibility into the state of an appraised contractor’s software process. All findings are determined by team consensus.

·	Goal. A goal is satisfied when the associated findings indicate that the goal is implemented, as defined in the CMM,SM with no significant weaknesses or that an adequate alternative exists, and is institutionalized, as defined in paragraph 4.5 above.
·	KPA. A KPA is satisfied when all goals for that KPA have been investigated/covered and rated as satisfied. A KPA is weak if one or more goals for it are not satisfied. A KPA is assigned “Not Rated” if any of the goals for the KPA are not investigated/covered.
·	Maturity Level. A maturity level is achieved when all KPAs for that level and all of the levels below it have been investigated/covered and rated as satisfied.

	At the conclusion of each SCE, a findings exit brief should be provided at the site. The exit brief is to provide a courtesy one way information flow of the draft findings to the Offeror before the SCE team leaves the site, and allow the Offeror to provide information and/or artifacts that may have been overlooked. The exit brief should include the PCO name, address, contact method, and instructions for the Offeror to respond or comment on the draft findings presented by the SCE team. The RFP should explain the exit briefing rules.

Source Selection Evaluation of SCE Results�tc "<Head 4 (12)>Source Selection Evaluation of SCE Results"�
	Normally, the SCE will be designated as a factor in the management area. The source selection evaluation team should evaluate the SCE results using the following procedures.

•	The SCE shall be a significant factor. Do not include in the SCE factor any augmentation elements. Any augmentation elements should be evaluated in a separate factor.
•	In addition to affecting the SCE factor rating, the SCE results may affect proposal risk assessments relevant to other factors.
•	Evaluation of SCE subfactors should be standardized. When converting the SCE subfactors into a factor color, the following criteria should be used:
-	BLUE. There are no weak KPAs at the Repeatable and Defined maturity levels.
-	GREEN. There are no weak KPAs at the Repeatable maturity level and four (4) or less weak KPAs at the Defined maturity level.
-	YELLOW. No KPAs at the Repeatable maturity level are rated weak and five (5) to seven (7) KPAs at the Defined maturity level are rated weak; or
--	One (1) KPA at the Repeatable level is rated weak and six (6) or less KPAs the Defined level are rated weak; or
--	Two (2) KPAs at the Repeatable level are rated weak and five (5) or less KPAs at the Defined level are rated weak; or
--	Three (3) KPAs at the Repeatable level are rated weak and four (4) or less KPAs at the Defined level are rated weak.
-	RED. There are four (4) or more weak KPAs at the Repeatable maturity level or eight (8) or more weak KPAs in the Repeatable and Defined maturity levels.
-	When multiple SCEs for an Offeror — proposed subcontractor team are conducted, the following standards should be used to determine the team’s SCE factor color rating and proposal risk.
-	Where the proposed prime’s color rating is lower than one or more of its proposed subcontractors, the team’s color rating should always reflect the rating of the proposed prime.
-	When the team members each use their own processes, the lowest color rating among them should determine the proposal’s color rating.
-	If a higher color rated proposed prime imposes its higher level processes on the proposed subcontractor(s), the higher color rating may be used, with proposal risk being assessed to indicate that one or more lower rated proposed subcontractors have never used the process.
-	Where the team members are equally color rated and they will integrate their processes, the color rating should be the color rating of the individual team members and the proposal risk should be other than LOW.

Post Contract Award�tc "<Head 4 (12)>Post Contract Award"�
	Contracts should be structured to allow the performance of one or more SCEs subsequent to contract award to assure the evaluated level is maintained and/or to verify progress against Software Process Improvement Plans (SPIPs).
Evaluating Ada Experience During SCE�tc "<Head 2 (14)>Evaluating Ada Experience During SCE"�
	Objective. This provides an outline of the issues that should be addressed when assessing a contractor’s ability to develop programs in Ada during a Software Capability Evaluation (SCE).
	Background. A SCE can provide a snapshot of a contractor’s past process implementation, current process activities, and futures process potential. SCE’s are based on the Software Engineering Institute (SEI) Capability Maturity ModelSM (CMMSM) assessments. The SEI CMMSM Version 1.1 is a good starting point for assessing the capability of a contractor. This can provide the basis for a similar assessment of a language capability. Once the language is known (be it Ada, Fortran, or C), we can ask the contractor a new set of questions focused on that language. Most of the issues are not specific to any particular language, e.g., Ada. The approach to take is to identify the issues needed to access the contractor’s capabilities in a given language and then to fill in the details when the language is Ada.
	Proposal. There are six SEI CMMSM Key Process Areas (KPAs) that can be tailored to include assessment of the contractor’s Ada capability. The first two KPA’s, Software Tracking and Oversight, Software Quality Assurance (SQA), can be used to get a snapshot of how a contractor performs on Ada Programs. The following are those KPA’s and some issues that can be addressed during the evaluation.
	KPA — Training Program. The SCE team could first learn about the contractor’s Ada capabilities from reviewing their training program. The training plans should show what type Ada training is planned. For example, is there Ada training for other than programmers (e.g., program managers, SQA, and SCM personnel). The employee’s training records should reveal who has been trained and was the training taken at the appropriate time (i.e., prior to the start of working on an Ada program).
	KPA — Software Program Planning. This KPA allows the SCE team to see how a contractor develops estimates for schedules, manpower, facilities, and sizing (lines-of-code). When reviewing the contractor’s estimating methodologies and procedures, the team would look for an Ada influence. The contractor’s management should show an understanding of the Ada language and its use. The people selected for programs should have used the language within the domain of their program. Domain experience is more important than language experience. If the language used in previous programs is similar, then this should be an advantage. While reviewing the contractor’s program plans, the team can see if the selected hardware meets the need of the developers. Does the contractor plan for adequate file server processing capacity and disk storage to support the program? Ada tends to need more computer cycles and disk storage than other languages. Finally, the management must demonstrate a commitment to doing what is necessary to make the program a success (e.g., additional training, software tools, hardware, etc.).
	KPA — Software Program Tracking and Oversight. Once the team has seen how the contractor plans for Ada programs, then they should see how the plans work on those programs. The tracking metrics should be tailored for the use of Ada. The data collected from these metrics should be reported to management. The management should show a commitment to taking any corrective actions necessary based on the results from the metrics.
	KPA — Organization Process Definition. This KPA’s force is on the company standards and procedures. The SCE team would be looking for Ada programming standards and procedures. These standards should be up to date and easily available to all programmers. The Unit development folders should show signs that the standards are being used.
	KPA — Software Product Engineering. Under the Software Product Engineering KPA, the SCE team should be looking at how the software environment is set up for building the Ada software. For example, are the following tools used?

•	CASE tools,
•	Configuration management tools,
•	Compilers,
•	Integration tools, and
•	Code generators that support Ada development.

	These tools should be integrated with the contractor’s overall software development methodology and software development process. It is also important for the contractor to have experience with these tools.
	KPA — Software Quality Assurance (SQA). The final KPA that can be used by the SCE team in assessing a contractor’s Ada capability is the SQA KPA. Under this KPA, the SCE team should review the SQA procedures to see if any are covering the company Ada standards. The SQA training records should be reviewed for some type of Ada training.
	Summary. The above KPAs and related issues are just a starting point for a SCE team to use in assessing a contractor’s Ada capabilities. Additional information may be learned under the other KPAs not listed here. To better help a SCE team in their review, the following sample questions related to the above listed KPAs has been developed.

SCE Key Process Areas (KPAs) for Ada Evaluation�tc "<Head 3 (14)>SCE Key Process Areas (KPAs) for Ada Evaluation"�
	The following lists some of the Key Process Areas (KPAs) from the Software Engineering Institute (SEI) Capability Maturity ModelSM (CMMSM) and questions for a Software Capability Evaluation team to use in assessing a contractor’s Ada capabilities. In addition are some non-SEI CMMSM KPAs and questions that should also be considered.

KPA Questions�tc "<Head 4 (12)>KPA Questions"�
	Training program. Does the training planning include Ada training and is the training provided? Is there Ada training for other than programmers (e.g., program manager, SQA, and SCM personnel)? Is there any on-the-job training? Are experienced programmers assigned to work with the under experienced programmers? Is follow-up training provided? When are the people trained? Have they taken all required training prior to being assigned to a program using Ada? Are they encouraged and do they take additional or follow-up training?
	Software program. Does the contractor’s estimating methodologies and procedures for schedules, manpower, and sizing have an Ada influence?
	Planning. Are the people planned for the program those who have used the language within the domain of the program? Have they used the proposed tools? How well does the management understand the language and its use? Is the management committed to doing what is necessary to make the program a success? Does the detailed software development process support the contractor’s management techniques? Is there adequate hardware available to meet the needs of the developers? Does each developer have a workstation? Is there adequate file server processing capacity and disk storage to support the team?
	Software program tracking and oversight. Are the tracking metrics tailored for the use of Ada? Does management review the metrics and are corrective actions taken?
	Organization process definition. Are there company standards and procedures for Ada? Are they tailored for each Ada program? Are they used by the programmers? Are they reviewed on a regular basis and updated as needed? Do the Unit Development Folders show signs the standards are being used?
	Software product engineering. Are the following tools used?

•	CASE tools,
•	Configuration management tools,
•	Compilers,
•	Integration tools, and
•	Code generators that support Ada development.
	
	How are these tools integrated with the contractor’s overall software development methodology and software development process? What experience does the contractor have with these tools?
	Software quality assurance. Review SQA procedures for any covering the company Ada standards. The SQA training records should be reviewed for some type of Ada training.

Non-KPA Questions�tc "<>Non-KPA Questions"�
	Reuse. Do they have a reuse component in their process? Does it support the language being used (e.g., Ada)? Do they have and use a corporate reuse library? How is reuse coupled back to the development process? How are reusable components tested and validated?
	COTS. Do they have experience in integrating COTS products in general and with products they are using on this program? Do they have experience integrating COTS products written in other languages with the program’s language (e.g., Ada)?
Subprocess Area Selection Tables�tc "<Head 2 (14)>Subprocess Area Selection Tables"�
	The tables in this appendix are provided as an aid to help SCE teams select critical subprocess areas during Step 5. The tables were created by the SCE program members at the SEI for guidance only. SCE teams are expected to use their experience and judgement to select critical subprocess areas based on the requirements of the particular development. Factors considered in selecting critical subprocess areas are the following:

•	What processes would an organization need to manage the aspects of the program which are new to the organization?
•	If the product being developed is new to the end user, what processes will the development organization need to manage the anticipated requirements changes?
•	What are the basic processes that a development organization would need for any software development effort?

How to Read the Tables in This Section�tc "<Head 3 (14)>How to Read the Tables in this Section"�
	This appendix contains a table for each key process area (KPA) in the Repeatable and Defined levels. The tables contain the following columns.

•	Subprocess areas column. Each row under this column corresponds to a subprocess area associated with the KPA. Some of the subprocess areas contain other subprocess areas. These “higher-level” subprocess areas are indicated by boldface type.1
•	Major attributes columns (ApD, Pt, Ps, Tw, and Sub). An “X” in the column for an attribute indicates that the subprocess area listed in that row may be important to the development organization for managing the risk associated with a lack of experience relative to that attribute. These columns correspond to the five major attributes from the Experience Table created in Step 4. The Experience Table shows where any of the development organizations may lack experience with regard to some attribute of the new program.
•	Operational precedence (Op) column. An “X” in this column indicates that the subprocess area listed in that row may be important for managing the level of requirements changes which may be anticipated if end users do not have experience with similar products. The Op column corresponds to the operational precedence attribute from the Target Product Profile developed by the sponsor. This attribute indicates the degree to which the product being developed may be new to the end user.
•	Nucleus capability (*) column. An “X” in this column indicates that the subprocess area listed in that row is part of the recommended nucleus capability. Nucleus capability refers to a basic set of subprocesses which are needed for almost any software development.

Repeatable Level Key Process Areas (KPAs)�tc "<Head 3 (14)>Repeatable Level Key Process Areas (KPAs)"�

Key to Abbreviations:�tc "<Head 5 (10)>Key to Abbreviations\:"�

ApD	Application Domain
Tw	Type of Work
Op	Operational Precedence
Pt	Product Type
Sub	Subcontracting
*	Nucleus Capability	
Ps	Product Size

Repeatable Level Key Process Area: Program Management
�

�

�

�

�

Repeatable Level Key Process Area: Program Planning
�

Repeatable Level Key Process Area: Configuration Management
�

Repeatable Level Key Process Area: Software Quality Assurance
�
�
Defined Level Key Process Area: Software Engineering Process Group
�

Defined Level Key Process Area: Standards and Procedures
�
�
Defined Level Key Process Area: Software Product Engineering
�

Defined Level Key Process Area: Training
�
�
Defined Level Key Process Area: Peer Reviews
�

Notes�tc "<Head 5 (10)>Notes"�
1.	Most of these became KPAs in the Capability Maturity ModelSM (CMMSM) Version 1.1 [Paulk 93a], and were established in anticipation of that version of the CMMSM. Some of the subprocess areas distinguished in this manner are at the wrong maturity level relative to CMMSM Version 1.1; however, this does not affect how an SCE is conducted, because maturity level scores are not calculated. It does alter the category the findings are reported under, because findings are consolidated by KPA.
2.	The abbreviation Ps stands for “Product Size.” Product Size refers to the “Size” attribute.
SCE Text for Inclusion in Instructions to Offerors �tc "<Head 2 (14)>SCE Text for Inclusion in Instructions to Offerors "�

Section L�tc "<Head 3 (14)>Section L"�
	The following sample text illustrates how SCEs might be inserted within Section L or M of the RFP. These examples assume the SCE will be used as a specific criterion for source selection.

Sample 1�tc "<Head 4 (12)>Sample 1"�
	Software Engineering Capability. The Government will evaluate the software process by reviewing the offeror’s Software Process Improvement Plan and by using the Software Engineering Institute (SEI) developed technique, the Software Capability Evaluation. The Government will determine the software process capability by investigating the offeror’s current strengths and weaknesses in key process areas defined in the SEI report CMU/SEI-TR-11 “Characterizing the Software Process: A Maturity Frame-work.” The Government will perform an SCE of each offeror by reviewing current programs at the site proposed on this contract. The evaluation will be an organizational composite. It will be substantiated through individual interviews and reviews of documentation, of the offeror’s strengths and weaknesses in key process areas relative to maturity level three; i.e., the extent to which an offeror meets or exceeds maturity level three criteria. The on-site evaluators may be separate and distinct from the proposal evaluation team and may include a government contracting representative. The evaluators will have been trained and experienced in conducting SCEs.

�SCE Text for Inclusion in Instructions for Preparation of Proposals (IFPP)�tc "<Head 3 (14)>SCE Text for Inclusion in Instructions for Preparation of Proposals (IFPP)"�

NOTE:	 Instructions for Preparation of Proposals provide guidance to offerors as to how they should prepare their proposal. The following text requests the offeror to provide program profiles, organization charts, sample documentation, and a software process improvement plan. It also requests the offeror to provide the SCE team with facilities during the site visit.

	The technical proposal shall include the offeror’s response to the software evaluation process. The offeror shall provide the following information to assist the Government’s preparation for the Software Capability Evaluation of each offeror:
1.	The offeror shall complete the Program Profile form for 7-9 major software engineering development programs. All programs should be drawn from the same site and organization (e.g., profit center) bidding on this solicitation. One of these programs must include the (proposed) software development effort and the others should be programs that are near completion or completed within the last three years. These programs should be as similar as possible in scope and magnitude to the (proposed) effort. The programs should be from programs where the offeror was the prime contractor, at least one program should include a development where another subcontractor developed portions of the software, and as least one program should be an Ada program, more if applicable. Program Profiles from Special Access Programs are discouraged. For offerors with fewer than 7 programs at the bidding site, submit information for as many programs as are available.
2.	Section C, Tab 1, contains the questionnaire outline and report form that should be used to generate the evaluation profiles for each of the programs. Respond to the SEI questions with a Yes or No answer. For each “yes” response, please note the mechanism or document for justifying the response on a separate form.
3.	The offeror shall provide program-level and higher-level organization charts. The organization charts should contain individual’s names and job titles and indicate how the programs above are related to each other. If there are departments that the software programs rely on, these too should be positioned on the organization chart (e.g., training, Software Engineering Process Group , quality assurance, configuration management, standards, policy and procedures).
4.	The offeror shall provide a draft Software Development Plan (SDP) and a Software Standards and Procedure Manual (SSPM). If there are “generic” SDPs and SSPMs those are preferred; otherwise, select a sample SDP and SSPM from the program that has the most representative SDP.
5.	The offeror shall submit their site’s Software Process Improvement Plan, in the form of their choosing, with their proposal. The document shall be no longer than 15 pages. The Software Process Improvement Plan shall be detailed enough for the offeror to communicate their current software process capability, specific planned improvements, dedicated resources, effort estimates, and a time phasing of those improvements to bring the offeror’s software process maturity to the organization’s desired maturity level.
6.	After the proposal is received, the Government will coordinate a site visit with the offeror to discuss the questionnaire responses and conduct the Software Capability Evaluation (SCE) at the offeror’s location. The offeror shall provide a point of contact and phone number for the coordination of all SCE activities. So that the site visit will go smoothly, the Government will list details about the site visit during the coordination process; e.g., interview schedules, documentation requests, facilities for the evaluation team. The offeror shall be notified approximately two working days prior to the site visit of the programs to be examined. The site visit dates selected by the Government are not open for discussion.
7.	During the site visit, the SCE team will need a secure meeting room capable of accommodating at least eight people. The offeror shall have a copy of the organization’s software standards, procedures and/or operating instructions, and organizational charts for the programs being reviewed in the meeting room when the SCE team arrives. All interviews conducted as part of the SCE shall be done in private, one individual at a time. The SCE team may be separate and distinct from the proposal evaluation team.
If security authorization is necessary for the members of the evaluation team, a Fax number and telephone number of the contractor’s security office should be provided along with a list of any other pertinent information required to obtain security approval.

�Tab 3�tc "<Head 2 (14)>Tab 3"�

Sample RFP Preparation Checklists
Sample Questionnaire for Site Visit Preparation�tc "<Head 2 (14)>Sample Questionnaire for Site Visit Preparation"�
	The following questions are examples of what you should consider as you develop your site visit checklist. [SOURCE: Yourdon, Edward, Decline and Fall of the American Programmer, Yourdon Press, Englewood Cliffs, New Jersey, 1992].

•	Does this company care about software quality? Does it care enough, for example, to delay putting a new system into production because its software reliability models indicate an unacceptable number of latent errors? Does it have software reliability models?
•	Does this company care about its people? Has it invested time and money to train its software development managers to do a better job in hiring people? Does it invest an adequate amount of time training its technicians, or does it assume that its software engineers are replaceable commodities? Does it use modern “performance management” methods to ensure that its corporate goals are aligned with personal consequences of those goals? Do the people in the organization understand what the organizational goals are, and how they are supposed to fit into those goals?
•	Does this company use modern programming tools, languages and methodologies, as opposed to assembly language and the waterfall life cycle.
•	Does this company measure everything it does in the software arena? Does it measure the process of software development as well as rate the final product? Does it have a separate software metrics group? Are size, effort, schedule, defects, and rework measured routinely? Are the metrics used in a positive way, so that everyone in the organization can see how they improve?
•	Does this company support the concept of software reusability? More important, does it provide some incentive (for example, cash royalties) to its software engineers to create reusable components? Has it considered a separate “Software Parts Department” whose only job is to create reusable components? Does it estimate the degree of expected reusability at the beginning of programs and base its schedules and resource requirements on that estimate?
•	Does this company have CASE tools? Does it believe that CASE tools are like toothbrushes, that is, they’re not meant to be shared? Does it provide an adequately equipped PC or workstation for everyone?
Program Profile Outline�tc "<Head 2 (14)>Program Profile Outline"�
	The following outline is a sample program profile that can be referenced in the RFP. Six to nine of these forms, for different programs, should be filled out by each contractor.

•	Program Name: (name of program listed on the contract)
•	Program Number: (unique identifying number on the contract)
•	Program Type: (e.g., scientific, human-machine, business, control, support software)
•	Customer: (the agency that procured the software and a point of contact within that agency)
•	Subcontractors/Prime Contractors: (list any subcontractors employed on the program or list the prime contractor if the offeror was a subcontractor)
•	Current Phase: (identify the current phase of the software development process; e.g., requirements definition, detailed design, code & unit test, integration test, maintenance)
•	Location: (primary site of the software development effort)
•	Start Date: (starting date of the contract)
•	Design Completion Date: (estimated or actual)
•	Code Completion Date: (estimated or actual)
•	End Date: (contract completion date)
•	Team Size: (peak man-month period and average man-years over the contract period)
•	Estimated KSLOC and Function Points: (estimated/actual thousand source-lines-of -code (KSLOC)) and function points.
•	Programming Languages: (percentage of KSLOC in languages (e.g., Ada, FORTRAN, Pascal, C, Assembly))
•	Target Hardware System: (computer on which software executes)
•	Development Hardware System: (host computer for the compiler and support environment)
•	Applicable Standards: (e.g., MIL-STD-498)
•	Cost: (actual/estimated dollars spent to date/completion)
•	SEI Questionnaire: (the attached questionnaire and its answer sheet should be completed for each of the programs)
•	Organization Chart: (Most recent organization chart for each program with titles and individual names. This chart should identify the individual responsible for the following activities: program management, system engineering, software program management, software engineering, software quality assurance, software configuration management, subcontractor control, simulation, integration and testing and other technical software activities.)
Proposal Evaluation Checklist�tc "<Head 2 (14)>Proposal Evaluation Checklist"�
	The following checklist is provided as an aid for software development proposal evaluation.

Program Management�tc "<Head 3 (14)>Program Management"�
•	What was the software manager’s involvement with the proposal?
•	How is software progress tracked? Management reviews? Frequency?
•	Who will approve software schedules? Cost estimates?
•	How are issues raised, tracked, and conflicts resolved?
•	What will be the software manager’s reporting chain?
•	How does the software requirements team relate to the software design team?
•	How much manager visibility into integration and test will be necessary?
•	What will be the relationship between the System Engineer and Software? How will tradeoffs be made?
•	Is senior management briefed regularly on software status?

Subcontractor Management�tc "<Head 3 (14)>Subcontractor Management"�
•	What is the subcontractors’ development process?
•	How will qualified software subcontractors be selected?
•	Do the subcontractor’s standards, procedures, process comply with the prime contractors’?
•	How should the results and performance to commitments be tracked?
•	Is the subcontract manager knowledgeable of and trained in the software?
•	Are there periodic technical reviews & interchanges with subcontractor?
•	Does the prime’s Software Quality Assessment and Configuration Management monitor sub’s SQA & CM?
•	Do the prime’s senior management review the status of the subcontractor regularly?

Metrics Management�tc "<Head 3 (14)>Metrics Management"�
•	Is design progress, test progress and staffing measured?
•	Is integration progress measured?
•	Is software size overtime and memory utilization measured?
•	Is throughput and I/O channel utilization measured?
•	Is progress tracked and reported to the PM regularly?
•	Are technical, schedule, cost, and resources plans prepared?
•	How are software size, cost and schedules established? How are document procedures established?
•	Document Commitments: Who commits, size, cost and schedules?
•	Are there policy exits for resource planning and commitments?
•	Are the software managers trained on software estimation?
•	Are actual versus planned estimates recorded and compared?
•	Is there a central estimation manager and data base for accuracy?

Software Quality Assurance Management�tc "<Head 3 (14)>Software Quality Assurance Management"�
•	Is there an independent reporting chain?
•	Are audits conducted at all phases of life cycle and line activities?
•	How is it ensured that audits are representative?
•	Does SQA have adequate resources?
•	Does SQA audit subcontractors?
•	Are deviations handled according to documented procedures?
•	Does senior management review SQA activities regularly?
•	Is SQA authority and concurrence required?

Configuration Management�tc "<Head 3 (14)>Configuration Management"�
•	How can requirements, design, and code changes be controlled?
•	How can interface changes be controlled?
•	Is there traceability for requirements, design and code?
•	Is there a tool to help control versions and builds?
•	Are parameters established for regression testing?
•	Are baselines established for tools, change log, and modules?
•	Does the CM plan include staff, schedule, response, resources, tools, and facilities
•	Does the library system store work products and prevent unauthorized change?
•	Does the document change request process include check in/out, review and regular testing?
•	Is there a document Change Control Board and a change proposal process?
•	Is there a change log that tracks open/closed change requests?

Peer Reviews Management�tc "<Head 3 (14)>Peer Reviews Management"�
•	Are design, code, and test case peer reviews conducted?
•	Who and how many people attend?
•	Are documented procedures and checklists used?
•	Are the peer reviews included in the Software Development Plan and are they published?
•	Are statistics compiled on the type, severity, and location of errors?
•	Are statistics compiled on the time to prepare, review, and correct elected errors?
•	How are errors tracked to closure?
•	Does SQA audit peer review activities?

Training�tc "<Head 3 (14)>Training"�
•	How are CM and Quality Assurance leaders trained?
•	Are moderators and developers included in peer reviews?
•	Do program managers participate in software estimation and peer reviews?
•	Do software supervisors participate in QA, CM, estimation and peer reviews?
•	Do software developers participate in peer reviews, software development process and tools?
•	Do training resources include money, facilities, tools and schedules?
•	Is there a corporate training policy supported by a training manual?
•	Are program training needs identified and planned?
•	Are job functions mapped to training?
•	Do training records include people and courses?

Standards Management�tc "<Head 3 (14)>Standards Management"�
•	Do standards include coding, unit development folders, and man-machine interface standards?
•	Do standards include generic SDP, a QA plan and a CM plan?
•	How are standards enforced?
•	How and when are standards updated?
•	What is the assigned response for updating standards and policy?

�Tab 4�tc "<Head 2 (14)>Tab 4"�

Sample Paragraphs for RFP Inclusion
Software Quality Requirement�tc "<Head 2 (14)>Software Quality Requirement"�
	Software quality requirements will be specified for the program. The development of these requirements shall be the responsibility of the program office. The program office will work together with the end-user of the system to generate requirements based on an analysis of the system requirements, life expectancy, development costs and user concerns. Example user concerns to consider are performance (e.g. reliability, usability and efficiency), design architecture (e.g. maintainability and correctness) and re-engineering (e.g. reusability, interoperability and portability). Software quality requirements will be specified and documented within the baselined Software Requirements Specification (SRS). A hierarchical quality model of quality factors, criteria and metrics will be used to predict software quality. Factors representing the user’s concerns will be decomposed (using relevant standards and guidebooks) into software oriented characteristics. Measures of these characteristics (i.e. metrics) will also be defined. The specified model will apply to all software development phases and products. Quality progress will be reported and reviewed at each major program milestone. All open and closed software quality problems will be tracked and reported. The achievement of software quality requirements will be demonstrated, using industry accepted measures of operational quality (e.g. reliability = mean-time-to-failure), during integration testing. Failures will be categorized according to an Government approved some severity standard.
Software Testing Requirement �tc "<Head 2 (14)>Software Testing Requirement "�
	In addition to functional testing of the software to assure compliance with requirements, the software will be tested such that 100% of the software branches (i.e., decision to decision statements) are exercised prior to release in the field. Reasons for not achieving 100% execution coverage must be formally documented in the Software Test Report.
	Software tools (i.e., test coverage analyzers) to automate the branch testing process are available. Intrusive analyzers insert software code into the software under development to capture and record the execution coverage and are appropriate for non-real-time software developments. If a software product under development must operate in real-time, if it is highly memory constrained, or if the software units are very large, non-intrusive analyzers should be used. Non-intrusive analyzers use a separate hardware processor to capture and record this same execution coverage information.
Software Life Cycle Development and Support Environment Requirement�tc "<Head 2 (14)>Software Life Cycle Development and Support Environment Requirement"�
	An automated computer-based software life cycle development and support environment will be used by the contractor. Development of the environment’s requirements shall be the responsibility of the program office. The environment should provide the following capabilities: 1) specification of the life cycle software development process and the monitoring/enforcement of that process, 2) integration of Computer-aided Software Engineering (CASE) and other tools supporting the various interphase activities of the life cycle, and 3) interphase support including program management, configuration management and baselining, document/specification generation, traceability and change impact analysis.
Software Life Cycle Development Technology Scalability Requirement�tc "<Head 2 (14)>Software Life Cycle Development Technology Scalability Requirement"�
	An automated, computer-based software life cycle development and support environment will be used by the contractor. Development of the environment’s requirements shall be the responsibility of the program office. The ability of the environment’s hardware/software complex (including each of its associated CASE tools) to adequately and efficiently support the breadth of software under development (i.e., scalability to the size of the problem) will be a primary consideration.
Reusable Software Requirement�tc "<Head 2 (14)>Reusable Software Requirement"�
	As part of the SDP, reuse software engineering and planning shall be addressed. The SDP shall contain a WBS that includes the establishment and implementation of a reuse program. Reuse shall be an integral part of software development planning, review, audit and reporting. As part of the contractor’s SEE, a Software Reuse Library shall be established and maintained after appropriate review and approval by the Government.
�Tab 5�tc "<Head 2 (14)>Tab 5"�

Source Selection for Software Supportability
Instructions to Offerors (Section L) �tc "<Head 2 (14)>Instructions to Offerors (Section L) "�
	In addition to specifying proposal form and content, the Instructions to Offerors should require submission of a Software Development Plan and Software Quality Program Plan as part of the proposal. The SDP will include the offeror’s software development and management concepts, procedures, and metrics for controlling and assessing progress during the development process.

Supportability Issues�tc "<Head 3 (14)>Supportability Issues"�
	The following supportability issues must be covered in the Instructions to Offerors:

•	The methodology used to perform software sizing and cost estimating and the approach to be followed during software development
•	The rationale used for computer resource timing and sizing estimates and description of how spare I/O utilization (channels or data rates), CPU throughput utilization, memory utilization requirements will be met;
•	A description of any teaming and subcontractor arrangements;
•	The skill levels required for computer resources development and their availability within the corporate structure;
•	The method to be used for risk control;
•	Any planned use of firmware;
•	Any plans for reusing or modifying existing software;
•	A clear definition of all assumptions used during proposal preparation;
•	Plans for the development of prototype software;
•	Plans and procedures for generating and using software metrics.
•	A disclosure statement of defect removal efficiency. This should include their definition of defects and what defects are included in the metric and the method of calculating the metric.

Additional MIL-STD-498 Considerations �tc "<Head 3 (14)>Additional MIL-STD-498 Considerations "�
•	The offeror should address the manner in which they will comply with their Requirements for Software Standards, how this will be achieved and how such compliance will be measured. The offeror should describe proposed software development methodologies to be incorporated in any resultant contract.
•	The offeror should document the manner in which compliance with Category and Priority Classifications for Problem Reporting, will be achieved and describe the problem reporting system to be used in any resultant contract.
•	The offeror’s proposal to the items above should be part of the technical volume of the proposal and not be required as part of the contract.
•	The offeror should document the manner in which compliance with Evaluation Criteria will be achieved in the software development effort if the offeror is awarded the contract. These include: internal consistency; understandability; traceability to indicated documents; consistency with indicated documents; appropriateness of analysis, design, and coding techniques used; appropriateness of allocation of sizing and timing resources; adequacy of test coverage of requirements. [NOTE: The offeror may propose, subject to government approval, additional criteria or alternate definitions for any of the criteria.]
•	The offeror shall also provide examples of software documentation (e.g., software specifications, source code listings, software test reports) prepared on other software development efforts (the Government’s source selection team can then evaluate the supportability of the proposed documentation.) The offeror should describe the process, techniques, methodologies, and metrics to be used and define acceptable (i.e., pass) criteria (minimum, range, or maximum) for each proposed evaluation criteria test environment (STE) (including tools therein) (see definitions below) proposed to develop software for the system. The offeror should also describe the environment proposed to be delivered to (assuming the contract requires such delivery) or to be used by the Government to support the system’s software. [The offeror should be required to submit metrics on this issue to help government evaluators determine the quality of the environment proposed for delivery to the Government.]
•	Offeror should document the factory software engineering environment (SEE), including tools therein. The plans should address how the offeror will evolve the factory environment into the supporting environment. This should not include the concept of developing a separate support environment. The evolution should include the constant updating and refining of the factory environment to meet all needs of the supporters and then be transitioned to the supporting/maintaining organization.
•	The plans should also describe how the offeror will install the support environment at the supporting/maintaining organization, load the environment with all program software/data and hardware (e.g., operational software/data, all development/ test tools, hardware configurations, master engineering data repository, and administrative practices to be used for software support) and use the environment as the only source of information/tools to support the initial operational test and evaluation (IOT&E), as well as initial block changes to the system (while under interim contractor support).
•	The plans should describe any differences in tools between the factory environment and that envisioned for the software support activity and plans to ensure that tools differences will not adversely impact the supportability of the software. [NOTE: If too much documentation is required for submission to the Government, it may exceed page count restrictions.]
•	The offeror should document the approach to be used in evaluating the quality of software and software development processes; i.e., how the offeror will comply with proposed evaluation criteria during the period of the contract. In addition, the offeror shall identify, explain (with rationale), and provide pass (as in pass/fail) criteria for each process and product metric used. This document shall contain a step-by-step sequence of quality-related activities to include the data collection process, scoring algorithms, reporting, and corrective action.

Additional AFSCP/AFLCP 800-45, Software Risk Abatement, Considerations�tc "<Head 3 (14)>Additional AFSCP/AFLCP 800-45, Software Risk Abatement, Considerations"�
	The offeror should document the approach to be used in managing risk in developing software and integrating it in the system. The offeror should be required to quantify performance, support, cost, and schedule risk factors (this should be part of the offeror’s Software Development Plan).
	
Sample Section L�tc "<Head 3 (14)>Sample Section L"�
	The following information is useful for developing Instructions to Offerors (ITO) (as related to software supportability concerns):
1.	Submit Volume XXX and completed questionnaires from A Method for Assessing the Software Engineering Capability two weeks prior to submission of Volumes XXX.
2. Volume I. TECHNICAL�tc "<Head 5 (10)>2. Volume I. TECHNICAL"�
	Volume I shall describe the complete proposed Reliability and Maintainability Plan and engineering programs and shall not exceed xxx pages. Volume I shall be divided into two books, marked and placed in separate three-ring or spiral binders. Each book shall be arranged as described below.
2.2.		Volume I, Book II. Engineering Program and Design
	Book II shall detail the proposed engineering program. As a minimum, the following information shall be included.
2.2.1. 		Describe the overall engineering development and design program including major activities and an integrated schedule.
2.2.1.1.	Identify the overall engineering development schedule and specific integration program activities such as design requirements analysis, testing, software development, support equipment development, and management processes for controlling the development effort.
2.2.1.2.	Provide an overall technical description of the total program. Identify significant benefits of design features proposed including commonality considerations among subsystems (including support equipment, maintenance trainers, and aircrew training devices), between aircraft types, and between aircraft mission design series. Include, as a minimum:
2.2.1.2.1.	Software design, development, and integration efforts for each subsystem. Include the top-level description of each computer software configuration item (CSCI), identify and justify the computer languages used, and estimate the size of each CSCI. Identify if the CSCI currently exists, will be modified, or will be developed.
2.2.1.2.2.	Describe the overall built-in-test (BIT) approach for each subsystem and how it will test subsystem and subsystem-to-aircraft interfaces.
2.2.1.3.	Define the draft subsystem specification and development plan for the major subsystems. The specifications shall be sufficiently detailed, as a minimum, to include descriptions of:
2.2.1.3.1.	Growth potential of each LRU with respect to the number of circuit card assembly (CCA) expansion slots available and the type of functional enhancements (such as additional memory, processor, or input/output CCAs).
2.2.1.3.2.	Significant components at the SRU level, such as embedded computers and memory devices. Identify and justify the intended processors to be used, estimated lines of code, throughput, memory, and growth capacity requirements.
2.2.1.3.3.	Identify the significant benefits of design features proposed including commonality considerations among CCAs or SRUs.
2.2.1.4.	Within the draft subsystem specification and development plan for the xxx subsystem, provide additional detailed descriptions of the following:
2.2.1.4.1.	Identify commercial software to be used. Describe the level of documentation available, to be developed, and how the Government will support the commercial software.
2.2.1.4.2.	Describe how the XXX subsystem software development and design approach will allow modification of display page formats or information, incorporate additional pages, provide for growth in number of display units and display avionics management units.
2.2.2.	Describe relevant engineering development experience of the technical personnel proposed for this program. Include specific information on planned contribution to this program for each person identified. Be specific about team members with experience on at least two programs of similar scope, and where similar engineering tasks were accomplished.
2.2.4.	Describe engineering development facilities (laboratories), staffing, and equipment planned for use on this program. Identify the respective availability of each resource and plans to acquire resources not currently available.
2.2.5.	Define the preliminary support equipment (SE) program. Describe the overall program for designing, developing, and testing the proposed support equipment for the XXX system.
2.2.5.1. 	Describe how the support equipment selection and development processes integrate with the BIT software development effort and maintenance procedures development.
 2.2.5.2. 	Describe test program sets (TPSs) to be used with both existing and newly developed test stands. Include a description of the TPS hardware and software requirements and identify compatible automated test equipment (ATE).
2.2.6.	Describe the overall software development and management program.
2.2.6.1. 	Describe the software development approach, analysis methods, and integrated schedule for completing the software configuration items.
2.2.6.2. 	Define all software development tools that will be used including such applications as compilers, assemblers, debuggers, editors, linkers, loaders, and configuration management programs. Define the computer and operating systems on which each software tool will be used. Describe how these tools will be made available to the Government.
2.2.6.3.	Describe relevant software development experience of the technical and management personnel proposed for this program. Include specific information on planned contribution to this program for each person identified. Be specific about certifications held by inspection personnel.
2.2.6.4. 	Describe software development facilities, staffing, and equipment planned for use on this program. Identify the respective availability of each resource and plans to acquire resources not currently available.
2.2.6.5.	Describe how your software development program will support the independent validation and verification (IV&V) effort. Describe the data and documentation which shall be provided as part of the IV&V effort. Describe how IV&V personnel will be accommodated.
2.2.6.6.	Each offeror may be visited by a government software assessment team (SWAT) as part of a site survey to assess software engineering capabilities. The survey will be conducted using A Method for Assessing the Software Engineering Capability, provided as an attachment to this RFP. Complete the questionnaire below to prepare for the SWAT survey.
2.2.6.6.1. 	Provide a completed software assessment program Form 01 (programs profile summary) and Form 02 (answers to the software assessment questionnaire) for six on-going software development programs (representative of all phases of software development) and the proposed (program name) software development efforts. The type of information required is indicated on the forms provided and shall be used to prepare responses (attachment following this section of the RFP). Provide the completed forms to the program contracting officer (PCO) separately from the proposal (address listed in paragraph XXX). The forms shall be delivered in accordance with the letter from the PCO coordinating the dates for the SWAT survey at each contractor’s facility.
2.2.6.6.2. 	Each offeror will be notified by separate letter from the PCO to coordinate the SWAT survey visit. The team will conduct interviews with software program leaders, quality personnel, system integrators (software testing), and configuration management personnel to discuss the answers provided on the forms and assess software engineering capabilities. Additional documentation will be requested to validate responses to the questionnaires. Documentation may include, but not limited to, cost estimating worksheets, unit development folders, software development procedures, organizational charts, software quality audit reports, and software change requests.
2.2.7. 	Describe the overall test and evaluation (T&E) program.
2.2.7.1.	Describe all computer models, test stands, and hot mock- ups needed to ensure accurate integration and interface requirements analysis and design verification. Include the basic concept of operation for each test stand and hot mock-up. Provide a description of your modeling tools for structural and stress analysis. Identify the availability of each resource and plans to acquire resources not currently available.
2.2.7.2	Describe the integration of software development and management activities with detailed test and evaluation activities.
2.2.7.3 	Describe test and evaluation facilities, staffing, and equipment planned for use on this program. Describe capability to provide supply support and maintenance to the T&E level of flight testing. Identify the respective availability of each resource and plans to acquire resources not currently available.
3. REFERENCES�tc "<Head 5 (10)>3. REFERENCES"�
a.	Department of Defense
	(1)	Directives/Instructions
	(2)	Standards
	[The following standards should only be cited in accordance with DoDD 5000.1 and DoD 5000.2-R]
		(a)	MIL-STD-498, Software Development and Documentation
		(b)	DoD-STD-1467 (AR), Software Support Environment
		(c)	MIL-HDBK-347, Mission-Critical Computer Resources Software Support
		(d)	DoD-STD-1703, NSA/CSS Software Product Standards Manual
	(3)	Other
		(a)	Defense Systems Management College (DSMC), Mission Critical Computer Resources Management Guide
b.	Air Force
	[See Appendix D for applicable Air Force documents]
c.	Other
	[The following references provide additional guidance, and should come from industry first, then (if applicable) government sources. Again, refer to the 5000 series for guidance.]
	(1)	AFOTEC Pamphlet 99-102, Volume 3, Software Supportability Evaluation Guide
			(Contact AFOTEC/SAS)
	(2)	AFOTEC Pamphlet 99-102, Volume 5, Software Support Resources Evaluation Guide,
	(3)	AFSCP/AFLCP 800-45, Acquisition Management Software Risk Abatement (Contact
			HQ AFMC/EN)
	(4)	AFMCP 800-51, Software Development Capability Assessment (Contact HQ AFMC/
			EN)
	(5)	ASC Pamphlet 63-103, Software Development Capability Capacity Review (Contact
			ASC/EN)
	(6)	CMU/SEI-94-TR-06, Software Capability Evaluation (SCE), Version 2.0, Method
			Description (Contact Software Engineering Institute at Pittsburgh PA)
	(7)	RADC-TR-85-37, Specification of Software Quality Attributes, Volumes I-III,
4. DEFINITIONS�tc "<Head 5 (10)>4. DEFINITIONS"�
a.	Software supportability: characteristics of software and computer support resources that affect the ability of software support activities to correct errors, add system capabilities, delete features, and modify software to be compatible with hardware changes. It should be noted that as the Air Force moves toward truly open systems, the need to modify software to be compatible with hardware changes should no longer exist.
	(1)	Organization: Software possesses the characteristic of organization when the documentation is logically partitioned into sets of volumes and document development conventions have been followed. It also measures how easily specific information is located within the documentation. Another factor is how well the documents have been divided along functional lines. A hierarchical partitioning of the system’s documentation of less detail to descriptions of more detail should reflect the partitioning of software.
	(2)	Descriptiveness: Software documentation possesses the characteristic of descriptiveness when it contains information about its intent, assumptions, inputs, processing, outputs, components, and revision status. Documentation should have a descriptive format and contain useful explanations of the software program design.
	(3)	Traceability: Software documentation possesses the characteristic of traceability when information about all program elements, and their implementation, can be traced between all levels of lesser and greater detail (up and down in the system hierarchy). Program elements consist of, but are not limited to, data flow, control flow, algorithms, variables, and constants. Software may be well written and well described but still lack a clearly defined trail between top level requirements and detailed implementation. The software maintainer must be able to trace any particular element from higher levels of program description down to executable code, and from executable code to higher levels of program description. Traceability should also be evident from requirements through the design to the tests which verify the design.
	(4)	Modularity: Software possesses the characteristic of modularity when the software design is based on a logical partitioning/grouping of software and its parts/logically related abstractions and based on minimized module/unit interdependence. Software that is the easiest to understand and change is composed on independent modules. The fewer and simpler the connections between modules, the easier it is to understand each module without reference to other modules. Reducing connections between modules also minimizes the paths along which errors can propagate into other modules of the system. Modularity also implies that a module consists of only a few easily recognizable functions which are closely related with a minimal number of links to other modules.
	(5)	Consistency: Software possesses the characteristic of consistency when products correlate and contain uniform notation, termination, and symbology. The use of standards and conventions in documentation, flow chart construction and certain conventions in input/output processing, module interfacing, naming of modules/variables, etc., are typical indicators of consistency. This characteristic permits for the software maintainer to concentrate on understanding the true complexities of an algorithm, data structure, etc.
	(6)	Simplicity: Software possesses the characteristic of simplicity when it reflects the use of singularity concepts and fundamental structures in organization, language, and implementation techniques. The use of high order language as opposed to an assembly language makes a program relatively simpler to understand because there are fewer discriminations that have to be made. The number of operators, operands, nested control structures, nested data structures, executable statements, statement labels, decision parameters, etc., will determine to a great extent how simple or complex the source code is.
	(7)	Expandability: Software possesses the characteristic of expandability when a physical change to information, computational functions, data storage, or execution time can be easily accomplished once the nature of what is to be changed is understood. The design should allow for flexible timing, reasonable storage margin, parameterized constants, and indentured numbering scheme for source listings that easily accommodate changes.
	(8)	Testability: Software possesses the characteristic of testability when it contains aids which enhance testing. The documentation should describe how well the program has been designed to include test aids (instruments), while the source listings should illustrate how the code is implemented to allow for testing. The software should be designed and implemented so testability is either embedded within the program or can be easily inserted into the program or is available through a combination of these capabilities.
		(a)	Testability provides information on the logical build of functions or processes of the designed/developed software from the development phase of its individual computer software units (CSUs), into its integration phase of CSUs into computer software components (CSCs), and CSCs into computer software configuration items (CSCIs).
		(b)	Testability includes the testing of security software requirements for compartmented, and/or multilevel security modes of operation.
		(c)	Testability reflects the “as-designed” requirements of the software as they are developed into the “as-built” capabilities of the final software product.
	(9)	Convention: Software possesses the characteristic of convention when the software products correlate and contain uniform notation, terminology, and symbology. The use of standards in documentation, flow chart, or program design language construction and certain conventions in input/output processing, error processing, module interfacing, naming of modules/variables, etc., are typical reflections of convention.
	(10)	Design: Software possesses the characteristic of design when programs are formed using a structured method consisting of functional parts which are interrelated, yet independent of one another.
NOTE: 	Software requirements traceability is inherent in software supportability; that is, all requirements should be traceable through the documentation to the appropriate test procedure and area of code for each specific requirement.
	(11)	Reusability: Software created during the development process that posses the potential for reuse within the same program or other programs.
b. Other Software Supportability Characteristics
	(1)	Portability: Software possesses the characteristic of portability when it is relatively easy to rehost software from one hardware platform to another hardware platform. This characteristic will require initial software development to consider future rewriting for adaptation to new hardware platforms.
	(2)	Machine Independence: Software possesses the characteristic of machine independence when it can be run on any hardware platform without needing to be modified to do so.
	(3)	External documentability: Software possesses the characteristic of external documentability when documentation (e.g., hierarchy charts, flow control charts, compilation sequence, data flow diagrams, and general explanations of what and how the software is used) matches the as-built software exactly.
	(4)	Coupling: Minimum degree of interaction between CSUs.
	(5)	Cohesion: Maximum degree of interaction within a CSU.
	(6)	Structured: One entry and exit per CSU.
	(7)	Standardization of Naming Conventions: Use of uniform notations for naming data elements.
	(8)	Parameterization: A measure of the use of a minimum of unnamed constants.
	(9)	Style: The appropriateness and use of standard conventions to aid in visual presentation of structures (e.g., numbering scheme, indentation of structures, blank lines between procedures and function definitions, and other factors which affect the readability of the software.
	(10) Documentation: Availability, completeness, and correctness.
	(11) Complexity: Degree to which module flow can be traced (typically measured using a McCabe’s value).
Proposal Evaluation Supportability Criteria�tc "<Head 2 (14)>Proposal Evaluation Supportability Criteria"�
	
NOTE:	Evaluation criteria will cover all requirements within the request for proposal (RFP), including computer resources development and management activities and the offeror’s software management plans contained in the SDP and other applicable documents. The key to achieving supportability is by defining contractual processes, performance requirements, and metrics to which the contractor will commit and adhere during software development. These are important evaluation factors and must be included in the RFP.

•	Availability of software, documentation, and rights necessary to meet life cycle needs.
•	The compatibility of the proposed design with the support concept in the CRLCMP.
•	For systems where software changes will be frequent and are critical to overall mission capability, quantitative criteria should be established to ensure the design is modifiable and proposed support resources and methods are adequate. The offeror should describe how to identify and reestablish a previous software configuration.
•	When processing of sensitive or classified information is involved, ensure computer security is an evaluation criterion.
•	Correctness and reliability (or their supporting criteria of traceability, completeness, error tolerance, accuracy, and simplicity) should be measured, over the entire life cycle, on every program.

�Other Evaluation Criteria�tc "<Head 3 (14)>Other Evaluation Criteria"�
	Other evaluation criteria should include:

•	Throughput and memory capability of the proposed computer;
•	Future vendor support for commercially supplied items such as tape drives, disk drives, and controllers;
•	Computer resources interfaces to the rest of the system architecture and human operators;
•	Adequacy of the operating system or software executive;
•	Availability, currency, and usage of software development plans;
•	Organic supportability of computer hardware and software;
•	Offeror’s software development plan and software development standards and procedures;
•	Offeror’s software development capability and capacity.
•	Defect-removal efficiency (e.g., rate of 95 % or higher is acceptable). [CAUTION: defect-removal efficiency can be manipulated. Changing the definition of a defect from a development defect to a production defect can affect the metric.]
Source Selection Evaluation Considerations�tc "<Head 2 (14)>Source Selection Evaluation Considerations"�
	MIL-HDBK-347 is geared to DoDD 5000 series documents and should be used in conjunction with top level software support guidance provided government-directed documents, which you should follow throughout the period of the contract to ensure a supportable and supported system is fielded. Not only should the attached factors be included in the Sections L and M of the RFP and the offeror’s proposal, but they should also be incorporated as requirements in the Statement of Work. Much of the issues addressed in the following can be addressed in the offeror’s SDP, therefore the Instruction for Proposal Preparation should require the offeror to submit a draft SDP for the system being acquired.

•	CMU/SEI-94-TR-06 (This assessment is normally conducted by the offeror with SEI assistance before source selection occurs.) The Instructions for Proposal Preparation may inform the offerors that only those proposals from offerors who have received a Level 3 rating or higher will be evaluated.)
•	AFMC Pamphlet 63-103 (Use of the tool requires a competent government team and a significant amount of time to complete, but it provides the program office an estimate of the level of risk that can be expected in the software development process using each offeror.) [NOTE: A SQM proficiency audit or SEI audit may also provide the desired assessment results.]
	
	Use of these tools will produce ratings in the following areas which should be reported to the source selection authority: program management, planning and execution, configuration management, quality assurance, quality measurement, training, process focus, and overall.

DoD-STD-1467(AR), Software Support Environment, Considerations �tc "<Head 3 (14)>DoD-STD-1467(AR), Software Support Environment, Considerations "�
	Contractually specifying the exact SEE prior to initial development is not a good approach to acquisition. Instead, the offeror should specify the top-level requirements for the SEE, and the detailed implementation of this environment should be allowed to evolve.

•	The offeror should identify any proposed software or documentation with limited or restricted rights. The offeror should identify any licensing agreements that apply to the software engineering environment or software test environment to be delivered to the Government. The offeror should describe how in-house personnel or a third party contractor can accomplish software support within constraints imposed by the rights and/or licensing agreements. [NOTE: Although not realistic to obtain in an offeror’s response to a proposal, it is also desirable to know what data rights restrictions/licensing arrangements apply to the SEE/STE to be used by the offeror (or proposed subcontractors) and how those restrictions/arrangements will apply to the SEE/STE delivered to the Government.]
•	If the government’s SOW requires the offeror to use the government’s designated life cycle software support environment (LCSSE), have the offeror describe how the resources of the government’s LCSSE will be used.
•	The offeror should respond to the government’s desire that the offeror’s environment, identified in the proposal, shall be used in the subsequent contract performance, and that the offeror agrees to notify the Government of any changes required in the environment, with rationale given for the changes throughout the period of the contract.
•	Have the offeror describe how all delivered products, both mission and support (e.g., products used in the factory development environment), will be integrated in and perform with the government designated LCSSE.
•	Have the offeror identify the proposed sources for all software to be delivered in the SEE/STE.
•	The offeror shall describe how the designated LCSSE might be used by the Government or the government’s designee to evaluate, generate, install, integrate, test, modify, and operate the formally delivered software.

�AFOTEC Pamphlet 99-102, Volume 3, Software Maintainability Evaluation Guide, Considerations �tc "<Head 3 (14)>AFOTEC Pamphlet 99-102, Volume 3, Software Maintainability Evaluation Guide, Considerations "�
•	Have the offeror document the approach to ensure supportable software (i.e., the software has supportability characteristics), using the definitions in paragraph 4 of the basic document.
•	Have the offeror provide samples of software documentation from a program of similar scope and effort and use evaluation procedures of this pamphlet to assess its supportability. Ask the offeror to identify any changes made since that software was produced which might be relevant to the current effort.

CAUTION:	When this approach is used, you run the risk of not treating all offerors equality since some may not have a viable documentation base to be evaluated. Also, the evaluation of the documentation may not include the Government influence in the decisions and direction that led to the particular software and software documentation that was produced in the previous effort.

Additional Considerations �tc "<Head 3 (14)>Additional Considerations "�
•	Have the offeror describe how the software development effort and costs will be visible to assure the effort is on track. The offeror’s description of development/cost tracking should include a detailed explanation on the use of software work packages. The offeror should also be required to describe how the quality of software will be measured and maintained during the development process and over the life cycle.
•	Have the offeror describe ways they will keep COTS items in their latest configuration and upward compatible to changes after delivery of the system without affecting system performance. The offeror should also address contingency plans for support of COTS products in the event the COTS vendor drops support or goes out of business. Also have the offeror describe how licenses and titles for COTS items will be transferred to the LCSSE. [NOTE: Decisions to upgrade configurations must be a joint decision between the Government and contractor, with the Government having ultimate control.]
•	Have the offeror describe how software functionality will be allocated, traced, and its quality measured between mission and system software computer software configuration items (CSCIs). Recognizing that specific design details are not set in concrete at the time of source selection, this information should describe what intrinsic system services (i.e., services contained in system software) will be needed and what the planned COTS utilization will provide these systems. By extension, the offeror can describe in general terms what non-system service functions (i.e., functions contained in mission software) will also be needed.
•	Have the offeror describe procedures for performing independent verification and validation (IV&V) (if required in the contract) and ensuring the IV&V agent access to software and associated documentation. Also, have the offeror describe how duplication of effort between the IV&V agent and SQM agent will be avoided.
•	Have the offeror describe how they will minimize/eliminate use of different type/manufacturers for processors used in the system, unless those different types would make use of existing workstations/server resources at government operational and support locations. [NOTE: Limiting processor types is a specification issue, not a source selection issue. Source selection is not used to impose requirements.]
•	Have the offeror describe how compliance will be achieved with the requirement to deliver or provide government access to all software documentation (deliverable and non-deliverable) on electronic media or in digital format (i.e., paperless, computer-aided acquisition logistics systems (CALS) compliant). Include in “Software Documentation” software quality measurement data, including raw data, score sheets, tiered scores, problem trouble reports, and corrective actions. [NOTE: The Government should specify what form of electronic media is acceptable and have the offeror describe how compliance with that form will be accomplished.]
•	Have the offeror describe how software will be loaded into storage media. The offeror should document how and where software will be uploaded into the equipment (e.g., at what maintenance level (on/off-equipment), and with or without requiring removal of processors from the equipment) and describe the memory technology proposed (e.g., programmable read only memory (PROM), ultraviolet PROM (UVPROM), electrically erasable PROM (EEPROM)). Additionally, the offeror should provide the rationale behind the decisions made to determine the support concepts/maintenance levels. [NOTE: It is inappropriate to require the offeror to identify the memory technology planned for use.]
•	Have the offeror describe how specific critical design requirements (e.g., spare memory, timing, standardization of processors within system, etc.) will be met.

Software Language Considerations�tc "<Head 3 (14)>Software Language Considerations"�
	Have the offeror describe how they plan to comply with DoD 5000.2-R and DoDD 3405.1 software development language requirements. If they can not comply with these software development language requirements, the offeror must provide a rationale based on life cycle (and not just developmental) cost evaluation.

�AFSSI 5100, The Air Force Computer Security (COMPUSEC) Program, Considerations �tc "<Head 3 (14)>AFSSI 5100, The Air Force Computer Security (COMPUSEC) Program, Considerations "�
	Trusted Computing Base (TCB). Have the offeror describe how they will address each of the evaluation criteria set forth in DoD-STD 5200.28, DoD Trusted Computing System Evaluation Criteria, for the appropriate trusted computing base, depending on the sensitivity of the data and the clearances of the users.
	Risk Management. Have the offeror describe how they will address risk management requirements, including risk analysis, security test and evaluation, and certification for facilities, software development center processors, and embedded software used or developed under the contract. Systems must be accredited by the Defense Audit Agency before they are placed in use.
	Have the offeror describe how all the automated computer security provisions (identification and authentication, audit trails, and file protection and control) will be met.

MIL-STD-498 (or Industry Equivalent) Documentation Requirements Considerations �tc "<Head 3 (14)>MIL-STD-498 (or Industry Equivalent) Documentation Requirements Considerations "�
	The offeror should address adequate completion of the appropriate documents listed (by DID title) in paragraph 6.2 of MIL-STD-498 (or industry equivalent), and describe how documentation adequacy will be evaluated.

AFOTEC Pamphlet 99-102, Volume 5, Software Support Resources Evaluation, Considerations �tc "<Head 3 (14)>AFOTEC Pamphlet 99-102, Volume 5, Software Support Resources Evaluation, Considerations "�
•	The offeror should describe their approach to addressing the software support environment (i.e., software support concept
•	Software support resources should address the required personnel, support systems, and facilities required for supporting software during its life cycle.

Other Supportability Source Selection Considerations�tc "<Head 3 (14)>Other Supportability Source Selection Considerations"�
•	Require that the offeror states conditions for software licensing. Specifically addressing the ability of the Government to process under a single site license with the right to copy for large quantity systems (e.g., Z-248 personal computers).
•	All commercial-off-the-shelf software obtained for general purpose information systems processing equipment is required to be approved through the computer systems requirement board (CSRB) for management information systems.
•	The offeror should provide data for applicable software, indicating any software attained under public domain libraries.
•	The offeror should describe how contractor proprietary rights to proposed software will be minimized. While it may be difficult to control rights to commercial off the shelf or third part software, in-house developed software should be the property of the Government and be delivered as part of the life cycle software support environment.
•	The offeror should describe the approach for transitioning the software process, products, and documentation to the supporting activity.
•	The offeror should describe the approach for preparation, including training, of software support activity personnel for accomplishing the software support mission.
•	The offeror should program PDSS personnel, facility, and equipment costs up front and include these in calculating system life cycle costs. Facility costs should include location, site preparation, construction, and installation.
•	The offeror should make recommendations as to the optimum support concept (contractor only, Government only, or contractor/ Government mix) for each proposed computer software configuration item, and justify the recommendation based on operational requirements and life cycle costs.
•	Have the offeror describe how the system/software engineering environment will meet all trusted database and multilevel security requirements.
•	Have the offeror describe the level and sources of training (skills) required for support of each of the delivered software products.
•	Have the offeror describe how the software will be implemented without serious impact to the operating system (if applicable).
•	Have the offeror describe how the developed software will fulfill requirements and yet meet RFP interface requirements.
•	Have the offeror describe how impacts of the newly developed software on other operating systems will be assessed.
•	Have the offeror describe the strategy for reuse of existing and newly developed software.
•	Have the offeror describe plans for software disaster storage and recovery.

Version 2.0

Version 2.0

Version 2.0
APPENDIX M Software Source Selection

M-� PAGE �28�

Version 2.0

M-� PAGE �2�

