

Appendix K

Software Support�tc "Preface"��
�tc "<>"�

APPENDIX�tc "<>APPENDIX"�

 �tc "<> "�K�tc "<> K"�

Software Support�tc "<>Software Support"�

EDITOR’S NOTE: Graphics quality will improve when printed.

NOTE:	The following papers were written by the F-22 Life Cycle Software Support (LCSS) Integrated Product Team (IPT). These papers discuss how to manage the different aspects of Post-Deployment Software Support (PDSS), and are found in the 1994 and 1995 Software Technology Conference proceedings.

CONTENT	PAGE

Tab 1:

How Post-Deployment Software Support Starts in the Design Phase	K-3

Tab 2:

LSA for Software: A Practical Approach	K-8

Tab 3:

Computer Resource Integrated Support Document (CRISD) Foundation to Post-Deployment Software Support (PDSS)	K-11

Tab 4:

Software Quality Assurance Impact on Post-Deployment Software Support Cost	K-16

Tab 5:

The DoD Generic Fighter: F-22’s Historical Foundation	K-23

Tab 6:

How More is Less: The F-22 Streamlined Block Change Cycle	K-33

�
Tab 1�tc "<Head 2 (14)>Tab 1"�

How Post-Deployment Software Support Starts in the Design Phase

Philip C. Gould

Lockheed Fort Worth Company

John E. White

ASC/YFSL, SM-ALC/YFLBA

Integrated Product Team Managers

F-22 Life Cycle Software Support

Presented at the Sixth Annual Software Technology Conference Salt Lake City, Utah, April 15, 1994

Introduction�tc "<Head 2 (14)>Introduction"�

	“When does Post-Deployment Software Support (PDSS) start?” Traditionally, it has started when the weapon system has passed the Initial Operational Capability (IOC) milestone. From that point forward, “maintenance” is performed by someone — either by the contractor or a government support agency. Now, let’s rephrase the question to “When should PDSS start?” Not only has the question changed but the logical answer is also different. What follows is the story of the approach being taken by the F-22 program — where PDSS starts in the design phase with the result being effective, efficient Life Cycle Software Support (LCSS).

The Team�tc "<Head 3 (14)>The Team"�

	The F-22 Weapon System is under Engineering and Manufacturing Development (EMD) by a team consisting of the United States Air Force (USAF), two prime contractors (Lockheed Aeronautical Systems Company [LASC], with Lockheed Fort Worth Company [LFWC] and Boeing Military Airplanes [BMA] as principle subcontractors, and Pratt & Whitney), and numerous subcontractors. The USAF contingent is further structured as the System Program Office (SPO) at Wright-Patterson AFB, Sacramento Air Logistics Command (SM-ALC, also known as SPO-West) at McClellan AFB, Air Combat Command (ACC) represented by Langley AFB, Eglin AFB, and Nellis AFB, and Air Education and Training Command (AETC) personnel. The program is being directed utilizing Total Quality Management (TQM) principles which results in an Integrated Product Team (IPT) for each major portion of the F-22 Weapon System. The LCSS IPT has representation from all of the above groups, for only through cooperation of all parties involved can the concepts and products of EMD be transitioned and maintained throughout the remainder of the F-22’s life expectancy.

The Challenge�tc "<Head 3 (14)>The Challenge"�

	The Cold War is over and the Big Bear has died. Unfortunately, some of our industrial defense base has also dissolved — either by closing or merger or layoff. The defense budgets of the present are only a fraction of the past and competition for those dollars is intense. Some of that competition is between programs, between services, and between support organizations within a given service as well as between government support agencies and industry. A different type of competition, but just as intense, consists of acquisition dollars versus funding for support. In the present scenario, estimated excessive support costs can limit the number of units to be procured — or even cancel a program. In the software world, it is often said that, over the life of a system, 30% of the software cost is in development and 70% is in “maintenance” (let’s say PDSS). In other words, if you spend $2 billion developing a system’s software, you’ll spend about $4.6 billion to support that software over the system’s life. If you take a life cycle of 20-30 years, that’s roughly $150 to $230 million dollars per year — which makes a very large target for the budget cutters. Looking at it another way, if you take the pseudo-standard rule that 10% of a given program will change per year and apply that to a weapon system of about 5 million lines-of-code, you’ve obviously found a way to keep a major portion of the free world’s Ada programmers employed — if Congress will give you that annual $150-$230 million. The F-22 LCSS IPT was created to find new and creative ways to reduce life cycle software costs by “designing in” supportability.

The History�tc "<Head 3 (14)>The History"�

	In the past, PDSS has typically been addressed by some lone voice crying in the wilderness who at one time was given somebody else’s code to maintain and who had to learn software supportability the hard way. This lone voice was traditionally a staff person who had no budget, people, or clout and, therefore, nobody listened. In the 1985/86 time-frame, some of those lone voices (Sylvia Blair, Jon Floyd, and Phil Gould) banded together in Ft. Worth and created a brand new entry in the Work Breakdown Structure (WBS) dictionary of the Dem/Val Advanced Tactical Fighter proposal from General Dynamics (now LFWC) to address life cycle software issues. Although the GDFW proposal did not survive the down-select, the LCSS concept impressed the appropriate people (Thank you, Col. Bob Lyons!) and was added to the WBS dictionary for the follow-on RFP. Never before had a major weapon system addressed this problem with an appropriate method of funding the task this early in the life of the system.

The Mission�tc "<Head 3 (14)>The Mission"�

	The mission of the F-22 LCSS IPT is very succinct — To insure the efficient support of all F-22 Weapon System software. Upon closer review, however, the enormity of the task looms ominously. We have endeavored to approach this task with a five-fold plan of attack :

1.	Analyze EMD development requirements. Software Maintenance is nothing more than multiple, small iterations of the entire life cycle. If you think of a block update, you start with analysis of the new or modified requirements, proceed through design, code, test, and integration just as if you were implementing a small, autonomous project. Therefore, the requirements for software support are very similar, if not identical, to the requirements necessary to develop the original software. Unfortunately, these requirements often change from phase to phase of development and are not usually documented adequately to reconstruct for life cycle support. We are capturing this data as part of the requirements analysis.

2.	Influence development for maximum supportability. Anyone who has modified someone else’s code can attest to the fact that supportability is a design factor. Structured coding concepts have calmed the nerves of many software maintainers — until they look (in vain) for adequate documentation, or design rationale, or that little test program that the developer “whipped up”, or..., etc. Our goal is to insert supportability considerations into the code, the documentation, and the environment of each piece of F-22 Weapon System software. This thrust must begin during design or else the cost of re-engineering, rewriting, etc. will be considered prohibitive.

3.	Develop post-deployment support concepts. Many government agencies have inherited software systems for which no support concept was ever developed. If concepts for support are not considered during system development, there is no way to have organic support available at the earliest need dates considering government procurement cycles, especially if facility construction is required. This traditional approach defaults to contractor support for the first few years of PDSS. By developing these support concepts from the beginning of development and maturing them during EMD, intelligent, efficient decisions can be implemented.

4.	Predict F-22 software changes. Once again, the approach driving this concept is a departure from tradition. Most (all?) programs have taken the direction that “software is software” and it all must be supported in the same fashion — by throwing money at it after the fact. This “lack of support” concept often leads to software support capabilities being (expensively) developed for software that may never change over the life of the system. Sometimes this inefficiency precludes money from being available to create support where it is really needed. To combat this inefficiency, we are looking at past programs to review the systems that were most prone to change, the extent of and reason for those changes, and the cost involved. Also, if you could predict the software that was most likely to require modification, you would know where to concentrate more effort during development to insure supportability, right? Well, that’s exactly what we’re trying to do.

5.	Identify post-deployment support requirements. If you can determine what software is most likely to change and develop the concepts to support that software, you should be able to accurately identify the requirements necessary for support in a timely manner — at least that’s how we envision it working. At that point, all that’s left is to document the required capabilities for procurement.

The Products�tc "<Head 3 (14)>The Products"�

	Contractually, we have only two products — the Computer Resources Integrated Support Document (CRISD) and a specification for the software support facility. A Weapon System level CRISD is being developed as a formal CDRL in accordance with DoD-STD-2167A and in compliance with a coordinated tailoring of DI-MCCR-80024A. As far as we can tell, this will be the first fully 2167A-compliant CRISD for a major weapon system. Even here, we’re breaking new and challenging ground. (A later presentation by Ms. Fleming will discuss CRISD development.) The proposed software facility has been named the Integrated Weapon System Support Facility (IWSSF). Our second product is the specification from which that facility can be produced. It is viewed as a “build to” spec for the entire support facility, although not all of it may be in the same building, or the same city, or operated by the same agency. It will be submitted in contractor format and is not a CDRL.

	The CRISD can be thought of as the formal documentation of the concepts with the IWSSF spec documenting the resource requirements necessary to implement those concepts. The preliminary versions of the documents will be available to assist in the decision to begin Low-Rate Initial Production (LRIP). A second version of each is also funded under EMD which will assist in a final production decision. We anticipate funding a final update under the LRIP contract for delivery just prior to IOC. While the contractor team is on the hook for these documents, USAF has to develop the Computer Resources Life Cycle Management Plan (CRLCMP) to give us an idea of their desires. Just as the government representatives of our team will assist in the review and comment of the CRISD and IWSSF spec, the contractor members of the IPT are assisting in review and comment of the CRLCMP. The stronger the communication and coordination, the less chance of surprise. As we progress, various concepts and processes are being documented in informal White Papers for the edification of both industry and the government. Since much of what we are attempting to do has never been done before, the broader we distribute lessons learned, the less pain others will endure by not being required to reinvent the wheel.

The Dilemma, The Direction, & The Smart Approach�tc "<Head 2 (14)>The Dilemma, The Direction, & The Smart Approach"�

	The argument over organic versus contractor support has raged for years. The reason that the debate still exists is that no answer is correct for all cases. Levels of management and technical risks and utilization of existing facilities, personnel, and expertise at both government and industry facilities are factors that vary over time as well as from program to program. The F-22 program has already experienced both extremes of opinion. An original Program Management Directive (PMD) stated that we should “...plan for total organic support.” On the other end of the spectrum, some people within USAF felt that if the contractor developed a product, then the contractor should be in the best position (cost, expertise, etc.) to support that product. This led to one general’s comment of “Why do I need a depot?” While this may originally sound like music to the ears of a contractor, the truth is that nobody can possibly know the right answer without proper investigation. Having been hit over the head with two diametrically opposing viewpoints, our IPT approached MGen. (sel.) Raggio for a heading check. The first thing that he made clear was that one reason for our existence was to preclude business as usual and to replace past practices with Integrity, Teamwork, and Logic. His direction was clear — there was no correct answer at this point in time. We were tasked to go determine what was smart for the program. But how? AFR 66-7 outlines a decision process for determination of post-deployment support. As far as we can determine, no one has ever tried to apply this process to software support. Our IPT has utilized this process to develop a decision tree which will assist in arriving at the optimal contractor/organic work split for F-22 Weapon System software support. Currently, we are investigating the history of recent similar programs in an effort to quantify the factors which constitute the branches of the tree. Once quantified, the criteria will be applied to each subsystem to determine a preliminary breakdown of contractor versus organic support. This will be documented in a White Paper for use in long-range depot planning.

The Foundation, The Infrastructure, & The Process�tc "<Head 2 (14)>The Foundation, The Infrastructure, & The Process"�

	The foundation for development of F-22 software support is based on the functional capabilities required for F-22 software development and how these capabilities are currently implemented. Our IPT’s infrastructure to capture this data is through active participation in the IPTs responsible for developing software. Through participation in their meetings and design review and evaluation of the documentation that they produce, we can collect the data necessary to determine the functional capabilities and concepts required for PDSS while raising issues and concerns, as required, to enhance supportability.

	While the CRISD and IWSSF spec are our main products, a portion of the CRISD will be devoted to a transition plan detailing how the required capabilities and resources may be implemented at the desired site(s). The key, as we see it, is that the functionality required for support must be in place when required, but not necessarily in the exact form used for development. A simple example is that right now I’m producing this document in Microsoft Word for Windows, Version 2.0c. If this document were essential for PDSS, would I be required to transition this exact version of Word (and Windows, and the hardware) to the support facility or, rather, the functionality necessary to read, edit, and print this document when required? Hopefully, the answer is obvious. If PDSS implementation is approached simply as a duplication of all the development environments and labs, the task is much easier — in fact, it’s a no-brainer. All you have to do is accumulate all the equipment lists and find a copy machine. Unfortunately, many people have this view of the task and the result is an overwhelming conglomeration of sometimes redundant and often obsolete equipment. That approach certainly isn’t efficient, effective, or smart. The LCSS IPT plans to change that outcome.

The Sources & Their Data�tc "<Head 2 (14)>The Sources & Their Data"�

	As you may have already deduced, the development of documents which apply to an entire weapon system does not lack for a shortage of source data. Our sources of data are the IPTs — all IPTs that develop, use, integrate, or test any software on or in support of the F-22 Weapon System (Air Vehicle, Support System, Training System). This applies not only to the prime contractors but also to the subcontractors, their subcontractors, etc. The sources of our data literally extend from coast-to-coast and border-to-border. Now, concerning the nature of the data; all that we’re interested in is everything! We need to know what was used (facilities, equipment, tools, people, etc.) in every phase (analysis, design, code, integration, test) to manufacture every piece of F-22 software. All of this information goes into a database (can you think of any other way to analyze it?) which was hammered out by a subset of our IPT (contractors and government) locking themselves in a room for three days and brainstorming on two walls of a large conference room which had been lined with flip-chart paper. The result was formulated into a relational database design which is still being updated as required, even as data entry proceeds. Through analysis of this database, we plan to distill the essential requirements for efficient, cost-effective PDSS.

�
The Change Model�tc "<Head 2 (14)>The Change Model"�

	Earlier we mentioned an initiative to attempt the prediction of software changes during F-22 PDSS; let us elaborate. The LCSS IPT is collecting data from past fighter programs in an attempt to identify trends which may be used to either influence software design in traditionally volatile areas or focus areas where software support is more crucial. We currently have plans for visits to the F-14, F-15, F-16, and F/A-18 software support agencies in an attempt to collect data for use in the development of this change model. We have developed a series of questions which have preceded us to these sites and which provide the support agencies appropriate lead time to prepare the answers. The data that we feel is necessary to develop this model involves the reasons driving the changes, the systems and subsystems which were required to change, the size of the change, the length of time required to make the change, the quantity and types of people required to make the change, etc. This data will be analyzed as part of our historical change model.

	The four programs for which we have visits scheduled have been extremely cooperative in our efforts. (Of course, an introductory letter from the desk of our MGen. doesn’t hurt.) There are also other programs which we may tap for data in an attempt to refine and/or verify our model (B-1, B-2, F-111, F-117, A-10, E-3). The other half of the process involves an analysis of the software currently being developed. We produced a second set of questions for the IPTs who are developing the software for the F-22 which asked them, the system and subsystem experts, where they would anticipate future software changes to occur, an estimate of the size and impact of the change, and what could be done now, during design and code, to minimize the change. Even though the IPTs are extremely busy with their own development, they have been gracious enough to cooperate. The answers to these questions have not only helped us to begin the F-22 portion of the model but, in some cases, have led to adjustments in software design to minimize potential impacts in areas of higher volatility.

The Accomplishments�tc "<Head 2 (14)>The Accomplishments"�

	While the CRISD and IWSSF spec are products for which the LCSS IPT has total responsibility, there are many additional processes and products which we are constantly influencing. The F-22 has developed a Weapon System Software Development Plan which complies with -2167A in an attempt to define and standardize the software development process at the highest possible level. While the LCSS IPT was not tasked with development of the document, we have authored sections of the document and have had major influence on many other sections.

	As with the SDP, all software documents have been subjected to Software Product Evaluations (SPEs). The LCSS IPT has been a major contributor in this process, which has produced documentation which is an accurate reflection of the development and should actually be useful in the post-deployment scenario. The SPEs are being done via electronic conferencing among multiple locations with meetings held only to kickoff the process and to summarize the results. We are utilizing a series of evaluation guidelines which were developed by Draper Labs under contract to SM-ALC. These guidelines assess the technical content of the documents for their usefulness rather than the traditional reviews to catch spelling and grammar errors.

	The F-22 received much publicity early in the program for its attempt to utilize a common, COTS-based development environment, which was labeled the System/Software Engineering Environment (S/SEE). The S/SEE is in use and is the common foundation for software development, documentation, configuration management, etc. As systems identify requirements not available through the core S/SEE which are peculiar to their needs, these are added as extensions to the core which are not procured in mass quantities. Wherever possible, COTS has been used. This has led to some inevitable interface problems, some problems in timing of new version releases from multiple vendors, etc. On the whole, however, the S/SEE has been successful when compared to past methods. The LCSS IPT will be tasked with the transition of the functionality of the S/SEE tools to the IWSSF for PDSS. Transition of the exact tools currently in use, however, is very doubtful. After all, what tool won’t be obsolete in 8-10 years?

	Another area of major effort has been in support of development of the OFP build concept for the air vehicle. (For the air vehicle, Mr. Lax will present more later.) Suffice it to say that with three large contractors developing, testing, and integrating software and numerous subcontractors adding pieces at all three sites, the combination of MSLOCs of code into a loadable entity is nontrivial — and that’s even without considering the security implications. Our interest in the development of this concept is grounded in the reality that whatever concepts are used during the flight test program typically become the de facto processes for post-deployment. Therefore, our IPT has a vested interest in helping get this process off on the right track and has contributed much time and expertise to this effort.

	Finally, the core of PDSS is centered around the block change cycle. While software doesn’t “break” in the traditional sense, no successful major weapon system spends its entire life cycle in the same mode and configuration as its original release. Typically, this is accomplished by a structured block change program which involves multiple organizations from both the government and the contractors. The development of the process and the identification of the players for a block change is a building block for the identification of support requirements. The block change process involves not only the technical aspects but the political considerations of contractor and government work, definition of responsibilities within the government, and the color of money which must be used for various efforts. Therefore, support of this effort is crucial to the success of the IPT and, therefore, the success of PDSS.

�
The Future�tc "<Head 2 (14)>The Future"�

	As you should be able to conclude, the LCSS IPT certainly does not lack for work. While continuing to try and influence development for the good of supportability, we are deeply involved in the analysis of the data which we are accumulating (development requirements, historical and predictive volatility, etc.). Additionally, our government members are responsible for the updating of the Computer Resources Life Cycle Management Plan (CRLCMP) which will serve as a companion document to the CRISD. By the end of the year, the IPT should have quantified the criteria of the decision tree and released a preliminary contractor/organic work split. Based on this work split and the preliminary change model, a preliminary cost estimate for software support for the F-22 life cycle can be produced. All of this leads to the development of the preliminary CRISD and IWSSF spec which will be utilized as support documentation for the LRIP decision. After all, the bottom line is that if you can’t afford to support it, why bother to build it. That is precisely why “Post-Deployment Software Support MUST Start in the DESIGN Phase!”

�
TAB 2�tc "<Head 2 (14)>TAB 2"�

LSA for Software:

A Practical Approach

Jerry A. Raddatz

F-22 Life Cycle Software Support IPT

Lockheed Fort Worth Company

Mike Donlon

F-22 Life Cycle Software Support IPT

ASC/YFSL, SM-ALC/YFLBA

Presented at the Sixth Annual Software Technology Conference Salt Lake City, Utah, April 15, 1994

	Much has been written and discussed about the possible documentation of software support requirements in accordance with MIL-STD-1388, Logistics Support Analysis. While this standard is definitely geared toward hardware development, MIL-STD-1388 does state that the standard applies to both hardware and software. Additionally, all Department of Defense (DoD) programs are required to adhere to DoD-STD-2167A for software development, which uses other methods for the documentation of software development data. Much of the software support data appears in DI-MCCR-80024A, the Computer Resources Integrated Support Document (CRISD). This paper addresses the approach being taken by the F-22 Life Cycle Software Support (LCSS) Integrated Product Team (IPT) for the collection and analysis of the software development process source data — the LCSS Analysis Database (LAD).

	The F-22 Weapon System is divided into three parts — Air Vehicle, Support System and Training System. Approximately 5 million lines-of-code will be required for the F-22 Weapon System. The LCSS Analysis Database has been created to help define and collect the software support requirements for all three parts of the F-22 Weapon System. The LCSS IPT has recognized that analyzing all the documents that define the F-22 software would be a monumental and costly task. After several meetings, it was agreed that a database was needed to capture all the pertinent software developmental data needed to define the software support concepts and environments necessary for the F-22 life cycle. In these meetings it was decided that the basic purposes of the LCSS database are:

·	Provide a summary of the support requirements for each CSCI through each phase of software development,

·	Provide source data for analysis which results in an optimum integrated Weapon System Software Facility (IWSSF) configuration,

-	Provide source data for the CRISD,

-	Provide a historical basis for life cycle studies to be used for future acquisition decisions, and

-	Provide applicable LCSS data to LSAR.

	It was also recognized that some of the existing LSA definitions could be used for the LAD with little or no modification. Wherever possible, LSA definitions such as “Skill Specialty Code” or “Vendor” were used in the LAD so that any information common to both the LSA database and the LCSS database could be easily exported from the LAD to the LSA database. In some cases, the LSA definition needed to be extended or slightly modified for use by the LCSS IPT. Most of these modifications are simply adding more codes to the existing list for a given LSA data element and should be easily incorporated into the LSA database. Examples of this type of data element are “Classification” and “End Item Id”. The “Classification” element list of codes was increased to include F-22 specific security classifications. The “End Item ID” element list of codes was increased to include more types of system/subsystem/operational flight program (OFP) designators. The LAD was developed by breaking down the software development process for each phase of a generic CSCI into the elements required to complete each phase of development. Each CSCI goes through seven phases during its development process:

·	Software requirements analysis,

·	Preliminary design,

·	Detailed design,

·	Coding and computer software unit (CSU) testing,

·	Computer software component (CSC) integration and test,

·	CSCI testing, and

·	System integration and test.

	Each phase may have different personnel requirements; different in the number of personnel required or different in type, educational requirements, training, or years of experience. Each phase may require different facilities; different in size, power usage, furnishings, security classification level, and location. There are many other types of software development phase-related support elements contained in the LAD which will not be detailed here. Obviously, the LCSS Analysis Database will be large since there are over 400 CSCIs on the F-22 program, each with seven phases of development and each phase containing many data elements. A relational database was deemed the best way to handle the large amounts of data to be analyzed and an entity relationship diagram (ERD) was created that defined the known relationships between all the data elements. The basic ERD was created as a result of two days brainstorming with the government. The walls were covered with charts, drawings and lists, several meetings were held, work was done on a PC and out popped the first ERD. After several discussions, the ERD was approved by the LCSS IPT membership. However, the ERD was recognized to be a living document and minor updates will occur as required.

	After the ERD was finalized, a database tool was selected. Several existing database tools were studied and tested. Microsoft Access was chosen after several months of analysis and testing because it was deemed the easiest to use of those tools available at that time AND the database could be easily ported to the F-22 System/Software Engineering Environment (S/SEE) when appropriate.

	The next step in the database development process was to develop a questionnaire that could be given to the various F-22 IPTs. The questionnaire covered all the data elements required for the LAD and yet would be easy for the IPTs to use without taking up large amounts of their time. The questionnaire was developed largely in tabular form and was successfully used to gather software development data prior to Preliminary Design Review (PDR). The questionnaire will continue to be modified as necessary and used to gather software development data throughout each phase of the developmental life cycle of the F-22 CSCIs. The database allows us to map all the software support requirements across all the development phases. All of this data gathering begs the question — “How does this database relate to the CRISD?” The CRISD is the repository for the collective wisdom for all the software development processes for all of the F-22 Weapon System software. All of this “wisdom” must be analyzed and condensed into the support concepts and resource requirements necessary to maintain the F-22 Weapon System throughout its life cycle — 30 years or more.

	The F-22 program has recognized that software supportability cost is a large part of the weapon system cost over the life cycle of the aircraft fleet. The F-22 Team has placed a great deal of emphasis on the CRISD as THE document that will provide cost effective software supportability direction for the program. Logistics Support Analysis (LSA) is a subset of the system engineering process that includes supportability as a design parameter equal to cost, schedule and performance. Most of the data elements and parameters used by the LSA community are designed for hardware use only, even though MIL-STD-1388 applies to the entire system, including software.

	Software is a logical, rather than a physical, part of a system. As such, software does not “wear out”, “break”, or “fail” in the traditional sense of the words. Properly developed and tested software will execute in exactly the same manner every time it is executed. Software is a set of instructions that tell hardware what to do. Since software is a logical element, not a physical element, software has no “weight” but does occupy space. Since software occupies space, it must reside in something (memory), therefore, software has an inherent weight. This type of seemingly illogical description of the attributes of software results in much of the discussion and confusion concerning the software development process and how to support that process.

	Mean-time-to-repair (MTTR) and mean-time-between-failure (MTBF) are typical hardware parameters that have little or no relationship to software. Time to “repair” software is an inaccurate phrase since properly operating software never “fails” or needs “repair.” However, sometimes new requirements are levied on the software, unanticipated operational conditions are imposed or latent errors appear which require that the software be updated. When this type of change is required, two basic situations result. The first situation is that in which a change is an emergency, (i.e., a war scenario is involved and changes need to be made immediately). This type of change can be made in as little as two or three days (sometimes) and then distributed to the fleet for use. The other types of changes result in non-emergency changes to the software. Typically these changes wait until the next scheduled block release for incorporation into the fleet base line. Neither one of these types of change can be graded against time since the change and the time it takes to implement the change are not related.

	The LSA database is slanted towards typical hardware data elements; weight, size, shelf life, etc. The LSA database uses LSA Control Numbers (LCNs) to track and status each item in the database. The LCN system of hardware configuration control can be adapted for software by relating LCNs to computer software configuration items (CSCIs). CSCIs are already used for software configuration management and control of the software development process. Many data elements of the CRISD analysis database are similar to existing LSA elements and require only minor modifications to the LSA database in order to provide common definitions.

	By using the software IPTs as sources for the LAD data, the LCSS IPT will acquire the software developmental information in a timely manner before it is forgotten or lost. The software product IPTs have been very helpful in providing their software development process information. In addition to the questions asked of them, the IPTs have also provided additional insight into the software development process that was missed in the initial LAD database design. The LCSS IPT has enhanced the questionnaire and the database to include the IPT recommendations. So far, the data collection process has gone well.

	When the F-22 Team acquires a database tool for the System/ Software Engineering Environment (S/SEE), the LCSS IPT will move the LAD from its current PC based environment to the S/SEE so that other members of the Team will have on-line access to the database. The LCSS IPT will analyze, condense, shuffle, fold, spindle, mutilate and sort the LAD data until it is determined that the most cost effective software support environment has been defined. Unnecessary duplicate resources will be eliminated and facilities consolidated. Personnel requirements will be studied and a best possible mix of disciplines and experience will be recommended. The results of this analysis will be turned into CRISD input (both textual and tabular) and will form the basis for deciding the best support concepts and support requirements for the F-22 Weapon System Software. All of this analysis is made possible because of the existence of the LCSS Analysis Database. It provides an efficient and logical way to organize, analyze, and merge the various data elements that are used in the software development processes for the F-22. The use of the LAD:

·	Supports collection and analysis of large volumes of data,

·	Helps identify resource dependencies in the software development and test processes,

·	Helps to ensure that all systems are reviewed in order to determine each systems impact on the software support concepts and resources, and

Results in the optimum Post-deployment Software Support concepts and resources for the life cycle of the F-22.

�

Figure K-1 LCSS Analysis Database Entity Relationship Diagram

�
Tab 3�tc "<Head 2 (14)>Tab 3"�

Computer Resources Integrated Support Document (CRISD) — Foundation to Post-Deployment Software Support (PDSS)

Judy Fleming

F-22 Life Cycle Software Support IPT

Lockheed Fort Worth Company

Phil Mastrolia

F-22 Life Cycle Software Support IPT

ASC/YFSL, SM-ALC/YFLBA

Presented at the Sixth Annual Software Technology Conference Salt Lake City, Utah, April 15, 1994

	Looking at software history from a life cycle perspective, 30% of its total cost is attributable to software development. The remaining 70% of the software life cycle cost is used for its maintenance. Generally, maintenance costs are estimated by multiplying the development cost by 2.3. This premise leads one to believe that software maintenance is always addressed early on in the life cycle. From a historical perspective, early detailed analysis and planning in support of post-deployment software support (PDSS) have not been embraced as a part of software development. The number of software archaeologists and re-engineering activities attest to this. The Computer Resources Integrated Support Document (CRISD) is designed to capture all aspects of software support and maintenance requirements and is the one document that can provide early planning information for PDSS. It provides the basis for the software development organization to establish the software support posture for the system under development. Surprisingly enough, the CRISD is usually “tailored out” of major contracts or it is tailored down, or pushed so far to the right in the schedule that it adds little benefit to the overall program. There are only a couple of explanations as to why the CRISD is often eliminated or diluted: “no one really understands what it is and what information it should provide” or, “they do understand and realize what a large task it is.” As long as these misunderstandings persist, transition to post-deployment software support will be riddled with problems. Contractor Logistics Support (CLS) is often the only option available to the receiving agency when the CRISD has been tailored out of a contract.

	Let’s look at some of the reasons the CRISD is often eliminated from a Demonstration/ Validation (Dem/Val) or Engineering and Manufacturing Development (EMD) contract. DoD-STD-2167A is CSCI driven. This CSCI structure leads to the requirements for a piece of code being well defined and documented but the same type of requirements for a function or system is segmented into bits and pieces. Unfortunately, the CRISD has often been generated at a CSCI level, too, rather than as a system document. Because of this segmented view, its value to a program is very little known, much less understood. We’ve heard many, many times that “it’s too early for the CRISD!” “This shouldn’t be addressed until right before Program Management Responsibility Transfer (PMRT)” and “if it’s not required for first flight, why are we doing it?” In times of extreme budget cuts, this is one of the first CDRLs to be deleted. By eliminating the CRISD up front, the program may initially save some money in the short term; however, the negative impact on the life cycle cost can be quite significant. This Scarlet O’Hara syndrome of “I won’t think about that today, I’ll think about that tomorrow” is going to have to stop if we are to successfully minimize the overall cost of software development and support.

�
UNDERSTANDING THE IMPORTANCE OF THE CRISD�tc "<Head 2 (14)>UNDERSTANDING THE IMPORTANCE OF THE CRISD"�

	The CRISD is not just another document. It contains an on-going process that is crucial to the planning and management of 70% of the software life cycle activity. The CRISD process provides the basis for realistically determining the software support concept. Among other things, the CRISD captures the software support environment, its functionality, its limitations, and the processes required to build and load the software on the target system. The CRISD documents the dependencies of the support environment and the order in which system integration must be performed. It is the sole management tool that can accurately map the software support requirement over time. Whether your program is large or small, simple or complex, the software life cycle planning and analysis process must be well defined and executed in order to produce and maintain the CRISD. The importance of fully understanding the role the CRISD plays, and just what is involved in developing and maintaining it cannot be overemphasized.

	The CRISD is really the tangible result of the Life Cycle Software Support (LCSS) process. As the pyramid illustration shows, the bottom tier, Early Analysis and Supportability Decisions During Design, is the cornerstone for encouraging commonality, modularity, reuse, and simplification of the CSCIs/systems. On past programs, the CRISD would be started in the last two years of the development contract. Since maintenance costs constitute the majority of the overall software costs, the F-22 inserted LCSS tasks up front so that the supportability and maintainability features and their processes could be an integral part of the development. This gives us the benefit of identifying all the support resources in each phase as they occur rather than trying to reconstruct the deep past at a critical time. It allows us to specifically identify the tools that are utilized at each phase (and by whom) in order to facilitate the sizing and number of licenses needed to meet organic maintenance schedules. By participation in the software product IPTs, PDRs, CDRs and software product evaluations, supportability issues are addressed up front and are factored into the design.

�

Figure K-2 Understanding the Importance of the CRISD

	Early interaction with the developers facilitates the identification of volatile areas in the software. On the F-22 program, the LCSS IPT is conducting an historic change analysis and a predictive change analysis for development of an F-22 change model. This analysis activity will directly effect the determination of CSCIs and systems for organic or contractor software support. The initial support concept is then derived as a result of knowledge gained from performing early predictive analysis and outlining system dependency maps, processes and resources. Once you have a grasp of the anticipated change rate for the CSCIs, their prime functions, dependencies, and required support resources, decision support criteria can be applied to disposition the organic/contractor mix of software support.

	Support resources can then be allocated in a very efficient manner. Based on the identified organic CSCIs/systems and the anticipated block change rates, consolidation of the support resources can occur. Subjective guessing is then replaced with well planned consolidated resources. The application of DoD-STD-2167A, MIL-STD-1815A, and a common System/Software Engineering Environment all greatly contribute to reducing the overall life cycle cost. These potential savings can be fully realized, and even extended, by providing a consolidated and well structured vehicle for PDSS planning and management. Each of these efforts is built upon the previous activity and is fully documented in the CRISD. In reality, the CRISD is a living document that must reflect the configuration of the products, the development environment and test/integration environment. In this manner, the CRISD builds the foundation for post-deployment software support and is an essential key in reducing the life cycle software support costs.

�
F-22 APPROACH TO THE CRISD�tc "<Head 2 (14)>F-22 APPROACH TO THE CRISD"�

	To our knowledge, the F-22 Weapon System is the first major contract to have a CRISD that is fully compliant with DoD-STD-2167A and its attendant Data Item Description (DI-MCCR-80024A). One of the first stumbling blocks we had to overcome is that DoD-STD-2167A is CSCI driven. In order for the CRISD to fulfill its roles and purposes, we had to structure it in such a way as to provide overall support requirements for the Air Vehicle, Support System and the Training System. Since the F-22 CRISD is being developed at the Weapon System level, it will coherently document the software support requirements for the CSCIs, functions, subsystems and systems. Considering that there are currently over 100 CSCIs for the Air Vehicle alone, this is a very research intensive task. The following provides a view of the steps we took:

	In order for the CRISD to be a useful document, we first defined all the known users and uses of the CRISD at that point in time. We then created a detailed process flow for development of the CRISD. This process flow allowed us to identify all the information sources and data items we needed, the analyses to be performed and a critical path for the evolutionary development of the CRISD data to support the different users. We determined early on that the only way we could systematically gather and analyze all the needed information was to utilize a relational database. With this approach, a consolidation of support resources can be realistically determined and sized to meet post-deployment needs. On smaller projects, the complete development and test environment could just be duplicated; however, with three major primes and numerous subcontractors, the state of Rhode Island might not be big enough for the Integrated Weapon System Support Facility (IWSSF) if we took that approach. Because development of the F-22 Weapon System software is occurring at many different sites, a consolidation of software support requirements will be performed to define the needs for each phase initially by functional requirement and then by specific items. This analysis allows us to eliminate any redundancies in functionality and define an efficient support suite for the IWSSF.

�

Figure K-3 F-22 Approach to the CRISD

	Another important activity was the detailing of the CRISD outline and the building of the CRISD template. DI-MCCR-80024A is largely misunderstood. Although the DI does give some guidance, it can be interpreted in a myriad of ways. Once you understand the roles of the CRISD, interpretation of the DI is a much simpler task. The level of detail is still up for interpretation, so it is important that the contractor work very closely with their customer to ensure consistent expectation levels. To further this process, SM-ALC in conjunction with Draper Laboratory developed clear evaluation criteria for each paragraph in the DI. We then added the evaluation criteria to the CRISD template to facilitate the authors in the creation of the document. This was a definite proactive step which provides built-in quality. A copy of the CRISD template can be obtained from ASC/YFSL, Wright-Patterson AFB, OH 45433.

�

Figure K-4 Source Data and Factors Involved in CRISD Development

�

Figure K-5 CRISD: Foundation to PDSS

�
UNDERSTANDING THE ROLES OF THE CRISD�tc "<Head 2 (14)>UNDERSTANDING THE ROLES OF THE CRISD"�

	The LCSS IPT worked directly with SM-ALC to detail the uses, structure and information needed to support not only life cycle planning but to continually support post-deployment software maintenance. Whether the Weapon System is 100% organic or a mix of organic and CLS, the software manager must have the information detailed in the CRISD in order to effectively manage the enormous task. These are the specific roles we defined for the F-22 CRISD:

·	Planning. The CRISD is the main source for planning PDSS. It will detail the support concept, all the support requirements (hardware, software, emulations, simulations, special test tools, number and skill code/level or personnel, facilities, security requirements, required procedures, and documentation), the transition plan, and the personnel training plan. This information is essential for the program objective memorandum (POM) cycle to ensure that the facilities, budget, equipment, personnel and training will be available in time for transition to the receiving agency.

·	Management. Methodologies and procedures are contained in the CRISD to provide the support agency with a minimum of management activities that must be performed in order to successfully maintain configuration management of the software and efficiently manage the activities whether organic or contracted. (There is often a misunderstanding that only those items that will be organic need be included in the CRISD. THIS IS AN ERRONEOUS ASSUMPTION totally unsupported by the DID!) In order for the supporting agency to effectively manage contracted support, they must have all the necessary support information and a good understanding of the software/system to be maintained.

·	Catalog of resources for the maintainer. When a maintainer is assigned a specific CSCI or system, the CRISD must provide an index to all the necessary information the maintainer needs to accomplish his or her tasks. The CRISD provides an overview of how the CSCI or system fits into the overall architecture and provides a listing of all the software documentation and designs as well as a listing of the specific tools and procedures that will be required for the job.

·	Special procedures. Because of the integrated nature of the F-22, the only place certain important procedures will be found is in the CRISD. These procedures will provide essential guidelines for specific dependencies and processes that must be followed in order to update an OFP. The Appendixes of the CRISD will provide identification of specific activities that are required for each system.

�

Figure K-6	Get the Purpose(s) Firmly Understood and Agreed to Between Contractor and Customer

	As you can see, the CRISD is not just another document that is delivered with the system at the end of the development phase of a program. It is a living document that should be maintained to reflect the configuration of the systems and environments it is supporting.

CONCLUSION�tc "<Head 2 (14)>CONCLUSION"�

	Understanding the information that the CRISD contains and the diverse set of organizations that will use it throughout the system life cycle will raise its importance among system developers and managers. Even though CRISD development is no easy task (if it is, it probably is not being done correctly), its value becomes apparent when PDSS concerns and reducing life cycle costs are the top priorities of those who manage the total budget. Looking at a system from a life cycle perspective and considering the CRISD as a process for a living document can provide the system manager with the software support options and rationale to facilitate the lowest maintenance and support costs for PDSS.

�
Tab 4�tc "<Head 2 (14)>Tab 4"�

Software Quality Assurance Impact on Post-Deployment Software Support Cost

Joseph J. Stanko, Capt, USAF

F-22 Life Cycle Software Support IPT

ASC/YFSL, SM-ALC/YFLBA

Presented at the Sixth Annual Software Technology Conference

Salt Lake City, Utah, April 15, 1994

Abstract�tc "<Head 2 (14)>Abstract"�

	Post-Deployment Software Support (PDSS) continues to be the most expensive period of the software life-cycle. Steps can and must be taken during the Engineering and Manufacturing Development (EMD) phase of system acquisition to reduce PDSS costs. One effective step is establishment of and adherence to rigorous software development processes. Such processes are usually found in the program Software Development Plan (SDP); however, SDPs are not necessarily followed during software development. To ensure compliance to such rigorous processes, the government and contractor must accept and implement the SDP. Integrating the Software Quality Program Plan (SQPP) into the SDP provides Software Quality Assurance (SQA) both a process compliance evaluation charter and the criteria for such an evaluation. Indeed, if SQA evaluates and reports contractor process compliance (and noncompliance), there will be a high probability of supportable code and reduced PDSS cost. This paper addresses both the need to have SQA involved from the beginning of the software development effort, and the results of such an effort on the F-22.

Introduction�tc "<Head 2 (14)>Introduction"�

Post-Deployment Software Support�tc "<Head 3 (14)>Post-Deployment Software Support"�

	Post-Deployment Software Support (PDSS) is the software support activities and functions that take place after initial deployment of a weapon system. PDSS occurs during the Operation and Support (O&S) phase of the acquisition life-cycle; however, all previous acquisition life-cycle phases lay the foundation for PDSS. The most crucial of these foundation-laying phases is Engineering and Manufacturing Design (EMD). Several major events happen during the EMD phase: the most promising design solution is translated into a stable, producible, and cost effective system design; manufacturing processes are validated; and system capabilities are evaluated against both user and contract specification requirements.3 Since weapon system design stabilizes during EMD, this is the most cost effective time to influence the design for supportability.

	The two major factors that influence PDSS costs are changing user requirements and latent errors (from “bugs”). As long as there are users, there will be changing user requirements. Developing quality software products and effective PDSS processes and environments during EMD can minimize the life-cycle cost of future changes in requirements. For reducing the possibility of latent errors, the most cost effective method is error prevention efforts during the software design phase.2 Software design typically occurs during EMD, although the previous Demonstration/ Validation (Dem/Val) phase could also require software development. A rigorous software quality program during EMD would lessen the impact of both changing user requirements and latent errors on PDSS and weapon system O&S costs.

The F-22 Weapon System�tc "<Head 3 (14)>The F-22 Weapon System"�

	The F-22 Weapon System is an advanced, complex weapon system currently in the EMD phase of the acquisition life-cycle. The F-22 Weapon System has three major parts: the air vehicle system, the support system, and the training system. The air vehicle system alone contains approximately 1.6 million source lines-of-code, while the support and training systems are estimated to contain much more source lines-of-code than the air vehicle. The F-22 System Program Office (SPO) is using the Integrated Product Team (IPT) approach for all product development. This teaming arrangement integrates the functional aspects from both the government and contractor sides into one cohesive unit, focusing on developing a product and adding value to the F-22 program. The SPO, Defense Plant Representative Office (DPRO), user, and contractor team members are making and effort now, during EMD, to ensure delivery of quality software products and reduce the PDSS and overall life-cycle costs of the F-22 Weapon System.

Software Quality Assurance�tc "<Head 3 (14)>Software Quality Assurance"�

	Software quality is “the ability of a software product to satisfy its specified requirements.”5 Therefore, software quality must be an important consideration during software and systems development. Both the Department of Defense (DoD) and industry recognize the need to develop quality software as part of their system acquisition and development process.1,3,7 There are two end users of every system: the operational user, who will operate the software and is concerned with its operational quality; and the logistics user, who will maintain the software and is concerned with its supportability quality. Both users deserve a quality product and the assurance they will receive one. Quality assurance is “all those planned and systematic actions necessary to provide adequate confidence that a product or service will satisfy given requirements for quality.”8 Therefore, planned and systematic actions form the basis of assuring software quality to the user. The Software Quality Program Plan (SQPP) describes these actions, which target three areas: the software development process; deliverable software and its associated documentation (software products); and all non-deliverable software.5 The contractor Software Quality Assurance (SQA) organization performs these actions from a traditionally independent viewpoint. The following sections discuss the SQA organization and integration within the F-22, the software development process and process compliance, software products and software product evaluations, non-deliverable software that really is deliverable later in the acquisition life-cycle, and the impact SQA has on PDSS.

SQA Organization and Integration within the F-22�tc "<Head 4 (12)>SQA Organization and Integration within the F-22"�

	The quality assurance organizations for each of the F-22 contractors are matrixed, with reporting structures independent of the F-22 program. Thus, SQA is an independent organization; however, SQA is also an integral member of each integrated product team (IPT). Independence provides SQA the necessary resources, responsibility, authority, and organizational freedom to perform objective evaluations during software development, and allows SQA to initiate and verify corrective actions as needed.[10] This is a traditional SQA role, and is typically the basis for the relationship with the software developers. Unfortunately, such a basis usually fosters attitudes of mistrust and anger in both software developers and SQA personnel.2,6 To overcome this, SQA personnel on the F-22 program are included as integral members of the IPTs. This encourages positive working relationships, and adds value to the software development effort. An IPT is a heterogeneous collection of personnel necessary to develop a software product (see Figure K-7). Grouping the various software disciplines promotes effective communication and removes/reduces barriers between functional identities. The SDP requires this integration, and states SQA personnel shall be active members of their IPT and co-located with their IPT.10 Other programs have successfully implemented this concept.6 Such an arrangement puts the software developers and quality personnel together from the start, fostering a proactive and cooperative approach to designing quality in to the software products while they are being developed, instead of checking the quality at the end of the development effort. It also permits the other IPT members to participate in quality evaluations of their products during development.

�

Figure K-7 Integrated Product Team Membership

�
Software Development Process and Process Compliance�tc "<Head 2 (14)>Software Development Process and Process Compliance"�

Software Development Process�tc "<Head 4 (12)>Software Development Process"�

	The software development process is the heart of a mature software development organization. If the developing organization does not have a stable process implemented on a project, the cost and schedule risk will greatly increase.7 Given the trend of reduced funding for DoD projects, software development organizations must have a mature software development process and follow that process in order to reduce cost and schedule risk during software development. One place to describe the software development process is the software development plan (SDP). The F-22 SPO incorporated a team-wide software development process into the Weapon System (WS) SDP. Product-level SDPs provide further clarification and adaptation for their specific software product. The product-level SDPs must include the content of the WS SDP, and may contain additional guidance needed for a particular software product. In some cases, the product-level SDP may tailor out parts of the WS SDP; however, the SPO must agree to this tailoring. The statement of work (SOW) calls out the SDPs, and there is no additional contractual language requiring a specific version of any SDP. This allows both WS and product-level SDPs to undergo continuous process improvement throughout the EMD phase of the acquisition process, with all changes being implemented (as much as practical) during the phases of software development. Since the F-22 Program uses the IPT approach for product development, the F-22 team must agree to the new revision of the WS SDP before following it. After reaching this agreement, the IPTs must update their product-level SDP to acknowledge the changes to the team’s plan.

Determination of Processes to Evaluate�tc "<Head 4 (12)>Determination of Processes to Evaluate"�

	While most programs have an SDP, not all programs follow the processes it describes. The F-22 SPO addressed this issue through the SQPP. Instead of developing a separate SQPP, the WS SDP includes the intent of each SQPP paragraph. Placing the SQPP and SDP in one singular document provides an SQA charter to assure process compliance with both the SDP and contract requirements. This integration also provides the processes and criteria for process compliance evaluations.

	Software development processes consist of subprocesses, which in turn contain process elements. The F-22 Weapon System has 27 software development processes, 85 subprocesses, and 237 process elements for process compliance evaluation during EMD. The processes fit into either the phase-dependent or phase-independent categories (see Table K-1). SQA evaluates those processes in the phase-dependent category only during that software development phase. The phase-independent processes must be evaluated during all software development phases. This provides SQA personnel a way to select and evaluate software development processes in a systematic manner, covering all processes required during any specific software development phase.

�

Table K-1 Software Processes to Evaluate10

	Planning for process compliance evaluations begins prior to the subject development phase, with the SQA person scheduling process evaluations throughout the phase. During the software development phase, the SQA person conducts process compliance evaluations using methods such as monitoring, sampling, flowcharting, identifying past trends, and identifying opportunities for continuous process improvement.11 The results of each evaluation show whether or not the IPT is following the software development processes. If the IPT is following the processes, it is compliant, and the SQA person continues with the regular planned evaluations. If the IPT is not following the processes, it is non-compliant, and the SQA person will re-evaluate the non-compliant process at regular intervals (e.g., every month) until the IPT is found compliant. Non-compliances are categorized as either major (“an error in implementation of process requirements that would have an impact on cost, schedule, or performance”) or minor (“an error in implementation of process requirements that would have no impact on cost, schedule, or performance; but could affect the effectiveness or efficiency of the process”).11 The IPT must have a formal resolution plan for all major process non-compliances. While not required to have a similar plan for minor process non-compliances, the IPT must take some action to correct the deficiency.

	SQA personnel report the results of process compliance evaluations in a chart format similar to the prototype one shown in Figure K-8. The process compliance chart tells two stories: how well the IPT is complying with software development processes; and how many evaluations the SQA person has performed. Percent compliance (the top half of the chart) shows the percentage of total planned process evaluations where the IPT is compliant. The expected growth lines (the dotted lines) show different percentage levels of compliance (50%, 75%, and 100%). If an IPT is 100% compliant with processes evaluated to date, their actual line will be less than 100% on the scale; however, it will match the 100% expected growth line, indicating progress. Also, the actual line will never reach 100% on the scale if SQA evaluates less than 100% of the processes. In other words, the expected growth line shows 100% of the processes evaluated to date and not 100% of all processes planned for evaluation during the software development phase. The only place where the expected growth line shows 100% of all processes evaluated and compliant is at the very end of the line, where the line reaches 100% on the scale. Similarly, the 75% and 50% expected growth lines represent that percentage of process compliance to date, and will eventually reach the corresponding scale on the right side of the chart. The 75% and 50% expected growth lines are flags. If an IPT’s compliance level drops below one of these, the SPO and contractor IPT leads will be alerted and can assess the situation and determine the appropriate level of assistance to give the IPT.

�

Figure K-8 Prototype of Software Development Process Compliance Metric

	The chart’s lower half provides another indication of IPT performance. While the chart’s top half shows overall process compliance trends, the bottom half describes process trends in four categories: newly evaluated processes found compliant; newly evaluated processes found non-compliant; previously evaluated processes found compliant; and previously evaluated processes found noncompliant.11 Trend analysis of recurring non-compliances could pinpoint process problems the IPT must solve to ensure a quality product. Trend analysis could also indicate problems between the IPT and external functions (such as documentation management) where both the IPT and external functional processes must adjust and work together. The chart’s lower half also provides insight into SQA effectiveness. The dotted plan line shows how many process evaluations the SQA person intends to do each month. The histogram bars show the actual evaluations performed. Previous non-compliant processes will create additional unplanned workload to re-evaluate, potentially making the histogram higher than the plan line. Places where the histogram is lower than the plan line could indicate problem areas with SQA coverage (e.g., not enough SQA resources to evaluate the processes).

�
Software Products and Software Product Evaluations�tc "<Head 2 (14)>Software Products and Software Product Evaluations"�

Software Products�tc "<Head 3 (14)>Software Products"�

	Typically, software products are the deliverable software and documentation of that software.4 Automation efforts usually center on the software code itself, ensuring code development in a configuration managed environment.7 With the advent of larger DoD systems, software documentation needs the same level of automation. The purpose of software product automation should be to capture the systems analysis and design rationale during software development. This shifts traditional software product evaluations from late in the EMD phase to a proactive evaluation during their development. For computer software configuration items (CSCIs), this involves reviewing analysis and design products created during the software development process. DoD-STD-2168 identifies additional areas to evaluate: software development processes; all software development libraries; any non-developmental software; all non-deliverable software; software engineering and test environments (the deliverable parts); subcontractor management; and software acceptance inspections and preparations for delivery.5 Integrating the traditional software product definition with these additional areas provides a modified list of software products to evaluate (see Table K-2).

�

Table K-2 Software Products to Evaluate

	The SDP is the key product from a quality standpoint. Without a good plan, it will be impossible to develop good software code and documentation. Next, the team must follow defined processes. This is why Software Development Process Compliance Status is next in order of importance. A quarterly status of how all IPTs are doing is an important indication of the software development effort.

	After establishing the processes (SDP) and evaluating compliance (process compliance status), the focus should turn to actual development data. The electronic databases and model data are the core from which all other software products result. IPTs generate the electronic databases and model data through the use of automated tools during software development. The F-22 has several automated tools integrated into the common System/Software Engineering Environment (S/SEE). One such tool is Teamwork,® a software analysis and design tool that generates both Ada diagrams and data dictionaries. Another important tool is the Interface Definition Tool (IDT). IDT provides a standard format for defining software-to-software and software-to-hardware interfaces. The S/SEE tools provide information for development of source code, and also form the basis for developing software documentation. For example, the IDT database provides data for the Interface Design Document (IDD), maintaining some consistency between the software documentation and the actual state of the system.

	Software development folders (SDFs) are the next product to evaluate. SDFs contain the engineering notes made during development of each software module. Traditionally, these notes exist as hard copies in binders or folders; however, for most of its software development the F-22 program is using an electronic form of the SDF on the S/SEE. The last two software products, source code and documentation, will result from all the previous products. If there is no established plan, if the development teams are not following the proper processes, if the developmental data is not properly created, and if the design decisions are not adequately captured, the source code and documentation will not provide the necessary information to perform PDSS.

Software Product Evaluations�tc "<Head 3 (14)>Software Product Evaluations"�

	Each software product requires a specific evaluation to ensure its quality. The following sections discuss software product evaluations (SPEs) for the software products identified previously.

Software Development Plan�tc "<Head 3 (14)>Software Development Plan"�

	The standard SPE for a SDP is a document review by peers. While this will suffice for some onetime documents, the software development processes should always be as current as possible during a multi-year system acquisition. This requires a continuous process improvement (CPI) effort. The CPI effort should allow for either incorporation or rejection of write-ups against the SDP. The F-22 program uses CPI process action teams (PATs) to address individual processes identified as deficient. The results of each PAT are rolled into the next revision of the SDP, which then undergoes a SPE before release. This iterative loop provides a set of quality processes and fine-tunes them as EMD progresses.

�
Software Development Process Compliance Status�tc "<Head 4 (12)>Software Development Process Compliance Status"�

	The easiest way to evaluate software development process compliance is from a process compliance metric, which tells how both the IPT and SQA are doing. Evaluation questions for the process compliance metric include what is the severity of the non-compliances, what is being done to resolve non-compliances, and why is the actual number of process evaluations less than the planned number. Anyone reviewing the process compliance status can, and should, ask these where applicable. For example, trends might indicate the IPT is not complying to agreed-upon software development processes. From this, SPO and contractor IPT leads must find out the reason and take appropriate action to help the IPT. Likewise, if SQA personnel are not able to complete their planned evaluations, some investigation could reveal areas that need to be addressed. Finally, if the IPT is meeting the expected line and the SQA person is meeting the planned line, both would deserve positive recognition.

Electronic Databases/Model Data�tc "<Head 3 (14)>Electronic Databases/Model Data"�

	Evaluation of the electronic databases and model data will be more challenging than evaluating the SDP and process compliance status. The F-22 program databases and model data reside on the S/SEE, and require S/SEE access to evaluate. One possible method of evaluation is manually searching all the fields of selected databases to ensure information is there and usable. Another approach is to use the host tool (or create a utility program) to verify all fields contain information; however, this would still require manual verification of the quality of that information. Currently (as of the writing of this paper), no definitive questions or criteria exist for evaluating the database and model data. Since this data captures both analysis and design information, this is the next area being defined.

Software Development Folders�tc "<Head 3 (14)>Software Development Folders"�

	The F-22 program is using an electronic form of the SDF on the S/SEE for most of the software development. Therefore, it is important to evaluate the electronic information stored in the SDF (both text files and data). SQA and SPO personnel have conducted initial audits of both electronic and paper versions of SDFs; however, there is no single event scheduled for evaluation of an entire SDF. The F-22 approach is to evaluate an SDF incrementally while it is being assembled. Such incremental audits should occur during the detailed design, code, computer software unit (CSU) test, and computer software component (CSC) test phases. If audits are not done until the end of development, the SDFs will be too large to effectively evaluate.

Source Code�tc "<Head 3 (14)>Source Code"�

	The F-22 program uses walkthroughs to evaluate source code during the coding phase, focusing on the source code’s technical quality.10 Walkthroughs are also recommended for the requirements, preliminary design, and detailed design phases. This is to ensure the software is being developed to meet the correct requirements. The IPT will present walkthrough results at the milestone events, with successful completion of a walkthrough being necessary for the source code to progress to the next level of integration and test. One supplement to a walkthrough is the use of automated tools. Automated tools are useful for both test coverage and quality and style checks prior to module integration. The F-22 program is working in this area to define quality and style thresholds for the source code that are automatable.

Software Documentation�tc "<Head 3 (14)>Software Documentation"�

	Traditionally, two review groups perform software document evaluation: the systems engineers doing the development work (both SPO and contractor); and the operational test and evaluation (OT&E) test team. One disadvantage of this two group approach is the familiarity the engineers have with the system they are developing. Development engineers do not always communicate what is important in a PDSS environment. Another problem is the OT&E evaluation time frame, which occurs late in the EMD phase. Problems found this late in development are too costly to fix, or can not be fixed do to unavailable funds. Therefore, a pro-active effort must address both evaluation of software documentation and the development of software documentation.

	DoD-STD-2167A identifies data item descriptions (DIDs), which then identify what information should go into a given document. Development engineers understand the content (and context) of the system they’re writing about; however, the PDSS personnel do not have that level of insight and understanding. Unfortunately, engineering document reviews do not usually take this into account. In contrast, the OT&E personnel are representative of the PDSS personnel, yet cannot have the documents corrected in a cost effective manner. The F-22 SPO Logistics Support Division, located at Sacramento Air Logistics Center (SM-ALC) decided the content of a document (e.g., information on analysis and the design decisions) is more important than the document format (e.g., centering of page numbers, margin widths, white space, etc.). Working with The Charles Stark Draper Laboratory, this team jointly developed software document evaluation guidelines (DEGs) for all 17 DoD-STD-2167A documents. The DEGs focus on the documentation content, and serve as a paper “knowledge base,” addressing both developmental and support concerns. The DEGs ask specific questions for each document part, specifically in six key areas: is the information there; is it understandable; is it consistent; is it traceable; does it add value to software support; and (to the extent possible) is it correct. If one can develop a document and pass a DEG evaluation, that document will provide the information necessary for PDSS.

	The DEGs were originally developed for SM-ALC software supportability engineers to evaluate software documents before their acceptance by the government. Building upon this, the F-22 SQA organization took a more pro-active approach and incorporated all the DEG questions into the SPE effort as evaluation criteria. Now, government IPT members must use the DEG questions as criteria in evaluating documents during a SPE. Taking this concept one step further, the F-22 program IPTs have incorporated the DEG questions into the original document templates. This fosters creation of acceptable information content during document development before the SPE takes place. Then, the SPE occurs prior to formal delivery to the government. This total effort builds quality into the documents from their inception, instead of inspecting it in later.

Non-Deliverable Software�tc "<Head 2 (14)>Non-Deliverable Software"�

	DoD-STD-2167A identifies software products as the deliverable software and documentation of that software.4 Typically, deliverable software during EMD means only the software the EMD contract requires; however, there is a substantial amount of software developed during EMD that will be deliverable after EMD. The production contract identifies this software and its documentation. The software development time frame (and not the software delivery time frame) should drive SQA efforts. Therefore, software that is deliverable at any time during the EMD and production phases, and is developed during EMD, must be treated as deliverable even during the EMD phase. This necessitates the same rigorous SQA efforts for both EMD deliverable and post-EMD deliverable software. The F-22 is taking this approach, and has identified three categories of software: deliverable during EMD; software developed during EMD that is required for post-deployment support of the weapon system; and software that is not required for post-deployment support of the weapon system.9 All software required by the EMD contract is considered deliverable during EMD. All other software is considered required for post-deployment support of the weapon system, unless the developing IPT requests a reclassification as not necessary for post-deployment support. Thus, SQA will be evaluating the processes and products for all deliverable software, regardless of when it is deliverable. Non-deliverable software also requires SQA assessment; however, this effort is much less than that for the “deliverable” software.

Impact on PDSS Cost�tc "<Head 2 (14)>Impact on PDSS Cost"�

	The F-22 is still early in its EMD phase, and therefore has not begun any formal PDSS activities. Although data is not available on the impact of the new document SPE approach and criteria on PDSS cost, initial indication shows they are having a positive influence on document quality and first time acceptance, both of which are key factors in reducing life cycle costs. The other product evaluation efforts are in development, and when completed are expected to have a similar effect on their respective products. Initial findings from software process compliance evaluations indicate this approach is having a positive influence on product quality. While all these results are preliminary, in general they indicate the pro-active SQA efforts have a positive impact on product quality and will reduce PDSS cost.

References�tc "<Head 2 (14)>References"�

1	ANSI/IEEE Standard 1074-1991, IEEE Standard for Developing Software Life Cycle Processes. New York: The Institute of Electrical and Electronics Engineers, Inc., 1992

2	Beizer, Boris. Software System Testing and Quality Assurance. New York: Van Nostrand Reinhold Company, 1984

3	Department of Defense. Defense Acquisition Management Policies and Procedures. DoD Instruction 5000.2. Department of Defense, 1991

4	Department of Defense. Defense System Software Development. DoD-STD-2167A. Department of Defense, 1988

5	Department of Defense. Defense System Software Quality Program. DoD-STD-2168. Department of Defense, 1988

6	Feinstein, Steven. “Barnacles on the Software Ship.” IEEE Software. 1991, 8(4), 92-93

7	Humphrey, Watts S. Managing the Software Process. USA: Addison-Wesley Publishing Company, Inc., 1990

8	International Standard ISO 9000, Quality Management and Quality Assurance Standards — Guidelines for Selection and Use. Switzerland: International Organization for Standardization, 1987

9	Lockheed Corporation, and The Boeing Company. F-22 Non-CSCI Software Development Requirements. Unpublished Work, 1992

10	Lockheed Corporation, and The Boeing Company. F-22 Software Development Plan for Engineering and Manufacturing Development. Unpublished Work, 1993

11	Lockheed Corporation, and The Boeing Company. Software Quality Assurance (SQA) Process Evaluations and the Process Evaluations and Compliance Metric. Unpublished Work, 1993

�
Tab 5�tc "<Head 2 (14)>Tab 5"�

The DoD Generic Fighter:

F-22’s Historical Foundation

Jon Floyd

Lockheed Fort Worth Company

F-22, LCSS IPT

Phil Gould

Lockheed Fort Worth Company

F-22 LCSS IPT Manager

Phil Mastrolia

SM-ALC, F-22 LCSS IPT

John White

F-22 SPO, F-22 LCSS IPT Manager

Presented at the Seventh Annual Software Technology Conference

Salt Lake City, Utah, April 14, 1995

Introduction�tc "<Head 2 (14)>Introduction"�

	The “generic fighter” referred to throughout this paper is an invention of the F-22 Life Cycle Software Support (LCSS) Integrated Product Team (IPT). This generic fighter is an amalgamation or normalization of four modern front line fighter programs currently in service in the US Navy and the US Air Force — the F-14, F-15, F-16 and the F/A-18. The generic fighter was invented to allow reasonable comparison with the forecast software changes in the F-22 weapon system. The result of this comparison will allow an optimized support structure for F-22 software resulting in reduced life cycle costs. The data analyzed to create the generic fighter was gathered in response to 54 questions generated by the LCSS IPT during the first quarter of 1994.

Generic Fighter Architecture�tc "<Head 2 (14)>Generic Fighter Architecture"�

	The generic fighter of the 70s and 80s utilized a federated avionics architecture (see Figure K-9). The Air Force fighters typically used MIL-STD-1750 processors while the Navy pursued the UYK series of standard processors. Bus systems evolved from one HOO-9 to one to five MIL-STD-1553 A or B bus systems. As time passed, more functions were automated and more analog functions were digitized resulting in a growing number of processors. By the late 80s, more functions were being merged in a single processing element as miniaturization occurred.

�

Figure K-9 Federated Systems

	The generic fighter had four hardware unique baselines, with ever increasing computing resources. Each hardware baseline had multiple software variations. Even more variants existed if the aircraft was sold overseas. A single software baselines, compatible with all hardware configurations, was always the common goal but rarely achieved. The major impediment was shortage of retrofit funds caused by diminishing value of older aircraft retrofit.

Variants�tc "<Head 2 (14)>Variants"�

	From the original hardware baseline there were new hardware baselines approximately every five years. New navigation, radar, electronic combat, and weapons were added at each new hardware baseline. Software baselines and releases followed a schedule that often was hardware driven (see Figure K-10). There was an average of three software releases the first year of service after PCA. The second year of service typically had two software releases. Eventually software releases settled to one every 18 to 24 months. As hardware sensitive software baselines matured, the release frequency decreased. Eventually software changes saturated the hardware capability and hardware upgrades were required. For each new hardware baseline, there were two to three corrective software updates released within the first 12 to 18 months.

�

Figure K-10 Frequency of Software Releases

	As the generic fighter matured, many variants of the hardware remained in the field. Each of these variants required a supporting software release. In addition, foreign military sales (FMS) typically required a software release of varying limited capabilities with each country requiring separate configuration management. This resulted in multiple versions of the software being maintained concurrently as the example shows in Figure K-11.

�

Figure K-11 Software Baseline Proliferation

	The basic generic fighter started as an Air to Air fighter with less than 100K words of on-board memory. As more roles were assigned to the generic fighter, more systems were added and on-board memory was forced to expand. By the late 70s, the generic fighter had grown to approximately 300K words of on-board storage but with only 40 to 60% memory utilization. (These numbers are for avionics systems software only.) The mission related functions grew from 3 to 5% per year until the memory was forced to expand. By the end of the 80s, the on-board memory had grown to 2 million words with 70% used. (See Figure K-12.) Also in the 80s, non-avionics software began to appear. Digitized engine controllers, digital flight controls and diagnostic software were installed on the generic fighter.

�

Figure K-12 Memory Growth Over Time

Software Changes�tc "<Head 2 (14)>Software Changes"�

	After the first software baseline was established, typical avionics software maintenance changes can be categorized using the three basic types of software changes as defined by Swanson. Swanson’s categories of software changes include corrective (fixing bugs, no new requirements), adaptive (adapting working software to hardware changes, no new requirements), and enhanceable (modifications/improvements of working software, new requirements). The percentage of change, by type, is illustrated in Figure K-13.

�

Figure K-13 Types of Changes

	For a typical software block change, where no hardware was being changed, approximately 10% of the software was changed. This 10% was broken down as follows: 3-5% new code, 5-7% modified code. Approximately 88-93% of the software remained unchanged. The 10% rate of change’s impact on the operational flight program (OFP) software configuration is reflected in Figure K-14. Software changes which were driven by hardware changes, either the addition of new hardware or the upgrade of existing hardware systems, had a much lower percentage of reusable software. Obviously, the amount of reusable code depended on the extent of the hardware modifications; expanding a memory board has a minor software impact compared to changing the processor type.

�

Figure K-14 Impact of Software Change on Operational Flight Program

	Often the amount of software that was changed in a block cycle was limited by available funding or by available schedule. The larger and more complex software configuration items were typically most impacted by funding and/or schedule constraints. This is due to the increased integration and test requirements associated with large and complex software configuration items. Not all software changed at each block change. The generic fighter’s primary areas of change were mission and human interface related (see Figure K-15). These primary areas of change included controls and displays (pilot/vehicle interface improvements accounted for up to 60% of the changes), stores addition, launch envelope improvements, radar improvements, electronic defense systems addition and improvements, and identification capabilities and improvements.

�

Figure K-15 Subsystems/Functions Affected by Software Releases

	Some systems were very stable and exhibited little or no change to date. Examples of this were the inertial navigation system, air data computers, and digital data storage units. Software which was closely bound to hardware typically changed only when the hardware was upgraded. Examples of this were landing gear control, anti-skid systems-communications, and digital flight controls systems.

�
Software Support Process�tc "<Head 2 (14)>Software Support Process"�

	Software changes are categorized by the user as either routine (block change cycle), urgent (six to eight weeks), or emergency (within 72 hours). The goal of the generic fighter was to field a routine software release every 18 months; however, a single block change cycle required 36 to 44 months (see Figure K-16) from requirements definition to fielding. To accomplish this, as many as three or four software baselines were in work concurrently (see Figure K-17).

�

Figure K-16 Block Change Cycle

�

Figure K-17 Block Change Releases

	The block cycle is divided into two phases. The first phase is the requirements analysis phase where the depot team, with the support of the user, develop an understanding of the types of system changes required for the next block change. This phase was typically undocumented and undisciplined. It required from 6 to 10 months for system definition/analysis and 9 months for establishing a contract with a software developer. The contracting timeline in the requirements definition phase was the primary driver in deciding whether the block change process was 36 or 44 months long. The second phase included allocating the changes to software configuration items, design, coding, integration, testing, and fielding the new release. This phase was in the process of maturing during the F-22 round robin with most programs actively pursuing a Software Engineering Institute CMM Level of 2.

�
Support Costs �tc "<Head 2 (14)>Support Costs "�

	The generic fighter block change cycle required 400 to 500 man years and ranged from $22M to $200M with the normalized average of $112M. This difference was caused by the length and size of the effort for the block change. All costs are included except for requirements elicitation and business development. The costs start with requirements identification through distribution of the software to the field. It also includes technical order (TO) and technical manual (TM) updates. The block change costs include systems engineering, software development, lab costs, flight test, TOs, and miscellaneous and are reflected in Figures K-18 and K-19.

�

Figure K-18 Block Change Cost Allocation

�

Figure K-19 Block Change Cost Ranges

	The software development phase includes software requirements analysis, design, code, and unit test. For new hardware configurations, integration and system level tests took up to 40 percent of the total cost of development effort. For software only updates (without changing hardware) integration costs were less than 15 percent. Flight test costs were dependent upon location and duration. Typical flight test costs ran from $30K to over $50K per hour depending on chase plane and drone requirements. Other costs, included overhead, mechanical replacement, security, stores for test, and communications.

Support Strategy�tc "<Head 2 (14)>Support Strategy"�

	The developing contractor has continued to provide critical skills at the government and contractor software support facilities. The production baseline of software was “owned” by the government at first production aircraft flyaway (FCA/PCA). Organic support for the first production baseline was not complete phased in until 5 to 8 years later. The initial program management directive (PMD) typically dictated a total organic effort for software support very early in the program. Over time it became apparent that this was technically impractical and undesirable from a program view. The contractor was continually adding capability, correcting errors, and optimizing the pilot vehicle interface. As a new avionics hardware baseline appeared, software support for the older baseline was transitioned to the government location.

	Ratios of manpower mixes of 40%/60% to 60%/40% (organic/contractor) were common over the life of the program. The typical work split between organic and contractor resources by skill area is reflected in Figure K-20. This figure reflects the approximate mix at the ten year point of the generic fighter. Requirements analysis was done at the contractor’s facilities on simulators, reproduction and distribution is organic but was outsourced to subcontractors. Technical Orders/Technical Manuals were done at the Contractors facility.

�

Figure K-20 Organic/Contractor Personnel Split (%)

	Labor rate costs were as typically follows: $110/hr for contractor personnel costs in a contractor-owned contractor-operated (COCO) facility; $65/hr for contractor personnel costs in government-owned contractor- operated (GOCO) facility; and $55 - 65/hr for organic personnel costs in a government-owned government-operated (GOGO) facility. The lower rates for labor performed in a government facility did not include total burdening.

Support Environment�tc "<Head 2 (14)>Support Environment"�

	The generic fighter had few software development tools at the beginning of the 70s. In the OEM aerospace companies, an in-house software development tool making capability was developed. These “homegrown” tools were developed to fill in the blank spots between the available tools of the time. This was because few off the shelf software development tools existed during the early to mid 70s. In the labs little or no allowance was made for either growth or multiple configuration support. Non-reconfigurable lab equipment was a problem in the early period. Systems level testing was done without the aid of extensive simulation/stimulation and much of systems testing was done during extensive and costly flight tests.

	By the end of the 80s (see Figure K-21), non-integrated computer-aided software engineering environments and multisystem labs with some simulation/stimulation capability were in use. “Homegrown” software development tools began to fall from favor because of the availability of COTS tools of higher quality, more functionality, and at lower costs. The short life span of these COTS development tools caused continual upgrade for development hardware and software. Simulations improved and began to replace trial and error, test and fix methods. This led to integration environments which were impacted less by each new hardware baseline, with very little impact to the support environment caused by software only changes. Occasional bottlenecks were encountered in the labs due to support of multiple support. Labs often cut holes in walls to test radar systems and hung weapons on the outside of the labs to simulate actual flight conditions. However, extensive flight testing was still required to ensure systems were meeting user requirements.

�

Figure K-21 Support System

Training System Impacts�tc "<Head 2 (14)>Training System Impacts"�

	Training was separately contracted and, furthermore, was typically not integrated with the rest of Weapon System. Trainer and training systems typically lagged behind the fielded configuration. This was known by the user as “version skew.” The problem was that the acquisition strategy for trainers and training was different from, and at a lower priority than, the rest of the weapon system. Even if the trainers were at the same priority and received the OFP at the same time as the user, the training system required re-engineering before it could be used. Air vehicle software was not designed for trainer reuse. A lag of 2 years between new software installed in the fleet and trainer reconfiguration to match was not uncommon.

Program Management�tc "<Head 2 (14)>Program Management"�

	The generic fighter allowed patches but discouraged use of them. No patches were allowed for flight controls due to safety critical considerations. Flight Controls had the highest reliability but often took longer to develop. (Flight Controls typically had less than 1% error rate). Very few weapon system productivity figures were developed. However, the productivity numbers that were developed, varied from weapon system to weapon system and did not match IEEE productivity ranges for embedded applications. Mission related software changes had the highest productivity, safety critical software had the lowest.

	Very little use of parametric models for project estimation. Developers tended to rely on past experience and rough orders of magnitude. Those projects using models such as COCOMO or LOCOMO tended to apply their own “corrective factors” to come up with numbers that matched their own experience. In many cases, very little data other than C/SCSC data was available which forced managers to make rough orders of magnitude estimations. Portions of the Block Change that tended to be fixed (e.g., lab overhead) were generally close to the budget. Portions of the Block Change that were product related (e.g., integration and test) tended to be several months late and over budget. If the project was schedule driven and a release was “forced” because of that schedule, two to three corrective updates were required and the total project cost increased by over 15%.

Lessons Learned�tc "<Head 2 (14)>Lessons Learned"�

	These lessons learned were provided by the visited weapon systems during the round robin. Many of the weapon systems were experiencing the same types of problems and made the same suggestions. Below is a summary of the most repeated and critical suggestions provided to the round robin team.

1.	Distributed support concepts (where maintenance is done on the same OFP in different locations) experienced major communications problems which led to misunderstandings of requirements and interfaces and thus to schedule delays and cost overruns.

2.	“Pure” organic support of OFPs was technically impractical except for mature configurations no longer experiencing instability.

3.	The maintenance planners must plan and provide resources for multiple concurrent software development efforts.

4.	Technology insertion must be factored into the weapon system as early as possible.

5.	Block changes will typically request maximum changes at the sacrifice of throughput and memory. Spare throughput and memory will typically be expended by the fifth block change (if not earlier). Plan for growth early or be caught in the trap of developing new capabilities at the cost of existing functionality.

6.	Plan for changes in the support and training environments that are sympathetic to the OFP change. OFP changes can result in major changes to simulations and stimulations.

7.	Training and technical orders must remain current with the OFP release.

8.	Ease of system/software change depends on the quality of the documentation and when it was received. Development and design rationale is often more important than formal documentation.

9.	There is a definite difference between the user and the supporter for the time requirements associated with a block change. The user expects to see an approved change fielded within 18 months. The supporter seems to feel that he meets the user’s requirements by releasing a new version of software every 18 months. This often results in user priority requirements taking as long as 44 months to reach the field.

10.	The amount of up-front time required to place a contractor on contract for a block change seemed excessive and often was the major cause for an eight to nine month slip in release. Contracting should be done in parallel with the requirements definition for the block update.

11.	Every effort should be made to decrease the number of flight tests required for validation of a block change. Investments in comprehensive simulations and stimulations have a rapid return on investment by decreasing the number of flight tests required. However, these simulations and stimulations must also be updated as part of the block change process.

12.	Labs that are given the same prioritization as operational aircraft have the capability to obtain necessary spares and replacement parts. Labs that are not given this prioritization suffered schedule slips and cost overruns due to a lack of operational equipment.

13.	Those programs that co-located their integration and test facilities with their flight test capabilities significantly reduced flight test costs while improving schedule adherence and communication of requirements.

Acknowledgments�tc "<Head 2 (14)>Acknowledgments"�

	The F-22 Life Cycle Software Support Integrated Product Team thanks those who sacrificed their valuable time and participated in the F-22 Software Supportability Trade Survey: Col Ron Bischoff, SM-ALC/YFL; Capt Jeff McElroy, ASC/YFP; Capt Shawn Shanley, HQ USAF/AWC/28TS/TXBF; Capt Dennis Fleming, HQ ACC/SCTA; and Mr. Art Rindell, SM-ALC/TIS. The IPT would also like to thank project directors and those individuals residing with them at the SPO offices and system support facilities from each of the four aircraft weapon systems for accommodating our entire team and arranging their schedules to discuss the support details of their respective fighter aircraft: F-15 — Mr. Bob Anderson, WR-ALC/LFE; F-16 — Mr. Bruce Kress, ASC/YPVC; F-14 — Mr. Brad Gilmer, Code: P2205; and F/A-18 — Mr. Rich Bruckman, Code: C2107. Finally, a special thanks to the System Program Directors (SPDs) and Program Management Authorities (PMAs) for their support in this entire effort: Col. Rutley, WR-ALC/LF; Col. Kenne, ASC/YP; Capt Richard Evert, Program Executive Officer (PMA 241); and Capt. Joe Dyer, Commander (PMA 265).

�
Tab 6�tc "<Head 2 (14)>Tab 6"�

How More Is Less:

The F-22 Streamlined Block Change Cycle

Dean Hipwell, Capt, USAF

SM-ALC/YFSL

F-22 Life Cycle Software Support IPT

Jerry Raddatz

Lockheed Fort Worth Company

F-22 Life Cycle Software Support IPT

Presented at the Seventh Annual Software Technology Conference Salt Lake City, Utah, April 14, 1995

Introduction�tc "<Head 2 (14)>Introduction"�

	Within the F-22 Advanced Tactical Fighter Program, the Life Cycle Software Support (LCSS) Integrated Product Team (IPT) has been leading the effort to streamline the software block change process in order to reduce the time and cost required to update embedded operational flight software. The F-22 fighter is expected to have a life-cycle of at least thirty years after production begins. During these 30 years, air vehicle software is required to be updated every 18 months. This update is called a Block Change Cycle (BCC) and implementing consecutive block changes is called the Block Change Cycle process. Streamlining the Block Change Cycle process is the focus of this paper.

Background�tc "<Head 2 (14)>Background"�

	In order to understand the Block Change Cycle for the F-22 program, one must have some knowledge of how the weapon system is organized. The F-22 Weapon System is composed of three major systems: an air vehicle, a support system, and a training system. Each major system contains both hardware and software. This paper only addresses the software change process for the F-22 Air Vehicle.

	Air Vehicle software, collectively called the Operational Flight Program (OFP), controls the operation of three systems: the Avionics System, the Vehicle Management System, and a collection of functions called Utilities and Subsystems. Each system within the Air Vehicle is further divided into subsystems. For instance, the Avionics System includes radar, communications, electronic warfare, and stores management subsystems. The Vehicle Management System includes flight controls and kernel services subsystems. Utilities & Subsystems includes environmental, landing gear, and braking subsystems. The F-22 OFP contains software load images for all three systems in a single load file. Traditional federated avionics architectures use separate software load images for each subsystem. In the integrated architecture world of the F-22, when we say “THE OFP” we mean the entire load image for all Air Vehicle software.

	Support System and Training System software will be updated at the same time as the Air Vehicle, but may not be part of the OFP block change process. Support System includes an integrated maintenance information system, a system/software engineering environment, and all tools needed to support the Weapon System. Support System software will be upgraded using government, contract, and commercial off-the-shelf approaches depending on the system being upgraded. The Training System consists of pilot simulators, computer-based training systems, and other training devices needed to teach people how to operate and maintain the Weapon System. The current software support concept for Training Systems is to separately contract for each software upgrade.

�
Analysis�tc "<Head 2 (14)>Analysis"�

	In order to predict change magnitude, the LCSS IPT investigated the OFPs for previous fighter aircraft: F-14, F-15, F-16, and F/A-18. OFPs for these aircraft contained software of multiple languages and did not have an integrated architecture. Code sizes varied depending on aircraft complexity and operational mission requirements. The F-22 OFP will contain approximately 1.6 million source lines-of-code (SLOCs) when first fielded. After normalizing OFP sizes to equivalent Ada SLOC using function point analysis as an intermediate step, we estimate that the F-22 OFP will be at least twice the size of any previous fighter aircraft software. The historical rate of change for previous aircraft programs is approximately ten percent of the SLOC per change cycle. Considering the estimated OFP size, the F-22 OFP change magnitude could exceed 160k SLOC. In previous fighter programs, a 10% change to the OFP took 36 months to implement with some taking as long as 48 months. The F-22 program goal is to accomplish block changes in 18 months, one-half of the time required for previous fighter aircraft, while retaining the same capacity for changing the capabilities of the weapon system. Based on a software volatility analysis performed by Jon Floyd of the Lockheed Fort Worth Company (LFWC), we anticipate that only five percent of the F-22 code will change during each cycle. Floyd analyzed each subsystem to determine its expected frequency of change and then these individual volatility indices were combined to result in an overall five percent change prediction. The exact changes to be implemented for each cycle will be determined during the initial phases of the block change process.

Traditional Process�tc "<Head 2 (14)>Traditional Process"�

	The block change process for software updates is fairly well defined. Each cycle begins with a Requirements Definition phase which includes all of the negotiations necessary to define and fund selected changes for the OFP. These requirements are then incorporated into code in a Software Development phase. After the software is designed, developed, integrated and tested at the module level, the various software modules are integrated and tested at the subsystem and then the system level. System Integration and Test activities include the OFP Build Process where all source code comes together into a single load image. Next, there is a Development Test and Evaluation (DT&E) phase where the software is functionally tested to ensure that the software can be safely flown in a real world environment. DT&E is followed by an Operational Test and Evaluation (OT&E) phase in which all operational capabilities are verified. After OT&E, the software update is packaged, duplicated and distributed to the fleet. The distribution package contains all of the associated documentation required to support the new OFP. Over the expected 30 year life cycle of the F-22 there will be at least 20 block changes.

F-22 Streamlined Process�tc "<Head 2 (14)>F-22 Streamlined Process"�

	Now that the software development process has been briefly explained, the question is, “How will the F-22 program improve the Block Change Cycle timeline to meet the 18 month requirement without sacrificing quality or capability?”

	Four factors account for the F-22 Block Change Cycle streamlining effectiveness. The first factor is the use of Integrated Product Teams (IPTs) for the entire Weapon System support process. IPTs enable the customer, designer, tester, technical publications writer, quality engineer, manager and others necessary to the design and support process to remain in close contact at all times. This synergy results in better understanding of design and programmatic issues that affect the software by all participants. This synergy also demands “buy-in” by all parties at each step of the change process so that there are no surprises at delivery. Since understanding and communication are better, time is saved and a higher quality product is obtained, ensuring that our product will match the customer’s needs the first time.

	The second factor that helps streamline the BCC process is the use of Ada. By Department Of Defense (DoD) direction, all software for weapon systems must be developed in Ada in order to improve maintainability throughout the life cycle of the weapon system. Ada features, such as modularity, strong typing, and information hiding result in easier updates and modifications. Additionally, the use of a single high-order language minimizes training, complexity and software interfaces.

	Third, the F-22 program will store parameter definitions in mission data tables instead of “hard coding” values into the OFP so that the number of OFP changes are reduced. Many Weapon System changes are driven by requirements from air vehicle operators, i.e. pilots. Historically, the Pilot Vehicle Interface (PVI) is one of the most volatile pieces of fighter aircraft software because of perfective change requirements. Coding PVI parameter definitions into data tables gives pilots the opportunity to customize the aircraft without going through a formal OFP block change process. Such implementations include everything from navigational way point definition to enemy identification parameters and have been defined with the help of Air Combat Command — the customer. We anticipate that placing parameters in data tables will drastically reduce the number of OFP code changes while increasing the flexibility afforded to customers.

	The fourth streamlining factor that the F-22 program will use is performing the Requirements Definition phase concurrently with the previous Block Change Cycle. During each cycle, Avionics System Requirements Review Conferences (ASRRCs), will generate requirements for mission data and OFP changes for the following cycle. Requirements will be analyzed, defined, prototyped, and funded during each ASRRC period. This process allows up to 18 months for funding to arrive before the start of software development and, therefore, prevents any delays due to unforeseen budgeting issues. By always having requirements defined and funded prior to the start of software development, at least 6 months will be saved in each cycle.

�
Organizational Players�tc "<Head 2 (14)>Organizational Players"�

	A typical block change process will have four major players performing the key functions:

·	Users from the field identify deficiencies and generate change requests.

·	A Technical Focal Point acts as an initial screening agency and presents a consolidated list of change requests.

·	Major Command Headquarters (HQ) reviews the change list, prioritizes changes for investigation, and develops a final list of requirements for implementation.

·	The Software Support Facility (SSF) conducts feasibility analyses on requested changes, develops and tests final change requirements, makes the changes, builds and distributes the changed operational flight program.

	The major portion of the BCC will occur in the SSF, since the SSF personnel will be responsible for feasibility and trade studies, technical development, and change distribution. OFPs and mission data will be changed in the SSF in the technical development process. In the F-22 Program, mission data table development is treated as a separate process under the oversight of ACC personnel co-located in the SSF.

Changing The Process�tc "<Head 2 (14)>Changing The Process"�

	In order to help with the streamlining of the BCC process, the LCSS IPT will move the Feasibility Study out of the Technical Development phase and added it to the Requirements Definition phase. Then we will provide parallel paths for the mission data changes at two points: the HQ approval process and in the SSF implementation process. Third, we will provide a “flyable” copy of the OFP to both DT&E and OT&E so that testing can begin as soon as it is safe to do so, which allows OT&E to begin prior to the end of DT&E. Finally, since mission data tables, by their very nature, do not require the extensive testing and documentation of traditional code changes, mission data changes that fall within allowable ranges will not require testing and certification. Mission data updates may be distributed on a nine month schedule.

Risks�tc "<Head 2 (14)>Risks"�

	There are several risks areas associated with streamlining that must be addressed. The size of individual software modules may dictate either a redesign or the use of additional resources in order to change the code within an 18 month period. Redesign into smaller, more modular pieces allows concurrent development to occur. Additional resources (people, equipment, etc.) could be assigned to support a larger design, but this option follows the law of “diminishing returns”. Multiple, smaller modules would isolate changes and reduce the amount of code to be analyzed, integrated, and tested for each functional change.

	Another risk area is the coordination of hardware modifications with the Block Change Cycle schedule. Hardware modifications may impact the schedule since the highly integrated nature of the air vehicle is sensitive to just about any modification (except perhaps the color of the tires). Hardware modifications, however, come with separate funding and schedules, so that software releases accompanying each hardware modification must be coordinated with planned OFP block change releases.

	Surge capability will be able to handle most schedule anomalies. Surge capability is the “management reserve” that is built into the SSF planning process in order to adjust for anomalous events. Surge capability consists of second shift usage, equipment reallocation, overtime work, etc. For example, equipment failures in the SSF may force a delay of development activities. Emergency and urgent change requests will require the full dedication of SSF resources for short periods of time. Congressional funding debates may impact the block change schedule in strange and mysterious ways. Once an anomaly is over, and, depending on the length of the delay, surge capability can be used to recover lost schedule letting the SSF catch up.

Conclusion�tc "<Head 2 (14)>Conclusion"�

	There is a significant historical challenge being attacked by the F-22 program in the area of software supportability. We are using a single high order language in an attempt to simplify design and maintenance of the entire software package used on this program. We are planning an 18-month Block Change Cycle for the update of software. Our aggressive management approach of using IPTs for the entire process, requiring tight, concurrent scheduling of all activities, and performing aggressive risk management will, we believe, significantly reduce the overall life cycle cost of the F-22 software and provide more timely updates as required by the customer. The utilization of integrity, teamwork, and logic in planning for and implementing the Block Change Cycle should ensure a quality product that meets the customer’s needs in a timely manner.

Version 2.0

Version 2.0

Version 2.0

APPENDIX K Software Support

K-� PAGE �35�

Version 2.0

K-� PAGE �2�

