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Abstract

Software development is often thought of as a series of discrete activities:  First, you analyze the problem and write down the requirements; then, you design the code; next, you write the code; and finally, you debug your creation.  Unfortunately, this view of software production is extremely outdated.  Today, software creation needs to be viewed as a series of discrete steps, plus many continuous processes that guide the software creation process and inject quality into the creation effort.  The purpose of this report is to explain the relationships between the discrete and the continuous activities and also to give a brief overview of both discrete and continuous activities.  
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Attachment 1:  “Guidelines for Choosing a Computer Language: Support for

The Visionary Organization” by Patricia K. Lawlis, Ph.D 

1 Introduction

Software Engineering is often thought of as a series of separate, discrete activities (such as design, coding, testing) that lead to a finished product.  However, quality software is not composed of discrete processes; instead, it is composed of continual processes that guide the development activity.  Most of these activities are continuous; that is, the activities are performed throughout the entire software development effort.  Some of these activities, such as analysis, design, implementation, and testing are discrete.  The discrete activities are done according to a lifecycle.  Selection of the correct lifecycle is therefore extremely important to the success of the overall software project.  The following diagram shows the relationship between discrete and continuous activities.  The top row consists of discrete activities; each have distinct entrance and exit criteria (even though they may be iterative).  The lower rows are representative of continuous activities; activities that should continue for the life of the software project.
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Figure 1.  An example of the waterfall model discrete activities

along with some sample continuous activities.  

Unfortunately, many organizations cling to the discrete activity viewpoint and have developed separate groups to perform the discrete activities.  What is often lacking is a framework or backbone within the organization to provide the continuous activities.  Without the continuous activities, the software is developed poorly and without quality.  

The “knee-jerk” reaction of organizations without a framework of continuous activities is to increase productivity to make up for the poor software they are developing.  What they do not understand is that productivity follows quality [Brooks 1995], according to Capers Jones, a leading expert on software quality and risk management.  

To increase quality, you will have to change your process for producing software.  This paper discusses activities and methods to increase quality (and productivity) by improving your software development process.  Organizations need to understand that there is overhead associated with adopting any change in their development process.  In the Crosstalk article on requirements engineering (included below), there is a discussion of technology adoption principles and how to implement change within an organization.  These same principles apply to all topics covered in this paper.  You need to motivate change, take small steps, and address change at all levels of the organization.  If people in your organization do not understand why process changes are being made, they will not be motivated to make the change work.  If they are not motivated, they will resist the process changes, and quality will not increase.  People are the heart of software development.  The needs of the people in your organization should be of top concern.  

2 Discrete Activities

Discrete activities in software development apply to activities that typically have a set entrance and exit criteria.  For example, requirement analysis has the entrance criterion of “We have a problem and would like a software solution.”  The exit criterion is, “We understand the requirements of the problem to be solved and have gathered enough information to be able to design software to solve the problem.”  The entrance criterion of design is, “Do I understand the requirements well enough to design a workable system?” and the exit criterion is, “Can I produce code that meets the interfaces and performs the functionality of the design?” 

All discrete activities have similar entrance and exit criteria.  If your organization has not specified or considered what the entry and exit criteria for each discrete phase are, perhaps you are entering or exiting a phase based on a time line.  If this is the case, your process needs to be modified.  You must understand and meet exit criteria for each stage for the next stage to progress smoothly.

2.1  Requirements Engineering

Typically, the first activity in many software projects is requirements gathering and requirements analysis. This process is part of requirements engineering.  The following article is an excerpt from Crosstalk – The Journal of Defense Software Engineering, December 1998, which explains what requirement engineering is and how to focus on quality in this important area of software development.

Experiences in the Adoption of Requirements Engineering Technologies

Jim Van Buren and David A. Cook
Charles Stark Draper Laboratory

Software Technology Support Center
Abstract:  It has been known since as early as the 1950s that addressing requirements issues improves the chance of systems development success. In fact, whole software development standards (such as MIL-STD-2167, MIL-STD-2167A, MIL-STD-498, and IEEE/EIA 12207) were designed to enforce this behavior for software-intensive systems. Relatively recently (sidebar [Page 11]) a new field of study, requirements engineering, has begun to systematically and scientifically address barriers to the successful use of requirements in systems development. Since 1992, the Software Technology Support Center (STSC) has been helping organizations adopt new technologies. This article defines requirements engineering (RE) from the viewpoint of technology adoption, discusses which RE technologies are most critical to mission success and why and which are most difficult to adopt, and outlines successful adoption approaches.

Requirements engineering as a field addresses requirements issues in a holistic manner. Understanding the interrelationships between the various requirements activities and how they support each other is as important as understanding the technical details of any one of the individual activities. Contrast this to the 1970s and 1980s, when the software engineering community focused essentially only on requirements analysis, or the early 1990s, when requirements management was the fad. This holistic approach is the great requirements insight of the 1990s. The understanding of requirements activities from this view helps engineers build and follow lifecycle models that account for their project’s business goals, the attributes of their requirements, and the strengths and weaknesses of their requirements technologies.

Challenging Old Assumptions

One must challenge the assumption that a requirements specification is equivalent to a development contract.  Once it is recognized that the project’s goals (such as time to market or long-term maintainability) and attributes (such as requirements volatility) should drive its lifecycle development and requirements process, it is fairly straightforward to build or tailor, with appropriate emphasis on the requirements specification, a requirements engineering process. This is overwhelmingly the number one requirements engineering technology adoption lesson learned (and the second great requirements insight of the 1990s). 

Today’s requirements research [1] is focused on issues that come to light when the “requirements are equivalent to development contract” idea is discarded. Research concerns include

•
How are requirements prioritized? Requirements prioritization becomes critical when fixed development dates or fast development (time-to-market) considerations drive the development rather than the need to meet all requirements. 

•
How does a project cope with incomplete requirements?

•
How can requirements engineering support the commercial development paradigm (where feature sets, product sizing, and market window are the focus rather than functional requirements)?

•
What is the interdependence of requirements and design (for example, a strong interdependence is necessary when building commercial-off-the-shelf based systems)?

Elements of Requirements Engineering

Even if one breaks the link between requirements specification and development contract, this does not alter the need to perform requirements activities. They are merely performed with a different flavoring of objectives. Individual requirements technologies are still best viewed from the perspective of the requirements objectives they address. The caveat is that they must support the chosen overall requirements engineering process.

We divide requirements engineering into the categories of elicitation, analysis, management, validation and verification, and documentation. This taxonomy helps one understand both the requirements problems and the requirements technology adoption issues that face our clients. Like the biological taxonomy, ours is intended to be a living entity, subject to slow change. As we have learned more about RE and as RE matures as a field, our taxonomy has, in fact, changed.

Requirements Elicitation

This field addresses issues that revolve around getting customers to state exactly what their requirements are. Programs, large and small, still fail to reach closure on this step, in spite of adequate effort. Other programs reach closure but do not capture all the requirements. This is perhaps the area of requirements engineering with the highest incidence of malpractice. Software engineers all agree that requirements elicitation is important, yet they uniformly spend too little time performing it.

Requirements elicitation is the only requirements engineering field without a definitive technical solution, yet good informal solutions exist. The lack of technical solutions is expected because the elicitation problem is human in nature. The issue is that customers often cannot state what the requirements are because they either do not know what they want, are not ready to fully define what they want, or are unable, due to outside influences, to decide what they want. The FAA sidebar [Page 11] outlines the classic example of this last behavior.

The biggest elicitation failings (missed requirements and inability to state requirements) manifest themselves as omissions or inconsistencies, which may not become apparent until requirements analysis or systems acceptance testing or even systems use (see Ariane Flight 501 sidebar [Page 12]). Customers must understand that incomplete, inconsistent, or ambiguous requirements, at best, cost a lot of money. At worst, they guarantee failure of the entire system. Spending additional time “fleshing out” requirements always results in an overall cost saving.

Elicitation Mechanisms

During requirements elicitation, one must derive the system requirements from domain experts—people familiar with their domain but not necessarily with building software systems. The system developers must therefore be conversant in the terms and limitations of the domain, since the domain experts are probably not conversant in the terms and limitations of software engineering. To help overcome this potential communication barrier, elicitation mechanisms are needed to add formality to what could otherwise be a “seat of the pants” methodology.

Informal elicitation mechanisms (such as prototyping, Joint Application Development, Quality Function Deployment, Planguage [8], or good old structured brainstorming) address motivated and able customers who do not know how to express their needs. We conjecture that the root cause of communication barriers is that the term “requirements” is used differently by different parties. The “requirement” that is the output of the elicitation process has a specific meaning to a software or systems engineer. It is a real need of the customer, it is testable, and it may be prioritized. The requirement can also be validated by the customer.

To an uninformed customer, a requirement is often simply only a statement of need. Elicitation mechanisms help overcome this communications barrier by helping the customer understand and state needs in an objective manner. There are interesting side effects of these mechanisms. Customers develop an ownership in the outcome of the development effort and better understand the problem that is being solved. The customer’s needs and desires (nice-to-haves) are explicitly separated. Developers establish a working relationship with the customer and have an understanding of what the problem is and where trade-offs can be made.

Despite the hype, formal methods are not a complete solution. They are not effective in involving the customer; however, they are effective in gaining greater understanding of constrained parts of the problem domain. They can assist an elicitation approach based on informal techniques but cannot stand on their own.

The adoption of elicitation technologies first requires the recognition that elicitation can be a problem and recognition that the term “requirement” has different meanings to different people. Once this occurs, the straightforward plan is to obtain training for the organization’s elicitors in a variety of elicitation techniques and interpersonal skills. Practicing elicitation on real projects involves the use of a variety of elicitation and validation techniques that together increase the probability that the customer has properly stated its real requirements and that the development organization understands them. Organizations need to recognize that elicitation is a skill learned through practice. Practitioners generally are proficient after training but not expert until after several projects.

Requirements Analysis

Requirements analysis serves two primary purposes:

•
It is used to make qualitative judgments, i.e., consistency, feasibility, about the systems requirements.

•
It is a technical step in most systems development lifecycles in which an extremely high-level design of the system is completed. This high-level design consists of decomposing the system into components and specifying the component interfaces. The critical output for most software development requirements analysis activities is the interface specification for the decomposed components.

There are a number of well-understood technical approaches to analysis, i.e., OMT, Schlaer Mellor, Structured Analysis, and UML. Most have good commercial tool support. Organizations do not have difficulty in finding experts, in developing (through training, mentoring, and experience) experts or in finding tools to support their analysis efforts. Instead, technology problems arise from both over and under analysis. For example, well-funded programs tend to overanalyze. They analyze everything that can be analyzed without first determining what should be analyzed. Often, detailed design occurs during this analysis phase. Programs with cost constraints suffer the opposite fate. They tend to under analyze, probably as a cost savings measure.

Plenty of methods and tools support analysis, and there are both tool-related and training-related technology adoption issues. Tool-related problems occur when there are inconsistencies between a tool’s implied development process and the organization’s standard development process. Tool vendors have come a long way this decade in addressing this issue, but it has not gone away. Tools become “shelfware” if they impose their process over the organization’s process, even if the organization’s process is undefined and ad hoc.

To adopt requirements analysis successfully, pilot the analysis methods manually, then identify what steps need to be automated, then make a tool selection, then tailor the tools use, then use the tool. Over time, the organization’s process can gradually evolve.

We have observed that standard training plans are often inadequate to address new analysis methods. The detailed training of how to apply a method or a tool is necessary but not sufficient. Education may also be needed if the new method is radically different—as object-oriented differs from structured—from established methods. In addition, mentoring on the first pilot project is necessary for all but a few individuals. When adopting new analysis methods, always plan for education, training, and mentoring.

Requirements Management

Requirements management addresses aspects of controlling requirements entities. Requirements change during and after development. The accepted requirements volatility metric is 1 percent of requirements per month [10]. If it is much less, one should ask oneself if the system will be desirable to its intended audience. If it is much more than 2 percent a month, development chaos is all but assured.

Requirements management is the requirements issue that most impacts military software projects. In a 1993 report, Capers Jones found that 70 percent of all military software projects are at programmatic risk because of requirements volatility [10]. The root causes (discussed below) of this volatility have not disappeared, so we believe his finding is still true.

With one exception, requirements volatility is uncontrollable. It will occur as a byproduct of building a useful product, and one’s development processes needs to account for it. Software systems do not exist in isolation. As a new system is built, the system will affect its environment, which will in turn change its environmental requirements. This is inevitable and indicates one is building the right system.

Most development efforts, and all development efforts for which requirements management is important, take time, sometimes on the order of years. Over these periods, underlying technologies, user expectations, and even laws change, to name just a few of the many possible external interfaces. If one is not getting requirements change requests on large projects, one needs to ask why. The one source of volatility that can be controlled is the quality of the initial requirements specification. Good elicitation techniques can limit rework as a cause of volatility.

Requirements Management Technologies

Fortunately, the technologies needed to address the requirements volatility issue are relatively simple. The organization needs a defined interface mechanism with its customer by which requirements are changed, a mechanism (usually a configuration management system or an RM tool) capable of defining the current requirements baseline, and a development approach, i.e., incremental lifecycle, that supports the anticipated requirements volatility. The primary adoption issues that must be addressed are

•
Building senior management recognition that this defined mechanism is necessary.

•
Having the discipline to always follow this change mechanism.

The old adage that “the customer is always right” is not an absolute. When customers ask for a requirements change, they must be told the impacts of that change, usually in terms of other prior commitments, and then be allowed to make the final decision. The software development organization must never unilaterally add a requirement.

Tools and Adoption Technologies

Effective management usually implies both exerting control over and knowing the status of requirements. There is a whole class of RM tools (such as Requisite Pro, DOORS, RTM, and Caliber-RM) that automate the tracking of requirements across lifecycle phases. They also support many of the requirements baselining and requirements documentation issues. They are particularly useful for programs that wish to follow a requirements-centric development approach. Technology adoption issues associated with these tools are the standard issues for tools. Understand what the tool will be used for, find a tool that meets those needs, then build a plan for adopting the tool, being careful that the tool not be used for purposes beyond identified needs.

The Software Capability Maturity Model (SW-CMM) (and to some extent the Systems Engineering and the Software Acquisition CMMs) includes requirements management as a Level 2 key process area (KPA). Within this context, the requirements management KPA only applies to managing requirements change. Other requirements management tracking and status activities could apply as part of the Level 3 SW-CMM KPA, Software Product Engineering, depending on the organization’s development approach. When implementing a CMM-based technology change program, remember that managing the customer interface comes first. A second step might be tracking the status of requirements across the development lifecycle and using that information to manage the development.

Requirements Validation and Verification

The requirements verification and validation (V&V) portion of RE addresses how quality is built into the RE process. Validation (“Are we building the right system?”) addresses the issue of building the system the customer wants. This quality step should identify missing and extra requirements. Validation activities always occur as part of system acceptance testing and also typically, but not always, as part of the elicitation process. There are several orders of magnitude cost difference in requirements misunderstandings that are identified as part of elicitation, before development resources have been expended, vs. those that are found during system acceptance testing. This points out the critical need for the elicitation process to include validation.

Customer and domain expert input are necessary for validation. In fact, attempting to validate a system without customer input is equivalent, in the words of one of our customers, to designing a “self-licking ice cream cone.” The necessity of user input is another reason formal methods are insufficient for building systems—the customer usually cannot understand and does not want to learn how to validate using formal mechanisms. Mechanisms that a customer can easily understand (and hence easily validate) are almost always based on clear language and easily understandable pictures—input the customer can already comprehend. If the customer has to learn a new notation or method to validate a system, a new quality issue is introduced to the validation process: lack of a clear understanding of the method. The focus needs to be on the solution, not on the method.

Verification (“Did we build the system right?”) addresses the issue of meeting all the requirements. Typically, the verification method and sometimes the verification level is included in the requirements specification. Verification methods include demonstration (observable functional requirements), analysis (collected and processed data), simulation (use of a special tool or environment to simulate the real world), and inspection (examination of source code and documentation). Verification levels depend on the intended development environment. They specify the development lifecycle stage at which the verification will be performed, i.e., unit test, integration test, system installation, or flight test.

From a technology adoption perspective, requirements V&V is a question of designing a development lifecycle that meets the needs of the product. Emphasis needs to be placed on validation in the elicitation phase. It should be considered software engineering malpractice if requirements V&V is not also included during design and coding phases. Validation and verification must be performed after the system has been built.

Requirements Documentation

There are a number of potential standards for structuring requirements specifications. American National Standards Institute/Institute of Electrical and Electronics Engineers-STD 830-1993 specifically addresses requirements specifications. The lifecycle standards Electronic Industries Association (EIA)/IEEE 12207 and the withdrawn standards MIL-STD-2167A and MIL-STD-498 specify another similar format. The basic contents of all these are the same: They all include an overall description, external interfaces, functional requirements, performance requirements, design constraints, and quality attributes.

Another school of thought posits that there should be a bare minimum of requirements documentation. A concept of operation document or a users manual are all that are needed for a requirements statement. This makes sense for applications where time to market is more important than long-term maintainability.

Adopting requirements documentation technology is fairly straightforward. One should choose a standard that fits the lifecycle requirements of the system, tailor that standard to fit the system’s specific requirements, then apply it. If one intends to use an RM or a requirements analysis tool to automate a portion of the document generation, one should pilot the documentation process. Experience has always shown this to be much more difficult than originally envisioned.

Technology Adoption

Changing the software process in your organization cannot be accomplished in a “sink or swim” manner.  Instead, you must plan for change by having a change process.  A technology adoption process will increase the probability of a successful technology change.  Part of the process is to get “user buy-in” – you have to successfully motivate the change from with the organization.  Forcing a change upon people often causes resistance.  Remember to inform your people of why you are changing the process, and what the potential benefits are.  Other principles to help you reap maximum benefits from process changes are listed below.  

Small Steps

To build adoption plans, two adoption principles must be adhered to. First is the principle of small steps. Many small process improvement steps have a greater chance of success than one giant process improvement leap.

To build a requirements-centric development process, one cannot jump right to the final state. Instead, the first step might be to get all one’s requirements changes under control. The second step would be to pilot an RM tool that reports the development status of every requirement and produces requirements documents. The final step would be to use requirements status information to manage one’s development efforts.

Address All Organizational Levels

The second adoption principle is that plans must address all levels of the organization: the individual, the project, and the organization in its entirety. 

Adoption Effort

Table 1 examines the technology adoption issues for each of the requirements technologies from the perspective of various organizational levels. Although all issues need to be addressed, those that are bold italicized are the issues critical to adoption success for each of the technology areas.
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Table 1. Requirements engineering technology adoption issues.

Finally, there is the question of how hard technologies are to adopt. Some technologies require a lot of effort to master. Analysis technologies are an example of this. The elicitation technologies require a medium amount of effort to become proficient but a lot to master. The other requirements technologies all require relatively less amount of effort to master.

Another view of the difficulty of technology adoption is how difficult it is to verify that the technology has been adopted. Elicitation is extremely hard, analysis is moderate, and the others are easy. Table 2, summarizes the relative difficulties of the various requirements technologies. Note that the table only captures relative differences between the various RE technologies and only addresses adoption issues; it does not address the relative difficulty of practicing each of the requirements activities.
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Table 2. Relative difficulties of the various requirements technologies.

We have observed that organizations usually succeed when adopting “easy” technologies, even without outside assistance. They usually fail when adopting “hard” technologies, unless supported by external consultants.

Summary

Requirements engineering is the systems development activity with the highest return on investment payoff. The cost saving resulting from finding errors during verification and validation of requirements can be as high as 200-to-1 [12].

However, the requirements task is inevitably always harder than it first appears. If one were to presuppose that the customers were motivated and able to specify accurate and complete requirements, that the requirements would never change, and that there were no cost or schedule constraints placed on a development, there would not be any requirements issues. Unfortunately, none of these presuppositions are true. RE is the technical field of study that attempts to address and balance these issues.

The requirements phase is the interface between a customer’s needs and the technical development process. The skills needed to perform requirements activities are a marriage of the people skills necessary to interface with the customer and the technical skills needed to understand the development process. At their heart, requirements skills are human based. Tools and technologies can only support requirements activities. When evaluating and adopting new RE technologies, focus on those technologies and adoption issues that support the human requirements engineer. 
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Side Bars

Requirements Engineering Background

Papers as early as 1956 have discussed the importance of requirements definition in software development, but it was not until 1976, at the International Conference on Software Engineering, that requirements engineering was recognized as a sub-discipline of software engineering. In fact, at the 1968-69 NATO software engineering workshops (where the term “software engineering” was first coined), software engineering was explicitly decomposed into only design, code, and test activities [2].

The first time we noticed the term “requirements engineering” was in conjunction with the 1993 International Symposium on Requirements Engineering (RE ’93), the first conference devoted entirely to requirements topics. Before 1993, it seemed that requirements research was stove piped into areas such as “requirements management” or “requirements analysis.” Since 1993, the term “requirements engineering” and its accompanying thesis of holistically addressing all the requirements activities has become widespread. In addition to the RE series of conferences [3], the IEEE’s International Conference on Requirements Engineering [4] meets every other year. The IEEE has also published a seminal collection of RE papers [5].

Bad Requirements Process Leads to Development Failure

In June 1994, the Federal Aviation Administration (FAA) canceled its 10-year effort to modernize the nation’s air control system. About $1.3 billion was written off [6]. In 10 years, the requirements elicitation phase had never come to closure. A requirements specification with a height that could be measured in yards was produced, but it was fundamentally incomplete. This is the most expensive development failure due to a requirements failure of which we are aware. One can argue that there were many other problems with the program, but it was during the requirements process that the program failed.

Tom DeMarco produced a brilliant analysis of what went wrong [7]. He knew he was on the right track when he could not find a keyboard mentioned in the specification. This led to the observation that the customer, the FAA, was unable to specify if the system was to be centralized (Washington office’s desire) or decentralized (controllers’ and regional operating centers’ desire). DeMarco has since lectured extensively that internal customer conflicts like this must be resolved before a specification can be completed and that conflict resolution is an overlooked arrow in a requirements engineer’s quiver. 

Requirements elicitation can help identify internal customer conflict. But the customer—not the requirements engineer—must resolve conflicts or the system being built is doomed to fail.

Ariane Flight 501

Bad Requirements Lead to Systems Failure

On June 4, 1996, the maiden flight of Europe’s Ariane 5 rocket ended in catastrophic failure with a complete destruction of the rocket and its payload [9]. The cause was a software error, perhaps the most expensive software error on record. The root cause of this error was a breakdown in the requirements process—not in the software design or coding processes—that was not caught by the developmental verification and validation process. Within the requirements process, there were problems with elicitation, analysis, and verification and validation.

At liftoff, plus 30 seconds, an operand exception was generated in the Inertial Reference System (SRI) computer during a conversion of a 64-bit floating entity into a 16-bit signed integer. This caused the SRI to crash and output a diagnostic bit pattern. The redundant backup SRI had also crashed 72 milliseconds earlier for the same reason. Ariane 5’s on-board computer interpreted the SRI’s diagnostic bit pattern as valid commands and ordered full nozzle deflections of both the solid boosters and the main engines. The rocket was then destined to break up.

The official Inquiry Board found that the primary causes of the crash were “… specification and design errors in the software …” and “… reviews and tests … did not include adequate analysis and testing.” The software requirements were incomplete and neither the requirements analysis activities or the requirements verification and validation process discovered this omission. They also found fault in exception handing requirements, which basically were to log the error and terminate. This arose from a faulty belief that random hardware failures were the only reason for an exception and that systematic software errors would never occur (systems analysis failure).

The software and software requirements were essentially reused from Ariane 4. An explicit decision had been made to not include the Ariane 5 normal liftoff trajectory as part of the software requirements (requirement elicitation failure). When computing the alignment horizontal bias for the Ariane 5 trajectory, the operand exception will always occur at about liftoff, plus 30 seconds. The operand exception will never occur for the Ariane 4 trajectory in the first 43 seconds of flight. Had the trajectory been included as a requirement, the official Inquiry Board believed that the developer’s analysis and testing process would have observed this exception.

Exception handing had been turned off because of a processor performance requirement (maximum 80 percent processor utilization). The Ariane 4 analysis indicated that horizontal bias would remain within the range of a 16-bit signed integer with the Ariane 4 trajectory. This justification analysis was not easily available to the Ariane 5 development team (requirements process failure). 

The reuse of the Ariane 4 software requirements was also flawed. Ariane 4’s requirement to continue computing alignment (w orizontal bias) for 50 seconds after entering flight mode (liftoff is seven seconds into flight mode) to support a late hold is not needed for Ariane 5. The original requirement may even be a bit hich includes the h flawed, because the alignment calculation is physically meaningless after liftoff (systems analysis failure).

The Inquiry Board also took issue with the verification and validation processes. Its primary finding was that these processes did not identify the defect and were thus a “contributory factor in the failure.” The explanation given for not testing or analyzing the Ariane 5 trajectory was that it was not a part of the requirements specification (requirements verification and validation failure).

Another important aspect of requirements gathering and analysis is the “Second System Effect” [Brooks 1995].  The first version of a system is usually sparse and clean—it does the job in a minimalist manner.  As systems evolve, particularly second-generation systems, users add frills, enhancements, and embellishments.  These are listed as requirements, when in reality, they are desirements.  When you are analyzing requirements, be wary of additional requirements for a second system.  Build only what is needed.  Make sure that users have an idea of the additional time and cost of unnecessary requirements.

One final note: The article mentions software tools.  Software tools (such as Computer-Assisted Software Engineering or [CASE] tools) are useful, because they help automate the mundane documentation of the development effort.  They are as useful to a software engineer or analyst as a word processor is to an author.  Two potential problems occur.  The first is that people often have unrealistic expectations from a software tool.  Productivity gains from the use of a tool by 10 percent to 20 percent, but probably 10 percent on the average [Glass 1999].  This is because most of the hard work is done by the user, not the tool [Davis 1995] and [Kemerer 1992].  In addition, about 70 percent of CASE tools purchased are never used.

In addition, remember that there often is a steep learning curve for any tool prior to achieving benefits. During the learning curve, productivity will go down, not up  [Glass 1999].  Do not think that CASE tools are “silver bullets”: they simply automate part of the drudgery of the development effort.   

2.2  Lifecycle Selection

After gathering and analyzing requirements, the next step to concentrate on is lifecycle selection.  There are several lifecycle processes that can be used.  The important step is to choose a lifecycle that works for your process, then follow it. This lifecycle selection is critically important to the success of a software project, because it provides a framework for the order and interface of the discrete activities.   Organizations that mandate a lifecycle prior to analyzing the project, however, typically produce poor software.  Software problems must be analyzed prior to the selection of an appropriate lifecycle.   Therefore, you need to understand gather, manage, and analyze your requirements prior to selection a lifecycle.  Only after the software requirements have been fully analyzed are you ready to select an appropriate lifecycle.

Following are some typical lifecycle choices.  Because lifecycle selection is so critical to the success of a project, do not select a lifecycle simply because of familiarity or prior experience.  Make the lifecycle model you select work for you, instead of forcing your production efforts into a poor lifecycle choice.

2.2.1  Waterfall Lifecycle Model

The Waterfall Lifecycle Model is quite old, and was for many years mandated by the DoD.  Military Standard 2167 called for software development using the waterfall model.  
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Figure 2.  The Waterfall Model.

Although the Waterfall Model was important historically (developed around 1970), it is now viewed as too simplistic for complex software development.   Modifications to this model include the exploratory model (in which incremental analysis, design, and implementation is repeated to help users fully understand what requirements they need).  Another modification is the prototyping model (in which incremental analysis, design, and implementation is carried out to help the developer understand how to build the final system).

2.2.2  Waterfall (Spiral) Model

The most successful lifecycle model is probably the spiral model .  It was developed by Barry Boehm [Boehm 1988] and is based on the fact that most organizations need to perform certain lifecycle activities several times (in sequence) to arrive at the final product.  
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Figure 3.  The Spiral Lifecycle Model.

Central to the organization of the spiral model is that certain activities (such as risk analysis, review, and software planning) are repeated each time through the lifecycle.  This allows developers to incrementally work on the software, developing a validated understanding of what the software needs to do and what the user needs.  

One useful attribute of the spiral model is that it is highly configurable— different steps can be taken on each loop through the development model, allowing you to tailor the process model to your individual organizational and software needs. 

Once requirements have been gathered and analyzed and an appropriate lifecycle chosen, a combination of discrete and continuous activities occur to completely develop the software.  For example, if your organization is still using the Waterfall Model, your activities would closely resemble those displayed in Figure 1.  To understand what each discrete and continuous activity is, we need to examine each in detail.  

2.3  Design 

The design phase is intended to be a transition phase.  It is the foundation—the kernel of engineered software.  During this phase, the requirements are transitions from a mind or a paper image to a resource- allocated entity or characteristics of an entity.  The process is an iterative refining clarification and allocation of the requirement’s image into a design.  This transition process is described by J. Christopher Jones, one of the classic design experts of our time, in his book, Design Methods: Seeds of Human Futures (Jones, 1970) as a vision of the future.  “The fundamental problem is that designers are obliged to use current information to predict a future state that will not come about unless their predictions are correct.  The final outcome of designing has to be assumed before the means to achieving it can be explored: the designers have to work backwards in time from an assumed effect upon the world to the beginning of a chain of events that will bring the effect about.”  Software designers get requirements as events or characteristics of an event and then must layout the blueprint to make the events or characteristics happen.  This blueprint occurs in either a haphazard or a disciplined manner, but it always occurs.  The blueprint should be assessable for quality.

The design phase of a system development or maintenance lifecycle can be subdivided further into system design and module (or software) design.  Activities that occur during this phase are elements such as detailed requirement allocation (partitioning) to hardware, software (program and database), humans, and other elements; software module interface definitions; man-machine interfaces (screens and reports); creation of the integration and unit test plans; and module design (layout).

The system design portion of the design phase is where decisions are made on the requirements allocated to resources.  The resources that might be available are humans, software, phone or network connections, hardware, or some other item.  Even for “software systems,” thought should be taken in the allocation of resources.  Consider a simple information system where the requirement is to allow people at multiple sites to furnish information for the system.  You must consider: Do we allow everyone to enter their own information (passwords, telephone lines, data assurance, etc.), or do we have someone enter everyone’s data (information passing—e-mail, mail, etc.);  What is the size of the data we need to store; back-ups to the system; security of data and system; maintenance of hardware, software, and database; and other issues.  The system design phase ought to be the time to layout the options, discuss alternatives, and make system decisions.

The software design should be done in a layered or modular fashion.  Modularity in both the data and functionality enables the independent use and testing of individual modules and requirements.  This allows a system to be built on tested blocks and not merely thrown together and tested in the “smoke test” (all or nothing) method.

The state of the practice in design is a method called BONSOP (back of napkin, seat of pants) or BOSCON (back of seat, corner of napkin).  This method requires no training and no tools.  The developers just look at the requirements they know about and try to code them.  This type of design leads to spaghetti code or an unmaintainable monolithic program (UMP) (which is also the sound made by the person who has to try to maintain the design).  Other problems with the BONSOP method are designers normally do not note the assumptions they made during the development and do not write any test plans to measure how a requirement is satisfied.  With no test plan developed, the software program is then tested by the “test this and see if it works,” or “it did not crash; therefore, it must work” methods. 

Disciplined software design can be separated into four major efforts or areas: data design, architectural design, interface design, and characteristic or procedural design (detailed or component design).  Data design transforms data requirements into data structures.  Architectural design defines the major structures and their relationships to each other.  Interface design identifies how the components communicate with each other and the outside world.  Characteristic or procedural design transforms data structures and the architecture into low-level software elements or components.  Each of these four design activities leads to refined requirements and a successively clearer design blueprint.

The disciplined design environment assembles or structures the requirements into hierarchic designs based on function or object views.  The two general categories of disciplined design methods are functional design (Structure Design) and object-based design (Object-Oriented design).  These methods use mathematical and graphical notations to enable the human mind to visualize the design of the requirements.  Roger Pressman expresses it this way in his book Software Engineering a Practitioner’s Approach (4th ed.) [Pressman, 1997]: ”A picture is worth a thousand words,” but it’s rather important to know which picture and which 1,000 words.  There is no question that graphical tools, such as the flowchart or box diagram, provide excellent pictorial patterns that readily depict procedural detail.  However, if graphical tools are misused, the wrong picture may lead to the wrong software.  Use of these methods therefore require training, experience, and to a large extent, tool support.  With these two methods, you focus on different elements of the requirements to achieve a complete design.

Functional designs focus on the algorithms (functions or operations) inherent in the requirements as the primary building block.  The data structure is identified in operation groups and not in groupings of who or where from which the information came.  Coupling, interaction between operations, is along functional areas:  “What the software needs to do” and not “who needs to do what.”  Global data packages are common in functional designs, since many different modules operate on the same data elements to achieve the necessary outcome.  An example of this is an outline of how to make tea.  

Object-oriented designs focus on the classes, objects, or players involved in and interacting with the requirements as the defining building blocks.  The data structure is grouped by players and the information each player needs to do its job.  Coupling is between players or objects.  One object giving another only the information it needs to complete its job. Interfaces are critical and highly structured, since local (object) data is one of the founding principles.  An example of this is the diagram space shuttle.

Partitioning should be mentioned as a key element of a high-quality design.  Partitioning is a design technique to isolate software components.  This technique enables erroneous conditions to be localized to software components where the error condition arose.  Thus, errors will be identified and corrected locally and early with minimal disruption of the normal software flow.  Partitioning, when strictly enforced, also sanctions testing, validation, and certification of individual software components.  The sanctioned components can then be used to create a system more efficiently, since each component can verify it has corrected the errors that component introduced.

2.4  Implementation (Coding)

Many organizations place great emphasis on coding.  After all, they assume that coding is where the “real requirements” are fleshed out, and where a quality product is built.  Nothing could be further from the truth.  In fact, coding should have much less importance than requirements analysis and design. 

The implementation should focus on translating the design into code.  Typically, however, the design (and sometimes even the requirements) is not complete when coding starts.  It is fundamentally important, then, for the implementers to keep informed of all changes in requirements and interfaces during implementation.  As the requirements change, changes will occur in the design (which drives the interfaces).  This will, in turn, drive changes in the code.  Good configuration management plans and documentation management plans (discussed later) give implementers the ability to modify their code during creation to reflect changing requirements and design.

Quality must be a major focus during this phase.  Quality cannot be added during test or during maintenance.  Instead, you must strive to produce quality code initially.  

Language selection plays an extremely important role.  Large systems are also typically long-lived systems.  The chosen language also plays an extremely important role in the maintainability of the system.

The Air Force uses a few standard languages.  Business-oriented applications typically are programmed in COBOL.  For data processing applications, this is probably the correct choice.  

Scientific applications (including embedded and real-time) systems do not have such a clear-cut choice.  The choices typically trim down to three:  Fortran, C (or C++), and Ada.  Older applications are sometimes fielded in JOVIAL, but few new ones.  FORTRAN is also considered an “older” language, having been around since the 1950s.  It lacks many features that contribute to current software engineering best practices and has no capabilities for easy object-oriented programming.  It should be avoided with new applications.  

C has become a defacto standard for many applications.  It is portable, but implementations on different platforms have different system libraries, causing the behavior of C programs to change if the system is rehosted during its lifetime.  C is a highly terse language and not easily maintained.  Systems that are scheduled for a long lifecycle should examine the issues of maintenance.  Interfaces in C tend to be pointers and single values.  You cannot pass arrays or records and then enforce the abstraction.  Instead, you pass a pointer to the record or array.  Once a called procedure has the address, there is no limit to the way the called procedure uses the data.  This inability to enforce an abstraction (by limiting the operations that can be performed on a data structure) makes C a dangerous language for writing safe and maintainable code.  

C++ is an object-oriented extension of C.  It allows all C features and also includes features to allow the building of classes and hierarchies.  Its main problem is that it also contains all of the unreadability and unmaintainability of C.  Nevertheless, it is widely used.  If your project is going to be developed in C or C++, you must stress understandability and maintainability during code creation.  You must enforce partitioning and modularity and enforce coding standards (to include meaningful name and limited use of access types or pointers).  Implement and enforce coding standards and have frequent peer reviews to increase quality.  

Ada (sometimes called Ada95) is the successor to Ada83, which was first implemented in the 1980s.  It was designed for real-time and embedded systems use but quickly became a general-purpose language.  It was designed for maintainability and understandability and contains object-oriented features as powerful as those in C++.  For a period of time in the 1980s and 1990s, it was mandated for use in critical Department of Defense (DoD) systems, but the mandate has since been repealed.  Although there are many political and training issues involved with Ada, Ada code appears to be more maintainable and modifiable for long-lived projects.  Ada contains features that promote quality—strong type-checking, enforced abstractions, and good exception (error)-handling features.  No better language exists for mission-critical systems that will have a long life.  It is faster and easier to train programmers to use the quality-producing features of Ada than it is test and debug resulting errors from other languages.  

The downside of Ada is twofold.  First, most programmers available for DoD use are unfamiliar with it.  Second, to correctly use Ada and its’ constructs require that you follow good software engineering principles (such as using information hiding, abstractions, and strong typing).  These principles are often not properly taught in college and technical schools resulting in poor implementers.  

Language selection is an important part of system analysis—and it plays a role in the future maintainability and modifiability of your system.  Do not make this selection lightly; instead, treat it as a topic that requires research and analysis, just like systems requirements.

In 1996, Patricia Lawlis of C. J. Kemp Systems, Inc. wrote an excellent article entitled “Guidelines for Choosing a Computer Language: Support for the Visionary Organization.”  This article was solicited by the Defense Information Systems Agency (DISA) and is one of the better articles on what factors to consider when choosing a programming language.  It is included at the end of this report as Attachment 1.  

2.5  Testing

Most organizations use testing as a way to identify and correct errors.  Although this is indeed a goal of the testing process, it is far too limited.  Testing should also be used to ensure quality and to modify the process via feedback so that errors are prevented, rather than corrected.  The primary goal of testing, then, should be to make sure that error trends or commonly occurring errors do not recur.  This is done by not only identifying and correcting errors but also by tracing the root causes of these errors.  If the root cause of errors is a problem with incorrect or incomplete requirements, use this feedback to modify the requirements- gathering process or the requirements review process.  If the root cause of many errors tend to be coding errors, modify the process to include (or increase) code reviews, code review checklist items, or schedule additional peer reviews during the implementation phase.  In any case, to get the most ROI (return on investment) from your testing efforts, you need to

· Track the root causes of the errors you find.

· Modify the software development process to eliminate or minimize the causes of the errors.

· Measure the effectiveness of your process modification.

It is important to remember that industry data shows that only 50 Percent of all errors are found during testing.  The rest will only be found through use of the delivered software.  To ensure good customer relations and to produce quality software, the focus of the testing phase should be on using testing to eliminate root causes of errors.  Using the test phase merely to fix errors is a waste of time and a missed opportunity to improve the entire software creation process.

In addition, organizations need to put testing in perspective.  Testing does not verify correctness; it merely exposes flaws.  Gerald Weinberg says that “Though copious errors guarantee worthlessness, zero errors says nothing about the value of software”  [Weinberg 1992].  This says two things:  The first is obvious.  Software with many errors is worthless.  However, software with zero errors also may or may not be worthless.  Unless you work to validate the software (making sure that the software you are building is solving the problem for the end users), error-free software may also be worthless [Davis 1995].

One common mistake in large projects is to decrease the amount of time in testing and the project deadline approach.  Unfortunately, most software projects are late.  As deadline after deadline passes, many managers will look at testing as an activity that can be cut (or shortened) to speed the project.  But, as mentioned above, the testing phase identifies, corrects, and eliminates the causes of errors.  Obviously, if you decrease test time, the number of remaining errors increases.  It is not so obvious that decreasing test time eliminates the opportunity to modify the software creation process to eliminate the causes of the errors.  When errors that are missed in the test phase are found (perhaps during maintenance), the opportunity to eliminate the root causes has passed.  Decreasing test time only decreases quality; it does not decrease the time to deliver the software.  The errors will still be there, and they will still require fixing prior to user acceptance of the software.

For further references on testing, see [Pressman 1997].

There are several types of testing; in fact, testing should usually be identified as unit testing as opposed to all other types of testing.  

2.5.1  Unit testing

Unit testing means that you are testing a single unit of code to see if it meets the requirements.  The unit is usually tested with stubs or drivers to allow testing of only the selected unit.  

To maximize unit testing effectiveness, unit testing should be done by other than the unit developers.  The developers of a unit are too close to the code and are often unable to see obvious errors.  In addition, they unconsciously hope that the unit will not fail during testing, and this frequently guides them in selection of their test cases.  Even so, time and cost limits often force developers to unit test their own code.  If this occurs in your organization, you need to make sure that the developers are not merely running token test cases but are honestly trying to identify errors in their code.  One way to ensure this is see what type of tests are being run against these code modules.  There are two basic types of unit testing strategies: white-box testing and black-box testing.  It is critical that both types of testing be performed on each code module. 


2.5.1.1  White-Box Testing

In this type of testing, unit testers have access to the actual code of the unit.  The testers can plan their tests by examining the code prior to preparing test cases.  Typical white-box tests (but not limited to) include branch-coverage testing, statement testing, loop testing, and coverage testing.  Again, for further references on white-box testing, see [Pressman 1997].  Although the Software Technology Support Center is a proponent of having a trained test team for the testing process, the developer can assist during white-box testing (since the developer has the best knowledge of the actual code).  White-box testing is necessary to assure that the code does what it is supposed to do.  In addition, white-box testing demonstrates that there is no additional code present performing actions that are not required.  This “additional code” can either be an error or malicious code.  

2.5.1.2  Black-Box Testing

This type of testing is done to show that the unit works when confronted by typical input.  In a sense, this tests focuses on the functional requirements of the software, when confronted by typical input.  Multiple types of black-box testing exist [Pressman 1977].  The main point to remember is that the sheer size of all different input transactions makes complete black-box testing impossible.  Techniques to limit the number of test cases include equivalence partitioning (dividing the input into representative classes) and boundary value analysis (testing inputs at the edges of valid input classes, rather than selecting typical values in the middle of the input).

Another important point to remember in black-box testing is that testing of invalid inputs is also required.  

2.5.1.3  Static Testing 

Static testing refers to inspecting the code using tools, without executing the code.  This type of testing should be done during unit testing and can be used to see if all variables have been declared and initialized or never used.  Specialized tools for most languages exist that will perform a variety of checks on the code.  The use of static test tools should be standardized and enforced on a project. 

2.5.1.4  Dynamic Testing

Dynamic testing refers to tests that examine the state of your program during a sample run.  In essence, it examines the execution paths a run takes and also examines memory usage during a run.  It is typically performed during unit testing, if at all practical.  Sometimes integration issues prevent you from performing dynamic testing prior to integration.

Dynamic test tools are highly specialized in reference to hardware platforms and to a lesser extent, by language.  Example outputs of a dynamic test tool include a list of which portions of the code were executed (and which were not), how frequently each portion was executed, which variables are accessed most frequently, and how many system or library calls during a run.  Examination of this output can help you determine how to make a system efficient. 

2.5.2  Integration testing

After each unit has been tested, it is necessary to test the interfaces between units.  This is perhaps the most critical part of the testing phase.  Whereas unit testing tests individual modules, integration testing focuses on how the modules fit together.  Because complex systems typically have many developers, interdeveloper communication is difficult.  In addition, the sheer size of the requirements and the changes to the requirements typically result in modules that are developed in isolation.  As Michael S. Deutsch of Hughes Information Technology Systems says, “If you don’t know any other risk areas, look at interfaces.  They are most likely to be problem areas.”  

Interfaces are such high-risk failure areas because design is sometimes not fully completed before implementation (coding) begins.  Units developed prior to design completion are likely to have incomplete or incorrect interface specifications.  These incomplete or incorrect interfaces will not show up during unit testing.  When they are discovered during integration testing, the units typically cannot be modified to provide a fix; instead, the design will have to be re-examined, the interface problems corrected, and then all affected units modified.  The following diagram explains the fallback effect.  It also explains why it is critical to complete requirements and design prior to implementation.

The emphasis during this phase of testing is to examine interactions between different units.  Parameters and global variables must be examined, and all possible interactions between units must be tested.  

Figure 4 shows the relationship between unit test errors, design test errors, and system test errors.  Again, the most likely point of failure is interface failures that occur during integration testing.
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Figure 4. Fallbacks in case of errors during testing. 

2.5.3  System testing

Assuming that unit and integration testing are successful, the next step is to put the entire system together and see if it works as a whole.  The purpose of this type of testing is not to see if the units or interfaces work — that has already been established—but for validation; that is, showing that the system meets the requirements.  Test plans for system testing ideally were developed during requirements gathering and analysis and can also be used for acceptance testing (where the end user takes the results of the test as proof that the system meets requirements). 

If system testing fails, the project has serious errors.  The units and interfaces are all correct, but the overall system fails to meet user needs.  This means that the requirements analysis phase was incorrect—the system was written to meet invalid (or incomplete) requirements.  The only fix is to re-examine the user needs and produce a revised or corrected set of requirements.  This then requires a redesign of the system, followed by additions, deletions, and changes to the code.  

The natural response to a failure in systems testing is to “quick-fix” (also known as a band aid fix) the error; that is, make quick changes to the code to meet user needs. Although there are times when a quick-fix is appropriate (for extremely minor errors), it is usually a path to failure.  A system where requirements-level problems are immediately fixed in code causes ripple effects.  Ripple effects start when one simple change causes other problems, which lead to other simple changes, when in turn cause more problems, until eventually the system has so many quick-fixes that it can not be maintained or modified without causing the system to crash.

Errors in systems testing require re-examination of the requirements, modifications to the design, and only then, modifications or additions to the code.  

2.5.4  Other types of testing

2.5.4.1  Recovery Testing

Recovery testing is a systems-level test that forces the system to fail in a variety of ways and verifies that recovery is properly handled.  This type of testing is required for real-time or embedded systems where automated recovery is required.  The focus is seeing how the system handles unexpected conditions.  

2.5.4.2  Security Testing

The security test focuses on verification of the protection mechanisms built into the system.  It is designed to see how secure the system is from improper penetration and malicious use. 

2.5.4.3  Stress Testing

Stress testing determines under what conditions the system will fail.  Typical use conditions (and limits to operating conditions) should be specified in the requirements.  Users sometimes want to know how much they can stress the system before it fails.  The analogy is that a 10-ton bridge can certainly hold a 10-ton truck.  It is impractical, however, to see how much of a load the bridge can handle before it collapses.  In software, however, we can see how many additional users the system can handle before it crashes.  Other things to stress test might include number of transactions per day, size of transactions, and abnormal conditions (failure of network, power failure, etc.)

2.5.4.4  Acceptance Testing

As mentioned in systems testing, the acceptance test is a formal test that demonstrates to the user that the system meets all specified needs.  In a good project, the criteria for an acceptance test will be used as part of the system test.  If a project has passed the system test, then fails an acceptance test, the system testing was seriously inadequate.    

2.5.5  Testing after a change - Regression Testing

This is not a phase in testing but a testing technique.  Regression testing occurs when any change is made to an existing system.  It is a test that ensures the system still works even after changes.  After a change is made, you must test to make sure of two things: that the changed portion of the system now works properly, and that functionality other than the change is unaffected.  This is extremely difficult and sometimes requires a complete retesting of the entire system.  This is extremely time consuming, especially for trivial or minor changes.  To prevent complete retesting after a change, good design and quality documentation are important.  If you can easily identify affected modules and limit interface changes, only unit testing of modified modules might be required.  This greatly cuts down on the amount of time for regression testing.  If a long system life and frequent changes are predicted for your system, regression testing will be important.  To minimize the time, concentrate on good documentation starting with the requirements analysis phase.  In addition, focus on a simple, modular design that is based on information hiding (limiting access of data to only those modules that absolutely require access) and abstractions (where the components of the system are modularized in a manner that reflects the physical components of the system)

2.6  Maintenance

Maintenance is often thought of as the final activity in the software lifecycle.  It is the final discrete activity and also the activity that lasts the longest.  Many things have to be considered to prepare for and enter maintenance.

Maintenance is worthy of much attention, because your customers will see your maintenance efforts for a long time.  Unfortunately, maintenance efforts typically are not encouraging to customers; some maintenance organizations report that between 20 percent and 50 percent of changes to a program undergoing maintenance result in additional errors.  These statistics make configuration management and change control (discussed later) extremely important [Davis 1995] and [Humphrey 1989].  Maintenance is hard work.  In fact, believing that a change is easy makes it likely that the change will be made incorrectly  [Weinberg 1992].

First of all, good maintenance requires configuration management (discussed later) and good documentation.  Configuration management is important because it determines which changes are to be accomplished.  There are typically three types of maintenance:  adaptive, perfective, and corrective.

2.6.1  Adaptive maintenance

Adaptive maintenance refers to changing software to adapt to a changing environment.  DoD software is typically long-lived.  The hardware environment that software is developed for can change dramatically over a 10 plus year lifecycle.  Adaptive maintenance requires you to go back over the requirements, identify those requirements that are affected by the environment, identify the design changes necessary, and affect those changes in the code.  After the changes are made, retesting is required.  For adaptive maintenance, retesting is often extensive and frequently more time consuming than the original system.  This occurs because the new system has many of the parts of the original system but also has many new and modified parts.  Testing must ensure that the original parts still work, that the new and modified work as required, and that functionality of the original system is not inhibited by the new or modified parts.  This is extremely difficult.  Regression testing is required and for large adaptive maintenance efforts, complete retesting, to a new series of tests, is required. 

2.6.2  Perfective maintenance

Perfective maintenance refers to taking software that works and modifying it to be better.  It is unique in that you are modifying software that already is “correct” and modifying it so that the average user will be unaware of any changes.  This sounds strange but often is a necessity.  During development, sometimes shortcuts (in terms of optimal algorithms, good database design, etc.) are made because of time pressure.  Many times, implementers will say to themselves, “I need to make this better, faster, and more efficient when I get a chance.”  

Perfective maintenance, although of lower priority than other maintenance efforts, provides implementers the opportunity to “do it right.”  Care must be taken, however, that these perfective changes do no antagonize the user by transforming a working system into one that does not work.  Careful testing of perfective changes is required, perhaps more so than any other type of maintenance.  In both adaptive and corrective maintenance, the users know there is a problem.  In perfective maintenance, no problem exists, so great care must be taken not to introduce one.  In addition, the results from static and dynamic test tools (See Testing Section, page 21) can be examined to ensure that perfective changes are not being performed on seldom-used pieces of code.  

Be wary, however, of perfective maintenance just for “something to do.”  As noted above, maintenance causes more errors than development.  No matter how small the change, you must perform some testing  [Davis 1995] and [McConnell 1993].  Also understand that structuring unstructured code does not necessarily improve it [Arthur 1988].  To improve quality, you might have to redesign the module and re-examine the requirements.  

2.6.3  Corrective maintenance  

Corrective maintenance refers to the process of fixing errors in the system.  These errors can be field trouble reports (from the users) or internal (discovered in-house).  Corrective fixes can, of course, range from the simple to the complex.  The most important part of corrective maintenance is updating and maintaining the documentation so that future modifications to the system will have accurate documentation.  Configuration management is also extremely important, because it determines when the fixed program is released and also ensures that all users in the field are running the proper version of the software.

3  Continuous Activities

As opposed to discrete activities, continuous activities are performed during the entire software development lifecycle.  

The first overall continuous activity is managing the software project.  Although not typically thought of as a part of the software development process, the management of the project is perhaps the most crucial part of the development.  Software projects typically have numerous “customers.”  They can range from the actual end users, the organization funding the project, acquisition managers, and military and other government agencies.  Each organization connected with the software usually has a separate agenda (in terms of requirements, time, and costs).  A successful project manager must have the ability to juggle these (possibly conflicting) agendas, handle political matters, and plan ahead for necessary resources (equipment, time, money, and personnel).   

Requirements management is also a continuous activity, although we listed requirements analysis as a discrete activity.  The reason that requirements management is also a continuous activity is that, as mentioned in the Crosstalk article (page 4) above, requirements continually change during the development of the software.  A process must be in place to handle or collect these changing requirements, distribute them to all affected developers, and ensure that all requirements documentation is kept up-to-date and available for review.

In a sense, all continuous activities fall under the heading of Quality Assurance.  Continuous activities strive to inject quality into the software production process and have feedback mechanisms to improve the quality.  Even though Quality Assurance is discussed separately below, remember that all of the activities in this section could be termed quality-enhancement processes.  This leads to the conclusion that software projects that focus on discrete activities, and ignore the continuous activities, are in great danger of failing. 
3.1  Configuration Management. 

Configuration management is a highly complex activity, with responsibilities that range from controlling and updating documentation to accepting and evaluating change requests and error reports.  It is critically important to have configuration management in place from the beginning of the project.  Accurate and up-to-date storage and organization of requirements and requirement analysis rationale and decisions is required.  Most large projects require a configuration management team—configuration management is typically not a part-time or distributed activity.

The biggest problem with configuration management is deciding when and how to baseline.  When you baseline a product, you place it under configuration management so that all updates and changes to the product are coordinated and controlled.  Obviously, you do not want to baseline too early—documents and products in early stages of development are fluid and change frequently.  However, if you baseline too late, you risk a failure to track a change and notify those that the change affects.  For large projects, the sheer amount of material that must be baselined requires trained personnel to organize and categorize the material, so that it can easily be referenced and updated as needed. 

Another important configuration management function is creating a Configuration Control Board (CCB).  Once a product has been baselined, changes must be approved and controlled.  The CCB determines if the changes are required, analyzes the cost and effects, and makes a go, no-go decision.  When trouble reports or change requests come in, the same decision-making process must be performed.  If a decision is made not to implement a change or fix an error, the CCB must be able to explain their rationale.  On the other hand, once a decision to implement a change is made, a configuration management process must be in place to make the change in an organized manner.

Another important task of the configuration management team is to ensure that releases to the software are distributed in a timely and coordinated manner.  If there are too many releases per year, and much time is spent preparing them, little maintenance work gets done.  On the other hand, if you have too few releases, your customers will not get timely changes and error fixes.

The point is this:  Configuration management requires trained personnel who are acquainted with the problems.  Spend additional time acquiring (or training) a good configuration management team, and maintenance will be much easier.  In addition, you will gain customer goodwill, because the configuration management team is typically the only customer interface once the system has been fielded and released.  

3.2  Quality Assurance—Verification and Validation

Software verification and validation (V&V) is a broad topic.  It consists of all activities that are used to ensure that the software works properly and is maintainable in the future.  These activities are usually joined together into a topic referred to as software quality assurance (SQA).  Several activities comprise SQA; testing is one we have already covered.  However, before we can formally discuss quality, we need to define what quality is.  This can be accomplished by defining what we mean by V&V:

Verification - Verifying software means that you are producing software in accordance with some process that has checks and feedback to ensure quality in the creation process.  Verification answers the question “Are we producing the software right?”  

Validation – Validation issues deal with the question “Are we producing the right software?”  This process determines if you are producing software that meets the needs of the user.  Software that is well written and is of high quality is useless if it does not meet user requirements.  

Many separate activities contribute to SQA.  As mentioned above, testing helps ensure quality.  Having a defined software development process and having the maturity to follow it also ensures quality.  Of course, prior to following a process, you must have a process.  The first step, then, in verification is to implement a process for your software project and follow the process.  If you find that you cannot follow the process, modify the process so that is works for you.

There are several other important activities necessary for SQA.  By far, the most important activity is frequent and meaningful reviews at all stages of the process.  Reviews can be used for verification (by having only technical or in-house personnel attend) and for validation (by having users or user representatives attend).  What is important is that reviews start from the requirements analysis phase.  

Reviews should not merely be activities where people get together and say “If nobody has any problems with Program X, lets move on to Program Y.”  Instead, reviews need to be structured around a defined process.  To be effective, reviews need checklists that are appropriate for the activity being reviewed (design, code, etc.)  Checklists need to be formalized by the organization and updated as necessary by the individual.  This permits the reviews to be useful and not just another box to be checked off.  Reviews that are checklist-based are part of a meaningful SQA plan and can help provide measurement and feedback to improve the entire development process.  

In short, if you want to do all you can to ensure a successful and quality product, make sure that you implement frequent reviews.  You also need to make sure that the reviews are effective and meaningful—that they not only identify and correct problems but also provide feedback to the entire process.

3.3  Risk Analysis and Management

Many software projects fail because they were not adequately planned.  Risk management is frequently thought of as a way to manage risks.  This is only partially true.  Risk management (and analysis of the risks) is simply spending the time and money to become aware of things that can impact the development effort.  Good planning is inadequate if you do not know all the facts—and risk management is nothing but fact gathering.

Many political issues affect risk management.  Some organizations merely wish to “keep their heads in the sand.”  Other organizations do not have the budget to perform proper risk planning.  And in many organizations, people are reluctant to come forward and identify risks, for fear of being associated with the risk (or for fear that having identified the risk, it becomes their responsibility).  This is bad for business, because opportunities come from risks.  If your organization is taking no risks when developing products, you are not developing innovative or even mainstream products—you are using technology and ideas that are out-of-date as soon as your software is released.  

As a minimum, you need to know the top risks for your organization [Davis 1995].  If you do not have any clue what your top risks are, do some research.  According to [Boehm 1991], these are always high on the list:

· Personnel shortfalls

· Unrealistic schedules

· Not understanding the requirements

· Building a poor user interface

· Trying to gold-plate when the customer does not want to

· Not controlling changing requirements

· Shortfalls of reusable or interfaced components

· Shortfalls in internally performed tasks

· Shortfalls in externally performed tasks

· Poor response time

· Attempting to exceed the capability of current computer technology

Risk management is a highly complex issue.  If your organization does not have people trained in risk identification, risk documentation, and risk mitigation planning, you need to either invest in training or outside consultants to help you guide your project to successful completion.

3.4  Planning for Maintenance

An often-overlooked activity is planning for future maintenance.  Typically, DoD systems are long-lived, and maintenance activities must continue for many years.  To plan for maintenance requires care in three activities:  design, coding, and documentation.  

Maintainable systems must be well designed.  As with quality, maintainability cannot be added to a system; instead, maintainability is a direct reflection of quality design.  A good design should be modular, highly cohesive (so that each module performs a distinct task, and has all necessary resources to perform the task), and loosely coupled (so that each module depends as little as possible upon other modules for its functionality).  These design guidelines (high modularity, high cohesion, and low coupling) should also be combined with good use of abstractions and information hiding.  Data structures should only be available to modules that need access to them, and only modules that have update needs should be able to modify a data structure.  Of course, good data structures (along with the accompanying functionality to access and modify the data structure) should be promoted with the use of a high-level programming language.  

Coding is another area where maintainability can be achieved.  A good rule to remember is that code is written only once, but read and modified many, many times.  Your organization needs to have good coding standards that promote maintainability, and these standards must be enforced.  Frequent peer review of code under development helps to achieve maintainability.  In addition, good in-line documentation of the code helps.

Good documentation is probably the biggest activity to improve maintainability.  As a project shifts from development to maintenance, developers with experience on the project typically move on to other duties.  When maintenance is needed, you frequently can not find personnel who have experience with the program.  This means that the maintenance personnel will have to try to uncover the error and implement a fix based on existing code and documentation.  It is vitally important that the project documentation be a living, dynamic entity that accurately reflects the current state of all parts of the project (requirements, design, design rationale, coding, and test cases and results).  

In the physical science, the concept of entropy is understood.  Systems tend toward chaos unless efforts are made to provide organization,.  Software entropy also exists.  If you do not have a good process for maintaining documentation (and unless your organization enforces the process) documentation tends towards chaos over time.  To keep documentation from becoming worthless, you need to implement a good set of project documentation standards.  You also need to ensure that these standards are followed throughout the entire maintenance lifetime.  If the documentation ever becomes worthless, the system becomes a maintenance nightmare.  

Do not expect your designers and your developers to be proficient documentation specialists.  Personnel with experience in technical writing and maintaining software documentation are critical to the continued existence of your software.  

 3.5  Engineering Project Management

Finally, the most important continuous activity of software production is good management.  Software management is far more than simply managing the software creation process—it also requires management of people and time.  

In many organizations, good coders are eventually promoted to designers.  Eventually, good designers are given charge of projects.  At that point, additional training and experience is required.  Project management requires the ability to effectively manage and organize people and to accurately set project schedules.  In addition, there must be some type of feedback mechanism (some type of metric) to allow the project manager to guage progress.  

Metrics are extremely important to software managers, because they let them guage progess and identify problem areas in both the process and the product.  Therefore, two types of metrics are needed: process metrics and project metrics.

Process metrics give insight into the quality of the development process.  Measurements of such things as defect rates (by modules and total development) and rework time are important.  What is not important is tracking individual defect rates—simply because the rate is meaningless.  A high individual defect rate could be because a person is working on a harder or more complex task.  What is important is to use the metrics to track the causes of the errors, then work on improving the process.  

Project metrics are used more for planning purposes.  If you know the estimated size of your current project, data from prior projects will give a good indication as to completion time.  Once a project is under development, there exist metrics that can determine quality and completeness of design and code.  

As with most continuous activities, project management is highly complex.  It involves areas such as interpersonal skills, metrics, and scheduling.  Outside expertise, experience, or training are required to make a good project manager.   

4  Conclusions

Software engineering is a difficult and complex topic.  Many organizations focus on improving their discrete activities while ignoring real improvements in the continuous activities.  Although improving the efficiency and quality of the discrete activities creates a better product, it cannot give huge gains in either quality or productivity.  Instead, organizations need to focus on improving the continuous activities to see significant gains in both quality and productivity.

Many organizations do not even have effective continuous activities in place—they typically lack good risk management, configuration management, and quality assurance efforts.  In addition, many organizations do not have effective and useful project-wide or process-wide documentation processes in place.  

Our best advice is to not focus on productivity and focus instead on quality.  As Capers Jones said, “Focus on quality.  Productivity will follow.”  The first step in quality is to create a process, then modify the process to make it work.  Make sure employees follow the process.  Concentrate on setting up an effective review process to allow verification and validation, and make sure that meaningful verification and validation occur.  Have knowledgeable project management and have a quality assurance team set and enforce standards in all phases of the software development process.  

Finally (and most important) make sure that you have adequate training and experienced software managers.  Great software success stories are not successful because of great processes.  They succeed because of good management [Davis 1995].  Good managers can motivate people to produce quality, and poor or indecisive management demotivates people [Fenton 1993].  

5 Bibliography

With a topic so broad as software engineering, it is impossible to provide a complete and comprehensive bibliography.  However, in the list of references that we used solely for this paper, certain references stand out.  Any software practitioner, especially those involved in analysis, design, or supervision should read The Mythical Man-Month {Brooks 1995].  For a “sanity check” of your software project, 201 Principles of Software Development [Davis 1995] contains important principles, along with many pointers to more detailed references.  Finally, if you are looking for a single source that will give you a complete introduction to software engineering, Software Engineering, A Practitioner’s Approach, 4th edition [Pressman 1997] is an outstanding introductory book. 
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Guidelines for Choosing a Computer Language: Support for the Visionary Organization

by

    Patricia K. Lawlis, Ph.D.

Computer technology is constantly changing—ever the source of both delight and concern for an organization.  Commercial off-the-shelf (COTS) software holds much promise for satisfying many of today’s business requirements, yet it is not a panacea by any means.  COTS software is often more expensive in the long run than internally-developed software, and it often cannot satisfy all needs.  Internally-developed software continues to be necessary in many cases, but its integration with COTS software is often not considered.  A visionary organization must look at the software “big picture” to develop a viable software strategy.  The choice of computer language is one area in which a company can project its vision for the future.  A good choice permits internal development of useful, reliable systems which can also be integrated with COTS software where necessary.  A poor choice perpetuates “business as usual”—that all-too-familiar scenario of unreliable, hard-to-use programs which cannot share information with any other programs, and which become a more and more expensive liability as time goes on.

This document is intended as a decision aid for the software manager who must choose an appropriate computer language as a tool for an organization to use in its software production.  The choice of computer language is an important issue for a visionary organization and should not be taken lightly.  This document will lead the decision maker through a series of steps to choose a language, and then it will also go beyond this, to the natural and logical extension of selecting a set of software tools to be used in producing software using the chosen language.

How to Use This Document

The main part of this document should be used sequentially, without skipping any sections.  Supplementary material has been provided in the appendices.  These appendices are referenced when they are pertinent, and the reader is encouraged to examine this supplementary material.  To begin with, Appendix A contains a list of all acronyms and Appendix P a list of all references used throughout the document, including those used only in the appendices.

The next section, Criteria for a Good Language, discusses the criteria used in determining a good language for a particular organization.  Each of the languages, or types of languages, considered in this document has been evaluated according to these criteria.  These evaluations can be found in Appendices D through L, where each language considered is covered separately.  The languages in the appendices are ordered as they are given in Table 2.

The following section, Size and Complexity Drive Development Strategies, considers how size and complexity determine development strategies.  The first step in choosing a language is to establish the size and complexity of the system(s) to be developed.  Under the right circumstances, a language decision can be made directly from Table 1.  However, where this is not the case, the decision process continues to the next section.

The section on Choosing a Language, lays out the language selection process using Tables 2 and 3.  The process begins by requiring the decision maker to determine the most important language criteria in the decision process, and then these criteria are assigned weights.  Criteria and/or languages not listed in Table 2 can be added.  However, such additions will require additional analyses of the type already accomplished in the language appendices for the given languages and the given criteria.  Table 2 lends itself to automation via a spreadsheet.  

Once the language calculations are completed, the language must be considered in the context of software engineering factors affecting the organization.  Table 3 supports a further refinement of the language decision process, based on the importance of these factors to the organization.  Table 3 is completed in much the same fashion as Table 2, and it also lends itself to automation.  Once the software engineering factors are considered, an informed language decision can be made.

Choosing a language usually also involves the selection of tool support.  However, if tool selection is not to be done at this time, the decision process can be suspended at this point.  It should be resumed later on, when tools are selected for a particular project or set of projects.

When tool support is considered, the section on Choosing a Product is used.  First it lays out cost considerations in Table 4, because this is usually a driver for choosing candidate products.  It can also be important for estimating a budget for tool support.  

Once candidate products are determined, Table 5 is used to rate these products.  Be aware that, depending on the size of systems to be developed, it may take a significant amount of time and effort to complete Table 5.  It requires not only assigning weights to the given criteria, but also evaluating each candidate product with respect to each important criterion.  Once done, however, product decisions can be made and the decision process is complete.

Because this process is not always quick or simple, two examples of using the complete process have been provided in Appendix O.  Additionally, an Excel file containing automated versions of Tables 2, 3, 4, and 5 accompanies this document, along with a file containing the worked out example from Appendix O which uses these tables.  It is also likely that the decision maker will want to enlist help from others in gathering information during this process.  

Criteria for a Good Language

To begin the language selection process, it is important to establish some criteria for what makes a language good.  A good language choice should provide a path into the future in a number of important ways:

1)
Its definition should be independent of any particular hardware or operating system.

2)
Its definition should be standardized, and compiler implementations should comply with this standard.

3)
It should support software engineering technology, discouraging or prohibiting poor practices, and promoting or supporting maintenance activities.

4)
It should support the application domain(s) of interest effectively.

5)
It should support the required level of system reliability and safety.

6)
Its compiler implementations should be commensurate with the current state of technology.

7)
Appropriate software engineering-based supporting tools and environments should be available.

Satisfying the above criteria effectively is not easy, and it may require using different languages in different situations.  However, as these points are violated, additional risk is involved with near-term development as well as future technology changes.  Key risks encountered as each of these criteria is violated are:

1)
If a language is not independent of a particular platform, portability is severely compromised.  Hardware and software options are also limited, both for the original system and for future upgrades.

2)
If compiler implementations do not comply with a standard language definition, compiler-unique solutions are created.  This also severely compromises portability as well as options for future upgrades.

3)
To the extent that poor practices are used in software development, both development and debugging times will be extended, and poor code characteristics will make both testing and maintenance a nightmare.

4)
Poor support for the application domain will compromise the ease of development as well as performance and readability characteristics of the code.

5)
If reliability is compromised, the system will not only perform below expectations, but it will also become much more costly across its lifetime.  If safety is compromised, life and property will be endangered.

6)
An out-of-date compiler is inferior and difficult to use, producing substandard code which is difficult to create and maintain.  It can also prohibit the use of key language features.

7)
The lack of appropriate automated development support compromises developer productivity and system quality.

In Appendices D through L, the above criteria are discussed with respect to each of the languages considered in the section on Choosing a Language.

Size and Complexity Drive Development Strategies

Before discussing the selection of a computer language in which to develop a software system, it is necessary to discuss the size and expected use of the system in question.  Small systems developed for personal use certainly do not need the scrutiny of large systems which are an integral part of the business process.

For our purpose, approximate sizes in terms of lines of code (LOC) will be used to estimate the size and complexity of a software system, with the understanding that this is only a very broad generalization.  In the first place, it is impossible to project the exact size of a system which does not yet exist.  Second, different computer languages have different amounts of expressiveness, so 10,000 LOC, for example, could do much more “work” in one language than another.  Third, two software systems with the same size in LOC can have different properties of complexity, depending on the particular applications.  Nevertheless, LOC is a well-understood means of measurement, and it serves the purpose of approximating size and complexity in software systems.  This physical size estimate is a reasonably good indicator of the potential complexity of the system, the number of people required to complete the work, the amount of communication involved, the expected life time of the product, and other issues that indicate the necessity of using a solid, software engineering process.  For the size and complexity discussion, the following approximations are used:

•
< 10,000 LOC  is small and not complex

•
between 10,000 and 50,000 LOC is medium and moderately complex

•
between 50,000 and 1,000,000 LOC is large and very complex

•
> 1,000,000 LOC is very large and immensely complex

With knowledge of the proposed system’s size and complexity characteristics, a company can begin to formalize a strategy for creating new systems.  An effective part of any development strategy is to look for solutions which already exist in the marketplace.  It is usually more cost-effective to purchase a product (assuming a quality product which satisfies system requirements exists) than to develop one.  No matter how simple or small the development of a system appears to be, it is almost always more involved than anticipated.  The true costs, in terms of time and other resources over the entire lifetime of the product, are not easy to see at first.  Buying a suitable product is an option that must be seriously considered.

With larger systems and ones supporting specialized requirements, it is less likely that a single COTS product exists to satisfy the entire set of system requirements.  However, commercial products should always be investigated first, regardless of the expectation of finding something suitable.  A mix of COTS products and developed subsystems integrated together can also provide a complete system solution at a fraction of the cost of a total system development.

If it is recognized from the outset that a software system will be at least medium-sized and/or long-lived, then the assumption must be that its size will continue to grow indefinitely.  This demands that the development strategy consider the ramifications of anticipated future maintenance for the system. A medium-sized system will perform reasonably complex work.  It will undoubtedly be expanded, and it may later be desirable to integrate it with other systems.  An organization cannot afford to waste the time and effort used to develop a system of this size by making it impossible to modify and expand it.  Good, solid engineering practices must be used.

It should go without saying that systems which are recognized as being large or very large from the outset need to be developed using good engineering practices.  The concern here becomes how to manage the complexity inherent in such systems, particularly the very large ones.  Techniques must be considered from the outset which can partition the system into isolated subsystems, where these subsystems communicate with each other in only very well-defined ways.  This is one of the important advantages to current object-oriented analysis techniques.  They facilitate this type of partitioning, an absolutely necessary step in establishing and maintaining the usefulness of very large software systems.

Table 1 summarizes the decision process which determines appropriate methods and languages for various projected sizes of software systems.  The key is to establish business practices which make the software investment most cost-effective.  Purchasing a suitable product is often the most cost-effective practice, and should always be considered first.  However, once COTS possibilities have been exhausted, in-house development is required (this includes contracting with an outside source to develop a system for in-house purposes).  When the investment is small, reaccomplishment is affordable.  However, the larger the investment, and the more it becomes dependent on other software (making the investment much larger), the less affordable simple practices (leading to complete reaccomplishment) become.  Management must take control of significant software development.

Projected Software Size and Complexity
Development Process Considerations

Small 

and 

not complex
•
Buy an appropriate existing commercial product

•
Otherwise, an individual can develop it

•
Use a 4/5GL for this specific type of application if available

•
Otherwise, use existing resources or purchase an inexpensive development environment  

•
Expect software to remain stand-alone and to become obsolete within a few years

Medium 

and 

moderately 

complex
•
Includes small projects which will grow into larger projects

•
Consult organization’s business plan to ensure compatibility of software decisions 

•
Consider COTS products

•
If reasonable expectation that a developed system will be replaced with existing COTS product (not “vaporware”) before becoming obsolete, then determine language and development method from current resources

•
Otherwise, use engineering practices described below for larger systems

Large

and

very

complex
•
Includes medium-sized projects which will grow into large systems

•
Consider COTS products for satisfying some part(s) of the systems requirements  

•
Use good, solid engineering practices

•
Consult organization’s business plan

•
Select appropriate language using Tables 2 and 3

•
Select appropriate product(s) using Tables 4 and 5

Very 

large

and

immensely

complex
•
Includes large projects which will grow into very large systems

•
Consider COTS products for satisfying some part(s) of the systems requirements  

•
Use good, solid engineering practices

•
Consult organization’s business plan

•
Select appropriate language using Tables 2 and 3

•
Select appropriate product(s) using Tables 4 and 5

•
Control immense complexity from the outset

•
Consider defining separate subsystems which can each function as a stand-alone system

Table 1: Relationship of Size and Complexity to Development Process

It should be emphasized that COTS software should always be considered first.  However, COTS is not a panacea.  Using a COTS product establishes a commitment to a product and a vendor for the life of the system.  In some cases, this can prove to be very expensive in the long run [Houser 95].  An organization may consider attempting to perform in-house maintenance on a COTS product to overcome the problem of relying on a particular vendor.  However, this will almost invariably end up being more expensive than developing the system in-house in the first place.  Maintenance of someone else’s product is extremely difficult and time-consuming, and maintenance is responsible for a majority of a system’s expense.  Hence, COTS decisions must be made carefully.

It should also be emphasized that a well-defined development process must be the basis for any decisions made from these tables.  Where such a process does not already exist, it must be defined first [Humphrey 89].  If an organization does not know how to begin to develop one, then it should look for outside help from qualified software engineers.

When considering various language characteristics, it is important to make a distinction between those characteristics inherent to a language (because of the language definition) and those characteristics of products which implement and support the language (compilers and related tools).  Most “language wars” tend to mix these two together, and they end up basing arguments on comparisons between “apples and oranges.”  In the following guidelines, language is considered first, independent of specific products. However, issues relating to the availability of development tools are considered in the language selection process, along with many other software engineering factors affecting an organization.  The selection of specific development products follows the language choice.

Choosing a Language

Language-Specific Considerations

Table 2 contains rows of language-specific characteristics which are commonly important when choosing a language [Telos 94, Lawlis 89].  The columns include the most commonly chosen languages today.  The characteristics and languages provided in Table 2 are in no way exhaustive.  Hence, there is a blank row to be used for an additional characteristic and a blank column to be used for an additional language, where required.  More rows and/or columns can also be added as necessary, depending on specific requirements and constraints.  For each new row and column, rating numbers must be provided which are comparable to those already in the table.  Ratings run from 0 to 10, where 0 indicates no language support at all for a characteristic, and at the other end, 10 indicates complete support. 

The characteristics in Table 2 are defined in Appendix B, along with an explanation of what each characteristic contributes to software development.  For each characteristic, a low rating indicates poor language support for that characteristic and a high rating means good support.  It should be emphasized that the ratings are an indication of the extent of actual language support for the characteristics.  Actual programs written in a particular language will vary widely with respect to these characteristics, depending on both the support provided by the language and on the skill and discipline of the programmers.

Appendices D through L contain analyses of the languages included in Table 2.  The languages are listed in Table 2 in alphabetical order by generation, and the appendices use the same ordering scheme.  In each appendix, the language is first analyzed according to the criteria given above in the section Criteria for a Good Language.  From this, the ratings are established for each given language characteristic.

The first column (Weight) in Table 2 is special, and it is for indicating the importance of each of the language characteristics listed.  Choose all of the language characteristics really important to the particular project or organization.  Then weight each of those selected on a scale of 1 to 10.  Make all other weights 0.  The non-zero weights may be all different, or some of them may be the same.  The higher the weight, the more important the characteristic in making the decision.

Once any desired new characteristics and languages are added, if any, their ratings must be filled in where necessary.  Weights must also be determined for the language characteristics.  Calculations of the overall language ratings in the last row of Table 2 are straightforward.  These can be easily automated in a spreadsheet.  For each language under consideration, multiply each weight by the corresponding rating for that language, sum the results, and then divide this by the sum of the weights used.  This will be referred to as the Rating Formula, and in equation form it is:




Where:
Ri is the overall rating for a column

Wj is a weight assigned to a row


Cj is a rating in one cell of the row

Round the overall result for a language, Ri, to one digit (no decimal places).  The rounding step is important to avoid being misled by false precision.  A result is no more precise than the original numbers used in the calculation.  So even one decimal place in the result (making two digits of precision) would be misleading, since the original weights and ratings had only one digit of precision (and they were estimates themselves, rather than precise calculations).

The result of this calculation provides an overall rating which is a normalized weighted average of the ratings of the characteristics of interest for a particular language.  Hence, the overall rating will have a value between 1 and 10.  The closer the final rating for a language is to 10, the better that language is as a choice for the characteristics rated.  Ratings determined by using different characteristics and/or different weights should not be directly compared because they are not based on the same premises (choice of characteristics and their weights).

Language


4

 G

  L


3
G
L


2

 G

  L

Language Characteristic
W

 e

 i

 g

 h

 t

or

5

 G

  L
A

 d

 a

 8

 3
A

 d

 a

 9

 5
C
C

+

+
C

O

B

O

L
F

O

R

T

R

A

N
S

m

 a

 l

 l

 t

 a

 l

 k
A

 s

 s

 e

m

 b

 l

 y

 

Clarity of source code


5
9
9
5
6
7
5
9
1

Complexity

management


2
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Concurrency support
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Maintainability
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Mixed language support


0
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5
3
0

Object-oriented programming support


0
6
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0
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0

Portability


1
5
8
5
7
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3
3
1

Real-time support


0
4
7
7
7
0
5
0
5

Reliability


3
6
9
1
5
3
1
3
0

Reusability


1
5
8
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8
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3
8
1

Safety


0
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0
0
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0

Standardization
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0

Support for modern engineering methods
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1
7
0














Overall 

Language Rating












Table 2 - Ratings of Language Characteristics

Mixed-Language Considerations

For large software projects it is very common to find a mixture of languages used in a system.  Usually this is because software code to be reused (existing system libraries, organizational reuse libraries, or COTS software) is in a language other than the primary language, or else a particular language is required to accomplish a particular function for some special reason.  In this case, the primary language chosen will be the “glue” which will bind all the software of the system together, and it should provide good support for this.  Other code to be developed should probably also be in the primary language.  However, if another language better suits the development needs, then both languages could be chosen, each for its specific purpose, provided that the languages can be readily interfaced.

Note that interfacing two languages should consider two factors.  If the calling language has a built-in ability to do language interfaces, the language mix will probably produce more reliable results.  Also, if a COTS product provides interfaces (called bindings) for the “glue” language, the interfacing is smoother and more straightforward than if such bindings must be developed.  

Mixing languages is never quite as straightforward as using just one language.  While there is always good reason to reuse proven components, including COTS, regardless of the primary language used, the use of two or more development languages together is often more trouble than it is worth.  This option should be chosen only after careful consideration. 

Software Engineering Considerations

The decision maker must understand that language is just one of many important issues which contribute to successful software development.  Appendix C discusses the context in which the use of a computer language should be placed.  It is absolutely necessary that this context be understood.  A language choice (made with or without the aid of this document) will only contribute to software development success if language is placed in the proper context as an important tool for software development, rather than a solution to all software development problems. 

Table 3 lays out a decision process for selecting a language based on factors which establish the context for software engineering.  Each row represents a software engineering factor, and factors are organized by categories.  The shaded boxes are only intended to show the organization, while the boxes in the rows for particular factors are intended to be filled in where applicable.  Each of these factors is discussed in Appendix C, by category.  The Weight column in Table 3 is for weighting the importance of these factors to the organization or project.  As in Table 2, weights should range from 0 to 10, where 0 means no significant importance and 10 means critical importance.  The remaining columns list the languages as they are given in Table 2.  Based on the results from using Table 2, a subset of these languages will probably be chosen to be used in Table 3.  To avoid confusion, it may be desirable to remove the columns for the languages no longer being considered in Table 3.  Again, columns may be added for other languages still under consideration.
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Table 3 - Ratings of Software Engineering Factors

The first factor row, language weight and ratings from Table 2, is for the total weight and the ratings from the bottom row of Table 2.  The combined weights of all characteristics in Table 2 is used in Table 3 so the weights in both tables have the same effect on the final result.  In other words, a weight of 7 for a characteristic in Table 2 will have the same effect on the final ratings as a weight of 7 for a factor in Table 3.  This enables the decision maker to compare and choose appropriate weights for elements in both tables. 

Once weights have been assigned to each of the other software engineering factors in Table 3, a rating must be determined for each factor with a non-zero weight for each language still under consideration.  This rating should be in the range of 0 to 10 (as in Table 2), where 0 means the factor is not supported at all by the language, and 10 means outstanding support for that factor.  Determining the ratings for Table 3 will probably require some amount of research and investigation of the languages and the availability of products for those languages.  However, this is not the time to examine products in depth.  The availability of the products is of concern here.

With all ratings of interest filled in for Table 3, the overall language ratings (last row) can be calculated using the Rating Formula, as explained for Table 2.  Again round the overall result for a language, Ri, to one digit.  As with Table 2, the rounding step is important to avoid being misled by false precision.  Also as with Table 2, ratings determined by using different factors and/or different weights should not be directly compared.

The normalized overall language ratings will be in the range of 1 to 10, and the best languages will be those with ratings nearest to 10.  The range of actual ratings will depend to a large extent on the rating patterns of those who established the ratings for Table 3.  However, as long as rater bias has been minimized, the rankings of the ratings should be valid.  

The language to be chosen should be the one with the highest overall rating.  However, if two or more languages end up with the same or very close ratings, it may be wise to do a sensitivity analysis on the ratings.  Since the weights are only approximations at best, vary them slightly and see how this affects the final language ratings.  If one language is not clearly superior, continue to consider all of the top-rated languages.

Examples of using the language choice process described above, along with the product choice process described below, can be found in Appendix O.

Choosing a Product

Cost Considerations

Once the language choice is completed, the next consideration usually must be cost.  Budget constraints will certainly determine the candidate products to be considered.  However, the cost of software tools does not usually cover all the cost items which should be considered.  Table 4 provides a cost worksheet for listing most of the possible cost items associated with purchasing development products.  A blank row has been provided for adding other possible costs.

The cost items listed in Table 4 cover the various types of costs which may be associated with the choice of particular development products.  Each column represents a candidate product, or set of products, to be considered.  If one product will satisfy all of the needs for development tools, including design tool, metrics tool, editor, compiler, etc., then it should be considered in one column.  On the other hand, if it takes two or more products to cover all of the required tools, then the costs of a complementary set of products should be combined in one column.  This makes for a clear, direct comparison between the costs in the various columns, and it will help in making the final choice of product(s).

Candidate 

Product Name

Cost Factor







Purchase of product







Maintenance on product







Training







Installation







Additional hardware needed







Additional software needed







Additional people needed















Total 

Cost of Product







Table 4 - Cost Worksheet

The number of columns in Table 4 in no way represents the number of candidates which should be considered.  This table should be expanded to include as many products as an organization wants to consider.  The cost factors in Table 4 are defined in Appendix M, along with a discussion of why they are important to the cost considerations.

The costs listed in a particular column in Table 4 should be the actual cost to the organization to properly prepare it for using the product(s) listed in that column.  In other words, if a tool is already owned by the organization, then its purchase price should not be included.  However, additional operational costs, such as licensing more users, may need to be considered.  If the hardware required to run the software tools already exists in-house, that cost is not included, but the cost of any hardware which must be purchased to use the software development tool(s) is included.  If additional software personnel will be hired for the next project regardless of the tools used, that expense is not included.  However, if extra people are required specifically to make it possible to use the product(s) in a particular column, then that expense is listed in that column.

Filling in the costs in Table 4 may be a time-consuming task.  It will require sufficient investigation of each tool to reasonably estimate the cost involved for a particular cost item.  Where a cost is in doubt, begin by assuming the lowest possible cost so any error will result in a tool continuing to be a candidate rather than it being eliminated prematurely.  After the product selection process described below, the costs will be reconsidered in the light of increased knowledge about the real costs required to use each product.  At that time, errors of underestimating expenses will come to light, and products too costly can still be eliminated from consideration.

The total costs (in the last row) resulting from completely filling out each item of Table 4 will provide a preliminary picture of the relative total cost to the organization for using each set of tools represented in each column of the table.  This permits the decision maker to pare down the list of candidate tools for the next step of selecting the development product(s).  The next step will require considerably more effort in evaluating each product which is still a candidate, so it is desirable for this list to be as small as possible.  However, all products which are viable candidates should still be included, regardless of number.

It is important to recognize that the costs considered in this preliminary cost analysis are only those costs directly related to the software development products to be used by the organization.  The actual development process will include many more costly items, such as the cost of personnel assigned to software development over the life of the project.  To put cost in proper perspective, over the lifetime of a software system the maintenance of the software will usually cost 2 to 4 times the total cost (software, hardware, people, etc.) of developing the system in the first place [Schach 93, Sommerville 89].  This is why language characteristics such as maintainability are so important.  Any factor which can support the reduction of the cost of maintenance, and/or the extension of the lifetime of the system, will contribute to a very significant cost/benefit improvement for the system, far in excess of the cost of setting up the software development tools.

Choosing the Development Products

The decision process is not complete until a product or set of language products is chosen to use for the software system development.  Table 5 lays out a decision process for selecting language products.  Each row represents a product characteristic important in many such decisions.  Note that cost value is a characteristic, allowing cost to be a factor in product selection (a high cost value rating meaning low cost and a low cost value rating meaning high cost). Other characteristics are organized as performance, tool support, or usability characteristics.  The shaded boxes are only intended to show the organization, while the boxes in the rows for particular characteristics are intended to be filled in where applicable.  The Weight column is for weighting the importance of these characteristics to the organization or project.  As in Table 2, weights should range from 0 to 10, where 0 means no significant importance and 10 means critical importance.  The remaining columns are for the candidate products from Table 4 which have survived the scrutiny of cost constraints.  The same product or set of products used in a column in Table 4 should be placed in one column in Table 5.  Add as many columns to Table 5 as required to accommodate all of the candidate product sets.

The product characteristics in Table 5 are defined in Appendix N, along with an explanation of how each characteristic affects the software development process.

Once weights have been assigned to each of the product characteristics in Table 5, the next step is the hardest and most time-consuming of all.  For each non-zero weighted characteristic, a rating must be determined for each column of candidate products.  This rating should be in the range of 0 to 10 (as in Table 2), where 0 means the characteristic is not supported at all by any of the products in the set represented by that column, and 10 means outstanding support for that characteristic by the represented tool set.

The amount of time, effort, and cost spent in the product evaluations for Table 5 should be representative of the expected overall cost (from Table 4) of the tool investment.  It makes no sense to spend a staff-year on a purchase of around $10,000 which will only be used for one project.  On the other hand, evaluations of sets of tools which may cost more than $100,000, and be used on multiple projects involving hundreds of staff-years and millions of dollars, are well worth the expenditure of significant resources.

It may be possible to obtain evaluation information on some tools and tool sets from outside sources.  This is very desirable, but some cautions apply.  To be valid, evaluation information must be recent and it must apply to the same configuration of tools and the same use of the tools as for those represented in Table 5.  One must also be wary of the sales brochures which usually exaggerate tool capabilities and often use incorrect terminology.  More objective data is required.

Once all ratings are filled in for the non-zero-weighted characteristics in Table 5, the overall product ratings (last row) can be calculated using the Rating Formula, as explained for Table 2.  Again round the overall result for a product set, Ri, to one digit.  As with Table 2, the rounding step is important to avoid being misled by false precision.  Also as with Table 2, ratings determined by using different characteristics and/or different weights should not be directly compared.

The normalized overall product ratings will be in the range of 1 to 10, and the best products will be those with ratings nearest to 10.  The range of actual ratings will depend to a large extent on the rating patterns of the raters.  If no product set receives an overall rating which would be considered acceptable (for example, 6 is considered acceptable but all products are rated less than 6), then it may be necessary to reexamine the choice of language.  However, it is advisable to first reexamine the biases and rating patterns of the raters, and also to reexamine the breadth of products being considered. 

The decision process is complete when the overall product ratings (last row of Table 5) are used to select the product set to be used for software development.  This could be a very simple decision, if one product rates significantly higher than all others.  However, it may not be that easy.  If multiple product sets have similar ratings, a sensitivity analysis can be performed to see if varying the assigned weights in the table makes a significant difference in the overall ratings.  Since the weights are only approximations at best, vary them slightly and see how this affects the final product ratings.  If one product set is not clearly superior, cost may be reconsidered at this point.  With the increased knowledge of the products gained by evaluating them for Table 5, the costs for the products still being considered should be updated in Table 4 (removing the columns for products no longer under consideration will reduce confusion).  It is now up to the decision maker to determine which tool set is the most cost effective for meeting the organization’s software development requirements.
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Table 5 - Ratings of Language Product Characteristics

It should be noted that Tables 2 through 5 support a decision to be made for a specific project of interest, but the process also supports the long-term cost-effectiveness of the decision for supporting the organization’s business plan.

Conclusion

It is important to make technology decisions at the right time and for the right reasons.  Good business decisions provide good people with appropriate supporting tools so they can produce good products.  When it comes to software development, dealing with tough language issues head-on is one requirement for today’s visionary manager.  When combined with other software engineering considerations, a good language decision can support the development of cost-effective software systems which, in turn, provide valuable, reliable business support.
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Appendix A

List of Acronyms

2GL
Second-generation language

3GL
Third-generation language

4GL
Fourth-generation language

5GL
Fifth-generation language

ABET
Accreditation Board for Engineering and Technology

ANSI
American National Standards Institute

CASE
Computer-aided software engineering

CM
Configuration management

COTS
Commercial off-the-shelf

DoD
Department of Defense

HOL
High order language

I-CASE
Integrated CASE

IEEE
Institute for Electrical and Electronics Engineers

ISO
International Standards Organization

LOC
Lines of code

MIS
Management information system

Appendix B

Language Characteristics
The following language characteristics are used in Table 2 in the main document.  They are defined below [Lawlis 89, Pratt 84], along with an explanation of what each characteristic contributes to software development.  Although these characteristics are not entirely independent, they are the characteristics of common interest to most decision makers.  The value assigned to each characteristic is a number between 0 and 10, where 0 means the language support for this characteristic is extremely poor or non-existent, and 10 means the language support for this characteristic is extremely good or as good as it could possibly be. 

 It should be emphasized that the ratings given to the characteristics from this appendix are an indication of the extent of language support for the characteristics.  Actual programs written in a particular language will vary widely with respect to these characteristics, depending on both the support provided by the language and on the skill and discipline of the programmers.
Clarity of source code - the extent to which inherent language features support source code which is readable and understandable and which clearly reflects the underlying logical structure of the program.

Most of the life cycle cost of a software system (usually between 60% and 80%)  will come during the time after its initial development has been completed [Schach 93, Sommerville 89].  This includes all efforts to change the software, whether it be to fix problems or to add new capabilities.  Regardless of the purpose, changing the software implies that a significant cost will be associated with understanding the program and its structure, since this is a necessary first step before any changes can be made.  Although it is always possible to use techniques to make a program easier to understand, language support for source code clarity can facilitate this process considerably.  Note that clarity is a readability issue, not necessarily an ease of use issue.  It is not unusual for languages with good readability to be somewhat more verbose than less readable languages.

Complexity management - the extent to which inherent language features support the management of system complexity, in terms of addressing issues of data, algorithm, interface, and architectural complexity.

The more complex a system becomes, the more important that its complexity be managed.  Waiting until a system gets large enough to manifest complexity before preparing to manage that complexity does not work well.  Properly structuring a system from the beginning, as well as using appropriate supporting tools, is essential.  However, complexity management is always difficult, and it is very helpful if the language can facilitate this goal.

Concurrency support - the extent to which inherent language features support the construction of code with multiple threads of control (also known as parallel processing).

For many types of applications, multiple threads of control are very useful or even necessary.  This is particularly true of real-time systems and those running on hardware with multiple processors.  Concurrency is rarely directly supported by a language, and, in fact, the philosophy of some languages is that it should be a separate issue for the operating system to deal with.  However, language support can make concurrent processing more straightforward and understandable, and it can also provide the programmer with more control over how it is implemented.

Maintainability - the extent to which inherent language features support the construction of code which can be readily modified to satisfy new requirements or to correct deficiencies.

Support for code clarity has already been mentioned above as one type of support for maintainability.  Maintainability is actually facilitated by many of the language characteristics mentioned in this appendix--those which make it easier to understand and then change the software.  The structure of the code also has a significant impact on how easy code is to change.  The technique of encapsulating units and limiting their access through well-defined interfaces greatly facilitates maintainability.  Hence, language features which facilitate encapsulation can be very beneficial.
Mixed language support - the extent to which inherent language features support interfacing to other languages.

This should not be confused with the complementary product support which provides calling interfaces (called bindings) for specific languages.  Bindings are discussed in Appendix N, under the product characteristic tool support for interfacing with other languages.  Mixed language support from the perspective of the language means the provision of specific capabilities to interface with other languages.  This type of support can have a significant impact on the reliability of the data which is exchanged between languages.  Without specific language support, no checking may be done on the form, or even the existence, of data exchanged on a call between units of different languages, and the potential for unreliability is high.  Specific language support can provide the expected reliability.

Object-oriented programming support - the extent to which inherent language features support the construction of object-oriented code.

There is general agreement that object-oriented programming support means specific language support for the creation of code with encapsulated classes and objects, inheritance, and polymorphism.  This form of programming is associated with software which has good maintainability characteristics because of the encapsulation of classes and objects.  It also facilitates the creation of reusable software because it encourages well-structured software with well-defined interfaces and it encourages extending existing abstractions.  There are two different ways a language can provide object-oriented programming support.  Some languages are strictly object-oriented and do not support any other form of programming.  Other languages provide object-oriented capabilities along with more conventional programming capabilities, and the programmer determines whether or not the language is used to create object-oriented software.  For this language characteristic, the specific mechanism for providing the capability is not the issue, the extent of support is.
Portability - the extent to which inherent language features support the transfer of a program from one hardware and/or software platform to another.

To make software readily portable, it must be written using non-system-dependent constructs except where system dependencies are encapsulated.  The system dependent parts, if any, must be reaccomplished for the new platform, but if those parts of the software are encapsulated, a relatively small amount of new code is required to run the software on the new platform.  Language support for portability can come from support for encapsulation, and it can also come from support for expressing constructs in a non-system-dependent manner.  Language standardization has a significant impact on portability because non-standard language constructs can only be ported to systems which support the same non-standard constructs--for example, if both systems have compilers from the same vendor.  In some circles, the issue of existing compatible support products, including compilers, on many different platforms is considered in the concept of portability.  Note that a language’s portability characteristics can be severely compromised by poor programming practices.

Real-time support - the extent to which inherent language features support the construction of real-time systems.

Real-time systems have mandatory time constraints, and often space constraints, which must be met.  These will usually tax both the software and the hardware of the system, and system performance predictability becomes an important issue.  Language can support real-time systems in two ways.  A language can provide specific constructs for specifying the time and space constraints of a system.  It can also support streamlined ways to express program instructions.  For example, real-time systems often have unique requirements in areas such as device control and interrupt handling, and a language can support managing these in a straightforward, predictable manner.  Since many real-time systems are concurrent systems, real-time support and concurrency support are closely related.
Reliability - the extent to which inherent language features support the construction of components which can be expected to perform their intended functions in a satisfactory manner throughout the expected lifetime of the product. 

Reliability is concerned with making a system failure free, and thus is concerned with all possible errors [Leveson 86].  System reliability is most suspect when software is being stressed to its capacity limits or when it is interfacing with resources outside the system, particularly when receiving input from such resources.  One way that interfacing with outside resources occurs is when users operate the system.  Reliability problems often surface when novices use the system, because they can provide unexpected input which was not tested.  Interfacing with outside resources also occurs when the system is interfacing with devices or other software systems.  Language can provide support for this potential reliability problem through consistency checking of data exchanged.  Language can provide support for robustness with features facilitating the construction of independent (encapsulated) components which do not communicate with other parts of the software except through well-defined interfaces.  Language may also provide support for reliability by supporting explicit mechanisms for identifying problems that are detected when the system is in operation (exception handling).  Note that poor reliability in a safety critical portion of the software also becomes a safety issue.
Reusability - the extent to which inherent language features support the adaptation of code for use in another application.

Code is reusable when it is independent of other code except for communication through well-defined interfaces.  This type of construction can occur at many levels.  It is very common, for example, to reuse common data structures, such as stacks, queues, and trees.  When these have been defined with common operations on these structures, these abstract data types are easy to reuse.  When reusing larger portions of code, the biggest issue for reusability is whether the interfaces defined for the code to be reused are compatible with the interfaces defined for the system being created.  This is significantly facilitated by the definition of a software architecture for the domain of the system under construction.  If those defining the components to be reused are aware of the architecture definition, then they can follow the standard interfaces defined in the architecture to ensure the code is reusable for other systems using the same architecture.  Reuse at any level can be facilitated by language features which make it easy to write independent (encapsulated) modules with well-defined interfaces.
Safety - the extent to which inherent language features support the construction of safety-critical systems, yielding systems that are fault-tolerant, fail-safe, or robust in the face of systemic failures.

Safety is related to reliability, but it is a great deal more.  The more reliable a system is, the more it does what is expected.  A system is safe if it protects against physical danger to people, as well as against loss or damage to other physical resources such as equipment.  This implies that the system must always do what is expected and be able to recover from any situation that might lead to a mishap or actual system hazard.  Thus, safety tries to ensure that any failures that do occur result in minor consequences, and even potentially dangerous failures are handled in a fail-safe fashion [Levesen 86].  Language can facilitate this by such features as a rigorous computational model, built-in consistency checking, and exception handling.
Standardization - the extent to which the language definition has been formally standardized (by recognized bodies such as ANSI and ISO) and the extent to which it can be reasonably expected that this standard will be followed in a language translator.

Most popular languages are standardized through at least ANSI and ISO, but the issue here is that the language definition that is supported by a compiler product may not be that which is standardized.  Most languages have evolved in a manner which has produced a proliferation of different dialects before the language was standardized, and the result has been that most compiler products support non-standard features from these dialects in addition to the standard language.  Some of these products also support a mode which enforces the use of only the standard language constructs, but programmer discipline is still required to use this mode.
Support for modern engineering methods - the extent to which inherent language features support the expression of source code which enforces good software engineering principles.

Support for modern software engineering methods is support which encourages the use of good engineering practices and discourages poor practices.  Hence, support for code clarity, encapsulation, and all forms of consistency checking, are language features which provide this support.  Also, support for complexity management and construction of large systems and subsystems support software engineering tenets.

Appendix C

Software Engineering Factors

This appendix considers the issues of software technology related to the choice of a computer language.  The judicious choice of computer languages can help an organization to stabilize its journey into the future.  However, languages cannot be considered in isolation.  This appendix presents various related software engineering factors that must be considered at the same time.

Today’s business vision must embrace the developing ideas and methods of today’s computer technologists.  The problem is that these ideas and methods are still developing, and it is difficult in many cases to be certain which direction points to a primary path and which will lead deep into the woods.  This is especially true if one stands in the middle of all the “techno-babble” running rampant in today’s office places.  One is inundated with information--overwhelming, conflicting information.  To make sense of it all, it is necessary to look for some stable truths.  In the software business this is called moving to a higher level of abstraction, getting away from the unnecessary details to be able to analyze the important issues at a higher level.  This discussion of software engineering factors will remain at this higher level, looking for stable truths.

The software engineering factors listed in Table 3 in the main document are given in italics in the following discussion.  As with the characteristics in Table 2, these factors are not entirely independent.  They were chosen because they are the software engineering factors related to a choice of language.  The decision maker will need to establish a rating for each language for each of the factors considered important for the current language selection decision.  Ratings range from 0 to 10, where 0 is very poor and 10 is excellent support for a factor by the language.  The discussion below for each factor provides guidance on how to determine a rating for that factor.

Establishing Context

Not long ago, primitive software technology was used to create early software systems.  These were not tremendously powerful systems in today’s terms, but they were important stepping stones on the way to far more powerful software capabilities.  Today we stand in the adolescence of software technology.  As with adolescents, this technology is looking forward to being grown up, but it is also still hanging on to many of the “security blankets” of the past.  We will soon step beyond the adolescence of software technology, and the ways of our youth will be left behind.  Businesses prepared to make this step will flourish, while those hanging on to the technologies of the past will be left behind.

Software research has been predicting improvements in software productivity and reliability for many years, but practitioners have not quickly adopted the ideas and methods of the researchers.  This is largely because the software disciplines were not yet mature, and many of the ideas were not viable or credible for everyday practice.  In the process, however, many good ideas were also ignored.  As the software disciplines mature, organizations can no longer afford to ignore these ideas and methods.  To be sure, the professional disciplines will not always take the best possible path, but the general direction will be both viable and credible.

This appendix establishes the various related issues which place the choice of language in its proper context.  It first presents a discussion of computer languages.  This is then followed by a discussion of the other software engineering factors which complete the context.

 Computer Languages

A computer language is a mechanism used to communicate with a computer.  This simple definition has led to a concept of generations of languages.  Yet the simplicity of this issue has become muddled by the use of CASE tools and environments.  The term fourth-generation language (4GL), for example, has been used to describe everything from a simple language translator to a complete CASE environment.  Some people are also starting to use the term fifth-generation language (5GL), seemingly in an attempt to break out of the mire.  Currently, this is doing little more than adding to the confusion.

The first three generations of languages are not very difficult to explain.  First-generation languages are machine languages, in which instructions are particular sequences of ones and zeros that digital computers can understand.  Second-generation languages, assembly languages, are a step up, as they permit programmers to use meaningful abbreviations for machine-specific instructions in place of the incomprehensible ones-and-zeros form.  Each instruction in an assembly language translates directly to a machine language instruction through the use of a tool called an assembler.  Thus, the language form is still primitive and unstructured.

Third-generation languages (3GLs), often called high order languages (HOLs), provide a major step up in abstraction.  HOL instructions represent more abstract forms of instructions, no longer dependent on the particular set of machine instructions provided by a particular computer.  These HOLs provide a general-purpose form for expressing the procedure to be followed by the computer.  HOLs are typically translated by a tool called a compiler into machine-level instructions that can be understood by the computer.  If an HOL is standardized, then the same set of instructions in that language should provide the same result on computers manufactured by different companies.

Beyond the use of 3GLs comes the concept of communicating with the computer in more abstract ways yet.  Entering into the domain of 4GLs, one finds more confusion than agreement.  Unlike the first three language generations, there has been no single approach used for accomplishing this concept of abstraction.  In fact, this concept goes beyond the conventional idea of a computer language, to tool sets.  In effect, a 4GL is a set of tools which automatically, or semi-automatically, translates human instructions in some abstract form into instructions understood by the computer [Martin 86, Wojtkowski 90, Appleby 91, Ghezzi 87].  A 5GL requires the use of knowledge-based systems [ANSI/IEEE 90, Connors 94], a characteristic of many 4GLs.  There is no distinct generation-type jump between languages described as 4GLs and 5GLs.  Hence, these two language types are considered together in this discussion.

The power of a tool set refers to the ease with which tool users may develop a software system.  Moving toward 4GLs and 5GLs generally means improving the power of a tool set.  Certainly, for the sake of ease of development, the more powerful the better.  However, this is not the only concern.  In studies of the use of 4GLs in software development, the quality of the software produced by a 4GL is often lower than the quality of a similar system produced by a 3GL [Misra 88, Verner 88].  The key is in the quality and maturity of the tools behind the development in either case.  It is important to choose a powerful tool set that can also develop good quality software.  Otherwise, the initial gains in productivity may be quickly lost as soon as performance requirements are not met or changes need to be made to the system.  Communicating with a computer in more and more abstracts ways is a desirable goal because it is the way humans will continue to use automation more and more effectively.  However, when moving to this higher level of abstraction, the concerns are better discussed in terms of capabilities of tools and tool sets, rather than in terms of language generations.

When considering the capabilities of various tool sets, one of the major concerns is whether the software developed using these tool sets can be moved to different hardware and operating system platforms.  It is also important to know whether a tool set can be moved to a new platform.

Other Software Engineering Factors

In the discussion below, no software engineering factors are listed for the Standards and Software Maintenance sections because their factors relating to language have already been considered in Appendix B and Table 2.  However, the topics belong in a discussion of software engineering factors, and the discussion on these topics below provides some important insights for a software decision maker.

Software Engineering

Boehm defines software engineering as “the application of science and math by which the capabilities of computer equipment are made useful to man via computer programs, procedures, and associated documentation” [Boehm 81].  Others have extended the definition to emphasize that engineering is generally a concern with large, complex systems.  Hence, software engineering is the discipline of building software systems, and its major concern is managing complexity.

Business today demands sophisticated computing capabilities.  Even the software products used for office automation (word processors, spreadsheets, etc.) have become large and complex in the process of meeting user needs.  The issues involved in creating large, complex software are many and varied.  They include the issue of computer language, but that is just one element of software engineering.  Many of the other important software engineering factors are discussed in the following subsections.

Development Methods

Establishing methods for developing software systems has been an issue of software engineering since before it was called software engineering.  Practitioners are always looking for better ways of doing business, and in the young software disciplines many development methods have been introduced.  Over the years these methods have matured, been refined, and in some cases been replaced by, or incorporated into, new methods.  

Today there is much discussion about object-oriented methods, as these largely subsume the older function-oriented and data-oriented methods.  In spite of many types of arguments about the old versus the new, the issues of real interest are the ways in which the newer methods incorporate the best characteristics of older methods and then extend them.  Object-oriented methods have taken the strengths of function-oriented methods in describing function and the strengths of data-oriented methods in describing data, and they have combined these strengths into a different overall way of viewing a system. The importance of the current trends in methods is that they are being refined to better manage the complexities of larger and larger software systems.  Newer methods continue to address the issues of scaling up from small systems to large and even huge systems.  The future may well see methods being developed which have new names and paradigms.  However, they will undoubtedly incorporate the best ideas of today’s methods, and then they will extend them to handle complexities even better.  The important issue is that methods must be able to deal with issues of complexity, no matter how large the scale of the software system involved.  

Support for development method to be used.  Any computer language can be used with any of the development methods.  However, different languages provide varying degrees of support for particular methods.  The amount of support provided by a language for the development method of choice should be used to determine a rating for this factor.  For example, if an object-oriented method is to be used, then an object-oriented language will provide better support than other languages.  Support for other methods is usually less clear cut, but the key is the ability of the language to express the elements used in the method of choice.  For example, if the method chosen is structured analysis/structured design, a 4GL or 5GL would provide poor support because they do not express programs in a procedural fashion.

Development Process

Another important consideration is the process used for managing a software development project.  This process must include consideration for the methods used, but other issues are equally important.  In particular, the process must consider that software development is a people-oriented business, and people need a structured and disciplined environment in which to do cooperative work. [Humphrey 89]

The most important aspect of the development process is that it should be well defined before any development work begins.  This is the most effective way a project can be properly managed and ensure positive results.  An effective process must be predictable, consistently meeting cost and schedule projections while yielding products complying with user expectations.  It must provide a plan for producing a product while improving an organization’s capacity to produce better products.  The process must have a defined framework which is flexible, understandable, powerful, and refinable.  The process must always promote solid software engineering tenets, and this includes how languages are employed.

Support for development process to be used.  The development process used is largely language independent.  However, in some cases the language of choice can provide support for the process.  For example, if the process emphasizes risk reduction, Ada (either one) was developed with risk reduction in mind, enforcing consistency and abstractions where possible.  Assembly languages, on the other hand, are wide open and leave all enforcement up to the programmer.  Most other languages are somewhere in between.  Although a language can support only a portion of the concerns of risk reduction, any type of help is important to the development of a high-risk system.  Another example would be the role of language when prototyping is a part of the process.  Some 4/5GLs were developed with prototyping in mind and can support a much more efficient prototype development than most other languages.  In this case, it may be that a 4GL or 5GL would be chosen as the prototyping language, and another language would be chosen for full system development.  This factor would be of particular interest in making a language decision only if a specific element of the development process is identified which can be supported better by some languages than others.

Metrics and Measurement

It is impossible to make a determination of how good a software product is, or whether the current software development process is effective, without making some quantifiable measurements.  Measuring software is hard, so it is often not done, but this is also the reason that software disasters are still so common.  In fact, without measurements, disasters sometimes are not even anticipated until the day the software is to be deployed [Jones 95]!  Management has little control over a project, and hence little ability to improve either the process or the product, without being able to establish a quality baseline and then to measure against it.

The difficulty with measuring software is determining what is to be measured and how to measure it.  The things to be measured, along with their specific numerical results, are often referred to as metrics.  Software metrics often do not lend themselves to the precision found in the results of more physical measures, such as a length measurement.  However, it is important to have an indication of the usability of a software system, for example, even though this measurement is largely subjective.  It is also difficult to know what to measure for some software quality metrics, such as maintainability.  However, the effort to define meaningful metrics for software development, and to consistently gather measurements for them over all development projects within an organization, is management’s way to ensure adequate system quality as well as to effect continuing improvements in the development process.

Availability of automated tools for collecting metrics.  The only reasonable way to consistently measure most metrics is to use automated tools.  The tools do not take the place of management involvement with metrics.  Rather, they enable management to regularly collect consistent measurements without spending an inordinate amount of time doing it.  Management must still determine what metrics to track, how to interpret the results, and, based on that interpretation, what actions to initiate to improve the process and product.

This factor is only looking at tool availability, not specific products.  A survey of appropriate vendors and dealers should reveal how readily available such products are for a particular language, and this will provide a basis for a rating.

Application Domains

It seems apparent that, although there are certain principles and methods which can be applied to any type of software, the specific use for the software also makes for some distinct differences among different types of applications.  The various types of applications are said to be in different application domains. 

A general categorization of application domains could include management information systems (MISs), real-time systems, and command and control systems [DoD 94].  Much more specific real-time domains might include flight control systems, nuclear safety systems, or visual simulation systems.  These are just examples of hundreds of domains which could be defined, and there would be a lot of overlap in the domain definitions.  The important issue here is not to try to categorize all possible domains, but rather to emphasize the concept that every software system has much in common with other systems.  Defining an appropriate, specific application domain should be the first step in defining any new software system, for this leads to the ability to build on foundations which have already been laid for other systems in the same domain.  Ultimately, all systems within a domain share many foundational concepts, and knowledge of one system can provide insight into another.

Support for application domain.  Some languages are considered general-purpose languages, for use in many applications domains, while others are much more specific to a particular domain.  As a general rule, the domain-specific languages will provide better support for the domain than general-purpose languages, although a general-purpose language may provide adequate support.  The worst situation is to try to apply a domain-specific language outside of its intended domain because its support for another domain is generally poor.  In rating this factor for a language, its general or specific nature should be determined.  If it is a general-purpose language, it should be rated with respect to how well it has been used within the domain in question.  A domain-specific language should be rated high if it was intended for the domain in question, and low otherwise.

Software Reuse

Much emphasis is now being placed on making better use of the investment which has already gone into the development of similar systems.  Every new system developed today, no matter how different it may seem to be from any others in existence, has many similarities with existing systems.  There is no good reason these new systems should be started from scratch.

There are many difficulties associated with the concept of software reuse, and this is not the place to discuss them in detail.  The point here is to establish software reuse as an important issue.  Reuse can take the form of buying a commercial product off-the-shelf (total reuse), or any part of a system can be reused, including design, documentation, and testing efforts from previous systems.  An important new sub-discipline just beginning to get a lot of attention in the software engineering world today is domain engineering.  This is a very specialized area which concentrates on reuse and encourages the use of techniques for creating systems which are reusable within specific application domains [DoD 94]. 

Much more will be heard about reuse in coming years.  This is ultimately where software productivity should show dramatic improvements.  However, the predictions which expected this to have already occurred were premature.  Today we find truly significant amounts of reuse only in some very narrowly-focused application domains.  There are many difficult problems which must be solved before significant reuse becomes a reality throughout the world of software development.

One of the important characteristics of reused code is the language in which it is written.  Different languages may be mixed in an application, so it is not necessarily a problem if the code to be reused is in a different language from the primary development language.  However, different languages support reuse differently.  It is particularly helpful for reused code to be well-structured and to provide a well-defined interface.

Support for structuring architectural framework. A software architecture is a high-level description of the structure of a software system, just as an architect’s drawing is a high-level description of the structure of a building.  Software architectures hold the key to large-scale software reuse and significant increases in productivity in developing new software systems.  Although an architecture is a language independent concept, the realization of an architecture in an application framework (code template) lays the foundation for the software implementation.  The framework provides the basic structure for the subsystems and major components of the system, along with a definition of the interconnections and interfaces to these subsystems and components.  With this in place, developers can work independently on the implementation of a subsystem or component, knowing how it will interface with the rest of the system (use other components and have other components use it).  If a framework is valid for many applications within an application domain, not only can it be reused, but components, and even subsystems, which have already been developed for it may also be reusable.

This factor is looking at the support provided by a language for structuring an architectural framework for the application, or it could be that a reusable architectural framework already exists for the application domain.  The framework is of interest for structuring the current system, but, if it is to be developed as a part of the application development, an even bigger consideration is its suitability for reuse in future systems within the same application domain.  Hence, the suitability of the language for producing such a framework is important.  A language, such as C++, which supports encapsulation of abstractions, provides good support for this factor.  A language, such as Ada 95, which supports structuring large scale abstractions such as subsystems and partitions, as well as smaller scale abstractions such as abstract data types, provides particularly good support for this factor.  The key in rating this factor is in whether an architectural framework already exists in a language, or in how much support the language provides for architectural abstractions--components, subsystems, partitions, threads, data abstractions, etc.

Availability of code generators.  Code generators are tools which can generate code in a specific language from a description of the system design.  This description can be given in a number of different forms.  For example, graphical design descriptions are often used as the basis for generating an application framework.  These descriptions usually do not provide enough detail to be used as the basis for generating more than a framework.  In some very narrow application domains, code generators can be used to generate major portions of an application, complete with much detail.  These generators are tailored to the application domain, so they do not follow a general pattern.  One example is a generator for an information system which uses forms for expressing the system design.  The particular nature of the narrow application domain can be captured in the type of data collected from the forms, permitting much of the detail to be a part of the generated code.  Note that often the code generator is itself considered to be a 4GL.  In rating this factor, consideration should be given both to the availability of any type of code generators for the application domain, as well as to how much detail can be generated by any available generators.

Availability of components.  Code components for specific abstractions, large or small, exist for any language which has been used for any significant length of time.  The key is how likely the components are to fit the needs of the current project, and how easy useful components are to find.  If components have been developed specifically for reuse within an application domain, then they are good candidates for reuse within that domain.  On the other hand, if an organization just keeps a library containing code from previous projects, but those projects do not share a common architecture, the reusability of components in the library is questionable.  It is often, if not usually, easier to redevelop the component than to make the necessary changes to an existing component when the component was not specifically developed with reuse in mind.  Also, if the candidate components are in a well-structured reuse repository (whether within the organization or in an outside entity), this will facilitate being able to find components of interest.  If the candidate components are just archived “somewhere on a system” or “somewhere on a network,” it will be very difficult to find useful components, or even to know if there are any useful components.  Hence, when rating this factor, several issues should be considered.  Try to determine the extent of components within the application domain that are readily accessible in the language of interest, the ease of finding suitable components, and the likelihood that the components will be useful once they are found.  

Reengineering

Most organizations have made a large investment in one or more significantly-sized software systems.  As these systems become inadequate for today’s requirements, many businesses are realizing they do not have to throw this investment away.  To begin with, it can provide a good start for the system that will replace it.  All parts of the old system are candidates for reuse, as discussed in the previous subsection.

When considering how to replace an old, outdated software system several choices are possible.  The first should be to consider reengineering it.  A system is a good candidate for reengineering if the old system has a good basic overall architecture which can be used as a basis for the new system, and if the new system--meeting all its new requirements--can be constructed from this framework more cost-effectively than developing a new replacement system.  It is usually not easy to make a good decision on what is most cost-effective, but it is well worth the effort.

It is probably the case that far too many replacement systems are still being built as new systems, rather than being reengineered from the old systems they are to replace.  However, reengineering can also be risky.  If good software engineering practices are not used to ensure that the new system does not contain the problems of the old system, then the reengineered system will either not meet the updated requirements, or else it will end up being much more expensive than originally expected (because the old problems are much more expensive to remove once they are a part of the code).

A dilemma arises with reengineering if an organization decides to change the language used for implementing the updated system.  The goal of reusing as much as possible from the old system is in conflict with the goal of using a different language.  However, if the new language is chosen with care, it can be mixed with the old one in the same application.  The use of multiple languages is standard practice in large systems today.  Where libraries of proven, reliable functions already exist in one language, it is desirable to use them, no matter what language they were created in.  The new language of choice can be used for all new development, as well as for replacing modules which are outdated, inadequate, or incorrect.  In time the new language will become the predominant language for the system.  Meanwhile, the software system can be incrementally updated, remaining responsive to current needs in the most cost-effective manner.

Compatibility with reengineering plan.  If a system is to be reengineered, the choice of primary language for the reengineered system is critical.  It is easiest, but often not the best long-term choice, to use the same language as the current system.  The current language must be rated according to whether it can meet the goals of the reengineered system.  If other languages are considered, then they must be rated with consideration for the above discussion on the use of multiple languages.  A language will rate high in compatibility with a reengineering plan if it can facilitate meeting the goals of the plan.  This usually means it should provide good support for the new features of the system--new capabilities, larger size, etc.  It also must provide a good capability for interfacing with components of the old language which will continue to be used, even if just temporarily.

Development Environment

The development environment consists of everything used in the software system development, and it is also used for reengineering as well as all other forms of maintenance.  The environment includes the hardware platform(s), operating system(s), and all the software tools used to create a software system.  If an environment contains automated tools for supporting more than just creating and compiling code, it is often referred to as a CASE environment.  One of the new buzzwords is to call it an integrated-CASE, or I-CASE, environment if all the tools work together by sharing information.

As would be expected, CASE tools and the integration of tools are not simple issues.  There is much debate as to what kinds of tools are most needed, and integration is a matter of degrees, with debates as to how much is enough integration.

The real issues are involved in examining the development environment for appropriateness.  What was appropriate in the past is not adequate for the future.  Much of the drudgery of software development can now be automated, and much more should be, to permit software professionals to spend their time on real science and engineering.  Unfortunately, as discussed below in the Education and Training section, neither the preparation nor the expectations of those receiving degrees in computer science, information systems, computer engineering, software engineering, or the like is typically adequate for moving into the future of a mature software discipline.

Compatibility with existing tools/environments.  If the budget it tight, and it always seems to be, then using existing tools/environments is very attractive.  First, however, these existing resources should be examined to determine if they will be adequate for use in developing the new system, whether they will be used as is or whether other tools will be added.  If this examination determines that existing resources will be used, then it is very important for the language to be compatible with these resources.  Many parts of a development environment have little or nothing to do with language.  For example, a configuration management tool will generally work on any type of files.  However, any tools which deal with code recognition or generation are language dependent.  This factor should be rated with consideration for how many of the existing resources are language dependent, and whether or not they will still be useful for the given language.

Availability of tools required.  It is usually the case that at least some new tools will need to be acquired for a new development project.  If an entirely new tool set will be acquired, then this factor should be rated according to the availability of adequate tool sets which work with the language in question.  If new tools will be used with an existing environment, then the issues are a little more complicated.  Language will be a factor if any of the new tools will be language dependent.  For any language-dependent tools to be acquired, the availability of such tools which are compatible with the current environment must be rated. 

Availability of bindings/libraries required.  Supporting libraries provide a very important form of reusable software.  A binding is a special type of supporting library which provides a set of interface calls permitting direct access to the capabilities of a particular tool from the development language.  In rating languages with respect to this factor, it is necessary to set a level of expected library support and then rate each language on how well the actual availability of libraries measures up to the expectation.  If a language is able to use libraries made for another language with reasonable ease, those libraries should also be considered in the availability for the language being rated.

Availability of compiler for platform to be used.  It is good practice to use an integrated approach to selecting supporting hardware and software for a development project, making final selections based on established system requirements.  However, the hardware/operating system platform for a system is sometimes dictated to the software staff from the very beginning.  In this case, it is essential that an acceptable compiler which runs on that platform be available for a language.  It should be noted that in some cases, such as with embedded systems, the actual software development may be done on a different platform than that which will run the final system.  In such cases, an acceptable cross-compiler must be available from the development platform to the final system platform. A survey of appropriate vendors and dealers should reveal how readily available such products are for a particular language, and this will provide a basis for a rating.

Standards

Standards are important in any type of production, and software production is no exception.  Before discussing standards, it is important to understand what the term means.  The ANSI/IEEE Standard Glossary of Software Engineering Terminology defines standards as “Mandatory requirements employed and enforced to prescribe a disciplined uniform approach to software development, that is, mandatory conventions and practices are in fact standards” [ANSI/IEEE 90].

Accepted standards may assume many forms.  They may be the result of a formal process of defining, refining, and approval, or a collection of commonly-used practices that have proven effective.  They may have the backing of official agencies such as ISO, ANSI, and the DoD, or be adopted and supported less officially by the software community at large.  Certainly large companies can encourage the use of practices which become de facto standards because of widespread use.

However the standards are defined and supported, it is still the case that standards can make people more productive with computers.  The de facto industry standards have had significant impact on computing.  For example, the Unix operating system has become a useful industry standard.  After many years, it has become an operating system that is available on many different computers, supporting a more uniform look across many platforms.  This has occurred because customers wanted it that way, because they could be more productive if they did not have to learn to use a different operating system on every different computer.  Thus, Unix has served to provide some measure of hardware independence.  Nevertheless, there are still many different Unix dialects, because the definition of Unix was never rigorously or uniquely defined.  As a result, the transition from one Unix-based system to another is not always painless.  

The success of the Unix strategy of a consistent interface has been exploited in other products as well.  Many software vendors strive to provide the same look and feel in their products, regardless of what hardware and operating system combination is the target.  This technique certainly assists the users as they must transition among many, fundamentally different, computer systems.

The role of standards in the language domain is equally important to consider.  There are two principal ways in which language standards today have evolved.  The contrast can be readily seen by comparing the Ada language standard with the standard for the C/C++ language family. The Ada language was defined before Ada was supported by compilers, and the standard is supported by the various standards organizations.  From the beginning, any Ada compiler had to comply with the established, written standard.  Compilers for Ada are validated against the standard definition in order to determine compliance.  The language standard is reviewed on a periodic basis, language changes are suggested, studied, either approved or rejected, and then the standard is changed.  This process has recently unfolded with the Ada 95 definition.  As before, compilers will be validated against the new standard definition.

In other languages, such as C and C++, there are standard definitions which are also supported by the standards organizations.  However, there is a significant difference between these standards and the Ada standard.  Unlike Ada, the C standards have been written and approved after the language was developed and put into use.  The result of this is that many dialects of C and C++ exist, and they have significant differences among them.  Thus, while C is highly touted for its portability, in fact, the porting characteristics can be quite poor if different dialects are involved.

Proponents of the C approach to standards creation argue, legitimately, that C has been more responsive to rapidly changing needs in the software community.  Without the ponderous standards review process, language changes can be incorporated more quickly.  The price that has been paid has been the development of the many dialects which may or may not be compatible.  Recognizing the need to bring language changes to the marketplace more quickly, while not compromising the integrity of a single language definition, the Ada community is looking toward streamlining the standard review process.  Instead of looking at the entire language before changes are made, incremental releases of language updates may become the norm.  This approach will promote evolutionary change to keep up with emerging language technology, while assuring a stable and consistent language definition for the future. [McCarthy 95]

Standards can make the difference between smooth sailing and total chaos.  There is little doubt in the marketplace today about the merits of standards, even though they are difficult to define.  Available standards have very different approaches to creation, to review, and to compliance.  The nature and rigor of a standard must be understood in order to predict how effective it may be for a particular problem.  Since the computer industry is too young to have just one set of accepted standards, a company must choose from among available computer industry standards very carefully to be sure its business can continue to meet the needs of its customers.  The nature of the standards used in the original development process will have long-reaching effects as a product matures.

The language standardization factor has already been considered in Appendix B and Table 2.  Hence, no factors are given in this section.

Software Maintenance

Software maintenance is a term which has been adapted from the computer hardware industry.  Software maintenance refers to any modifications made to software, whether they be to fix problems or to improve capabilities.

The notion of modifying software easily has always been one of its appealing points.  Unfortunately, it is also most misleading.  Many people are mistakenly led to believe that changing software is an easy business, so there is no reason to put great effort into its original creation.  Nothing could be farther from the truth.

An analogy is useful here.  Legos are very flexible, and it is fun to build things with them.  It is also very easy to tear them apart and change what is built.  This makes them a nice form of entertainment for individuals who like to build things.  Legos would not be appropriate, however, as a material for constructing buildings.  Likewise, it can be fun for an individual to build and modify small software creations in an unstructured fashion.  However, this would not be an appropriate approach for a group of software professionals to use in building large, complex software.  Unlike small systems which may never require much in the way of maintenance, most of the lifetime of a large system will be spent in maintenance.

The discipline of software engineering has established a number of principles to be applied to software as it is being constructed to ensure its quality.  One of those principles is maintainability, the ease with which software can be modified.  It is not an easy, straightforward quality to achieve.  Object-oriented methods are only one technique used to build more maintainable software.  Using appropriate development environments, including appropriate languages, is another.  Standards also play an important role, as indicated above.

The contribution of language to software maintenance has already been considered in Appendix B and Table 2 under the maintainability characteristic.  Hence, no factors are given in this section.

Education and Training

Good software will not be produced without good people, and there are many good software professionals in the work force today.  However, good people need the right education and training before they can perform their work properly.  Unfortunately, the software disciplines are so young that the variation in programs among different colleges and universities is tremendous.  

Computer science should be the science supporting the study of computer software.  However, most computer science curricula today emphasize building software more than studying its scientific, and thus quantifiable, underpinnings.  Furthermore, most graduates are prepared to build little more than toy programs when they receive their degrees.

Many people working in the software industry have degrees with names such as Information Systems, Computer Science, or Software Engineering.  The curricula these people studied were individually defined by the institution they attended, and these curricula address software issues in various ways.  Only a few individual programs deal with the issues of building large, complex software systems, an activity which requires the cooperative effort of many people.  

Eventually, curricula dealing with the issues of large, complex software systems should be called Software Engineering degree programs.  Today, however, software engineering is a discipline which is still included in many computer science programs.  It has not even been around long enough to be accredited as an engineering discipline by the recognized engineering accrediting group, the Accreditation Board for Engineering and Technology (ABET).  Software engineering is the discipline of building more than just toy programs.  Some day software engineering graduates will be properly prepared when they receive their degrees, but today it is hard to even know what their degrees will be called.

With the variability in background of software professionals today, continuing education is all the more important for them.  It is common practice for professionals of all types to spend about two weeks per year in continuing education programs to keep current in their disciplines.  Without this, they fall behind in knowing how technology has progressed and what new techniques are available for their professions.  In the software disciplines today, professionals are commonly not permitted to take time for continuing education.  This is often because their organizations are always in a time crisis.

The truth is, organizations cannot afford not to let their people have the opportunity to keep up with technology.  In fact, for software professionals, two weeks is probably not enough.  Most need courses and interactions with fellow professionals to both catch up and keep up.  This could require twice as much time, or even more.  Many companies in other countries, particularly in India, Japan, and Europe, are spending around 5 percent of their annual software revenues on education and training.  In contrast, American companies average only about 1.5 percent.  The American software industry is probably on the brink of a crisis if this practice persists. [Quann 94, Yourdon 92]

It is essential that an organization recognize that there is no substitute for good people, there is no substitute for good education and training for those people, and there is the necessity to keep their knowledge current.  Knowledge currency includes learning new languages where appropriate.

Extent of education/training completed.  For this factor, it is necessary to determine the extent of education/training which is required of staff members, whether they have completed the training already or not, if they are to be expected to perform well on project development.  Then a rating is given for how much of that training has already been completed if the language in question is used for development.  It may seem more reasonable to rate how much education/training is required for a language rather than how much has been completed.  However, in the rating system we are using a high rating is better than a low rating, and that would not be the case for a rating of how much education/training is required.  Hence, this factor looks at the opposite sense of this issue.  Assessing the extent of required education/training before rating individual languages is also useful for establishing the real level of preparation which is necessary for various staff members.  This is an area in which artificial qualifications are often set, based more on who is available than on the real requirements of the project.

Availability of qualified professionals.  This is an issue of concern if an organization must bring in new people to work on a project.  As with the previous factor, it is necessary to first determine the qualifications required of the new people.  Then a rating is given by determining the availability of people with those qualifications, including the appropriate preparation in the language in question.  If the professionals available do not have all of the necessary qualifications, then the rating will depend on how much additional education/training will be necessary to prepare them for the project using the language in question.

Availability of required education/training.  In most cases, some amount of education/training is necessary to prepare a staff properly for a new project.  This factor should be rated according to how readily available that education/training is, particularly that which is specific to the language in question.  Availability can be determined in a number of ways, including searches of trade publications and professional journals, as well as inquiries to appropriate electronic news groups.

Meeting Requirements

The goal of using software engineering and dealing with all of the software engineering factors discussed above is to produce good software systems.  The most important aspect of any software system is that it meet the requirements of its users.  All of the above factors are directed toward meeting system requirements effectively, and each plays an important role.  To look for one particular factor to improve an organization’s ability to produce software is to oversimplify the problem.  Software engineering is hard.  It requires bringing together the right methods, defined process, technology, tools, languages, and people, mixing in the right standards, education and training, and work environment, and then providing the right level of management direction, to be successful.

Appendix D

4GL or 5GL

4GLs are typically used to meet special needs of data processing, with such applications as databases, spreadsheets, and program generators for use by non-expert programmers [Ghezzi 87].  4GLs typically have properties such as [Appleby 91]:

•
database structures and programming

•
centralized data dictionary containing information about system components

•
visual programming, such as using a mouse with icons

•
graded-skill user interface allowing novices as well as database experts to use the programs

•
interactive, integrated, multifunction programming environment

The intent of 4GLs is to “make languages easy to use so that end users can solve their own problems and put computers to work.” [Martin 86]  However, a 4GL must be selected to fit the particular application, unlike 3GLs, which tend to be more general purpose.  4GLs are essentially non-procedural whereas 3GLs tend to be procedural, but there is no standard definition.  The term 4GL is actually very imprecise, and it is used for marketing reasons to describe many modern application development tools. [Appleby 91, DoD 87, Glass 91, Martin 86, Misra 88, Verner 88, Wojtkowski 90]

A 5GL is essentially a 4GL which uses a knowledge-based system [ANSI/IEEE 90], although some such systems are also called 4GLs.  A 5GL tends to be a more complete development environment than a 4GL, and its concept is for all code to be automatically generated.  Then a system is maintained by modifying the 5GL statements, rather than manually changing the generated code. [Connors 94]

Language Criteria

It is impossible to assess every possible 4GL or 5GL of interest because these language applications are numerous, and more are appearing all the time.  It is important to note that these languages vary widely in capabilities and intended purpose.  Some newer ones, such as Visual Basic and Powerbuilder, are particularly powerful with respect to ease of programming and prototyping capabilities.  Others, such as SQL and Oracle, have been around for a while but continue to provide powerful capabilities for interfacing with databases.  All languages in this category also share many concepts.  A specific language should be examined in terms of how its specific purpose matches the current need, and its particular characteristics should be assessed with respect to the language criteria.  The general category of 4GL and 5GL languages is considered in this appendix.  The assessments can be used to guide the assessment of a specific language.  Hence, the following assesses the category of 4GLs and 5GLs with respect to the language criteria presented in the Criteria for a Good Language section in the main document:

1)
Its definition should be independent of any particular hardware or operating system.  A 4GL or 5GL is defined at a very high level, and therefore it is independent of any particular platform.

2)
Its definition should be standardized, and compiler implementations should comply with this standard.  Since 4GLs and 5GLs are more like applications than languages in the way they are used, only a few have been concerned with standardization.  Of these, SQL is probably the most popular because it is widely used as a database query language.  The SQL ANSI and ISO standard provides a baseline language, and implementations are likely to provide additional language features as well [Appleby 91].

3)
It should support software engineering technology, discouraging or prohibiting poor practices, and promoting or supporting maintenance activities.  Since a 4GL or 5GL is used more like an application than a language, specific support for engineering good software within the 4GL or 5GL is not usually a concern.  The emphasis is on making the development system easy to use.  However, the method of creating an application from one of these systems often makes good use of certain aspects of software engineering technology.  For example, providing a mechanism for automatically generating code for an application makes good use of such software engineering concepts as abstraction and maintainability (assuming that changes made to the code are also made using the 4GL or 5GL).  Also, some types of poor practices are discouraged or prohibited because of the mechanisms provided for the user to interact with the system.

4)
It should support the application domain(s) of interest effectively.  A 4GL or 5GL is specific to a particular application domain, and it should only be used within that domain.  To attempt to use it outside its intended domain is to negate its potential benefits.  

5) It should support the required level of system reliability and safety.  Reliability is not a primary concern for these development systems, and the actual reliability of a system generated by a 4GL or 5GL will vary with the particular language used.  Safety critical systems, those concerned with putting human lives in jeopardy, are not supported by current 4GLs or 5GLs.

6)
Its compiler implementations should be commensurate with the current state of technology.  It makes more sense here to discuss the tool set comprising the 4GL or 5GL, because this tool set transforms the program into a form understandable by the computer, much as a compiler does for a 3GL.  With such a wide variety of products available in this category, as well as the increasing interest in this form of creating software, 4GL and 5GL implementations continue to be competitive by taking full advantage of current technology.  With this technology changing so rapidly, versions of products more than a year old will not use the current state of the technology.

7)
Appropriate software engineering-based supporting tools and environments should be available.  A 4GL or 5GL tends to contain its own development environment.  Most 4GLs do not support a complete software engineering process, and in this respect their usefulness is usually limited to systems which are small, or possibly medium, in size and complexity [Misra 88, Wojtkowski 90].  The 5GL concept is to provide a more complete support environment.  However, these systems have not existed long enough for information on their effectiveness to have been studied.  It is also likely that the amount of software engineering support provided by different products will vary widely.

Language Characteristics

4GLs and 5GLs are now rated below with respect to the language characteristics used in Table 2 in the main document.  The given ratings are for this category of languages, rather than a specific language.  Hence, a given rating is intended to be typical of a 4GL or 5GL, but a rating may not be representative of every product.  The ratings range from 0 to 10, where 0 means the language provides no support for the characteristic and 10 means it provides extensive support.  The ratings given below are those provided in Table 2. The reader must bear in mind that the support for a good characteristic in a language does not necessarily mean that it is always used, or used appropriately.  Bad programmers can write bad code in any language, but a good language facilitates the production of good code by good programmers.

Clarity of source code - the extent to which inherent language features support source code which is readable and understandable and which clearly reflects the underlying logical structure of the program.

For this characteristic, the source code consists of the commands used by the programmer, and this varies greatly with different 4GLs and 5GLs.  Many use graphical interfaces or menus which require very little typing.  The higher the language level, the better the code clarity tends to be because of the nature of the commands used.  However, to the extent that the commands are text-based, they tend to be full of abbreviations and not completely descriptive.  This rating will vary with different products, with the given rating considered typical.  Rating: 5
Complexity management - the extent to which inherent language features support the management of system complexity, in terms of addressing issues of data, algorithm, interface, and architectural complexity.

A 4GL or 5GL tends to target a relatively small application, and complexity management is not one of the development considerations.  Complexity is usually managed only through the use of abstraction.  Rating: 2

Concurrency support - the extent to which inherent language features support the construction of code with multiple threads of control (also known as parallel processing).

Support for concurrency is not usually represented in 4GLs or 5GLs.  Rating: 0
Maintainability - the extent to which inherent language features support the construction of code which can be readily modified to satisfy new requirements or to correct deficiencies.

If the 4GL or 5GL is used as intended, maintenance is performed on the high-level commands provided by the development system, rather than on the low-level code intended to be understood by the computer.  To the extent that this concept is used, the maintainability is generally good.  Understanding the program from the high-level commands facilitates maintainability, and small changes will usually not impact more than a small number of the high-level commands.  However, the low-level code tends to be very difficult to understand, and making changes at that level is not easy.  Since most current 4GL development systems cannot automatically generate all of the necessary code for many applications, and the ability of a 5GL to generate all necessary code is still in doubt, maintenance must consider working with some low-level code.  Rating: 5

Mixed language support - the extent to which inherent language features support interfacing to other languages.

4GL and 5GL systems are not usually concerned with interfacing with other languages, although other languages are often concerned with interfacing with a 4GL such as SQL.  When procedural commands are needed, a language is usually provided for that purpose by the 4GL or 5GL, rather than relying on a conventional 3GL.  This is an inherent weakness because the procedural language provided is typically not as rich or expressive as a conventional 3GL [Misra 88].  Rating: 0
Object-oriented programming support - the extent to which inherent language features support the construction of object-oriented code.

Although a 4GL or 5GL uses high-level commands, and it is possible for these to be object-oriented in nature, they usually are not.  Constructing object-oriented code is rarely an issue.  Rating: 0

Portability - the extent to which inherent language features support the transfer of a program from one hardware and/or software platform to another.

Since a 4GL or 5GL is used more like an application than a language, portability is not a major goal.  SQL is portable to a certain extent because it is standardized (an exception rather than a rule in a 4GL or 5GL), but since most applications use non-standard features, its portability is also limited.  Rating: 1

Real-time support - the extent to which inherent language features support the construction of real-time systems.

Real-time systems are not usually a concern of 4GLs or 5GLs, although there are a few exceptions for which the given rating should be changed accordingly.  Rating: 0
Reliability - the extent to which inherent language features support the construction of components which can be expected to perform their intended functions in a satisfactory manner throughout the expected lifetime of the product.

Reliability is not usually a primary concern for a 4GL or 5GL application.  Rating: 3

Reusability - the extent to which inherent language features support the adaptation of code for use in another application.

 Since a 4GL or 5GL is used more like an application than a language, reusability is not usually a goal.  Only a widely-used and standardized language, such as SQL, could be reasonably considered for reuse.  However, SQL does not have inherent characteristics, such as encapsulation, which lends itself to reusability.  Rating: 1

Safety - the extent to which inherent language features support the construction of safety-critical systems, yielding systems that are fault-tolerant, fail-safe, or robust in the face of systemic failures.

Safety systems, those concerned with putting human lives in jeopardy, are not supported by current 4GLs or 5GLs.  Rating: 0

Standardization - the extent to which the language definition has been formally standardized (by recognized bodies such as ANSI and ISO) and the extent to which it can be reasonably expected that this standard will be followed in a language translator.

Since 4GLs and 5GLs are more like applications than languages in the way they are used, only a few have been concerned with standardization.  Of these, SQL is probably the most popular because it is widely used as a database query language.  The SQL ANSI and ISO standard provides a baseline language, and implementations are likely to provide additional language features as well.  Rating: 1

Support for modern engineering methods - the extent to which inherent language features support the expression of source code which enforces good software engineering principles.
Since a 4GL or 5GL is used more like an application than a language, specific support for engineering good software is not usually a concern.  The emphasis is on making the development system easy to use.  However, some types of poor practices are discouraged or prohibited because of the high-level mechanisms provided for the user to interact with the system.  Rating: 3
Appendix E

Ada 83

Ada 83 is a 3GL rich in constructs as well as in support for the principles of software engineering.  It is considered object-based as opposed to object-oriented (see Appendix F on Ada 95 for its object-oriented successor) because Ada 83 supports the creation of encapsulated classes and objects, but it does not support full inheritance. [ANSI/MIL 83, Barnes 94]

Language Criteria

The following assesses Ada 83 with respect to the language criteria presented in the Criteria for a Good Language section in the main document [ANSI/MIL 83, Barnes 94]:

1)
Its definition should be independent of any particular hardware or operating system.  Ada is completely independent of any particular hardware or operating system.  Ada’s interface to a given platform is through a well-defined, completely encapsulated package called System.  All system-dependent definitions are contained within this package and the user is isolated from them.

2)
Its definition should be standardized, and compiler implementations should comply with this standard. The Ada language was defined before Ada was supported by compilers, and the standard is supported by the various standards organizations.  From the beginning, any Ada compiler had to comply with the established written standard.  Compilers for Ada are validated against the standard definition in order to determine compliance.  Because of the way Ada was defined, only validated Ada compilers are used as common practice.  Additional, non-standard language features do not exist in validated Ada compilers.

3)
It should support software engineering technology, discouraging or prohibiting poor practices, and promoting or supporting maintenance activities.  The original requirements for the Ada language were developed explicitly for it to provide good support for software engineering technology.  It not only supports the known principles of good software engineering at the time it was developed, but it also discourages poor practices by prohibiting them where possible.  Maintenance is well supported by these characteristics.

4)
It should support the application domain(s) of interest effectively.  Ada was originally developed to support embedded software systems, although it took a number of years before most Ada products were mature enough to provide good support for that domain.  In the meantime, Ada has also proven to provide good support for real-time domains, computationally-intensive domains, communications systems domains, and information systems domains [DoD 91, Lawlis 92].  In short, with the proper compilers, supporting tools, and software libraries, Ada has proven to provide good support for any domain in which it has been tried.

5)
It should support the required level of system reliability and safety.  Ada provides many features which support system reliability.  For safety-critical systems, those on which human life may depend, no current language is entirely satisfactory.  [Cullyer 91] indicates that a subset of Ada can be used in safety-critical systems, along with at least static code analysis and preferably formal proofs.  [Pyle 91] indicates that Ada, with its automatic compile-time checking, along with careful inspection and preparation of test cases, can reduce residual error rates by an order of magnitude better than other languages, making Ada the most suitable language for safety-related software.  However, Ada must still be combined with mathematical specification, rigorous analysis, and formal proofs of correctness before it is appropriate for use in safety-critical systems.

6)
Its compiler implementations should be commensurate with the current state of technology.   Although early Ada systems were naturally immature (since the language was defined before the compilers were built), current Ada 83 implementations are generally state of the technology.

7)
Appropriate software engineering-based supporting tools and environments should be available.  Many tools and environments have emerged in recent years, for systems ranging from mainframes to microcomputers to embedded chips.  Many of these are of very good quality.

Language Characteristics

In this section, Ada 83 is rated with respect to the language characteristics used in Table 2 in the main document [ANSI/MIL 83, Barnes 94, SPC 89].  The ratings range from 0 to 10, where 0 means the language provides no support for the characteristic and 10 means it provides extensive support.  The ratings given below are those provided in Table 2.  The reader must bear in mind that the support for a good characteristic in a language does not necessarily mean that it is always used, or used appropriately.  Bad programmers can write bad code in any language, but a good language facilitates the production of good code by good programmers.

Clarity of source code - the extent to which inherent language features support source code which is readable and understandable and which clearly reflects the underlying logical structure of the program.

Ada is considered by many to be very verbose, but one of the strengths of this language approach is that it supports code clarity.  Ada code also reflects program structure.  Clarity of form was one of the design goals of Ada.  Rating: 9
Complexity management - the extent to which inherent language features support the management of system complexity, in terms of addressing issues of data, algorithm, interface, and architectural complexity.

The single most important contribution of Ada to language design was the package construct.  This construct permits the encapsulation of abstract data types, finite state machines, classes, objects, etc.  In doing so it greatly facilitates the creation of software libraries.  Ada compilers are also required to perform consistency checking across separate compilation units.  All of this contributes to complexity management.  However, Ada 83 does not provide any additional support for managing very large software components, such as subsystems.  Rating: 7

Concurrency support - the extent to which inherent language features support the construction of code with multiple threads of control (also known as parallel processing).

Ada is one of few standardized languages which supports concurrency specifically.  Ada uses a task mechanism with synchronization constraints.  Because this is an unusual language feature, it is the least mature feature of the Ada 83 language.  The result is that this feature is often not used in real-time systems because of the perception that system constraints cannot be met.  Rating: 4
Maintainability - the extent to which inherent language features support the construction of code which can be readily modified to satisfy new requirements or to correct deficiencies.

Many features of Ada support maintainability, such as those which support code clarity and encapsulation, to facilitate understanding followed by the ability to change isolated pieces of code while guaranteeing no side effects in other parts of the software system.  However, many applications require a rather awkward structuring in Ada 83, and this is detrimental to maintainability.  Rating: 5
Mixed language support - the extent to which inherent language features support interfacing to other languages.

Ada provides a specific language feature, pragma interface, which is used as a standard form for interfacing with other languages.  However, in Ada 83 it does not always work effectively.   Rating: 5
Object-oriented programming support - the extent to which inherent language features support the construction of object-oriented code.

Ada 83 supports the construction of code using encapsulation of objects, including the operations which act on the objects.  However, it does not fully support inheritance, nor does it support polymorphism.  Hence, Ada 83 is considered to be object-based rather than object-oriented.  Rating: 6

Portability - the extent to which inherent language features support the transfer of a program from one hardware and/or software platform to another.

Ada features such as the type attributes, the ability to define numerical types using system independent range and digits declarations, and the ability to encapsulate dependencies provide good support for portability.  However, there is no widespread availability of common tools on many platforms in Ada 83, and this is detrimental to portability.  Rating: 5

Real-time support - the extent to which inherent language features support the construction of real-time systems.

Ada features provide support for specifying time and space constraints to a certain extent, both in type declarations and in the tasking mechanism.  However, these have not been specified in the Ada 83 language in a manner which will always result in expected performance.  Additional real-time support in Ada 83 is offered by the low-level language features which support access to underlying device control where necessary.  Rating: 4
Reliability - the extent to which inherent language features support the construction of components which can be expected to perform their intended functions in a satisfactory manner throughout the expected lifetime of the product.

Ada requires the specification of information, the omission of which can make a program unreliable, such as type specifications.  Ada also performs consistency checks across separately compiled units, providing excellent support for reliability.  However, there are elements which have not been specified in Ada 83 in a manner which will always result in expected performance.  Rating: 6

Reusability - the extent to which inherent language features support the adaptation of code for use in another application.

Ada 83 supports reusability with language features supporting code clarity (making code understandable) and encapsulation (making code adaptable), and it has reasonable support for maintainability and portability.  However, the lack of full object-oriented support is detrimental to reusability.  Rating: 5

Safety - the extent to which inherent language features support the construction of safety-critical systems, yielding systems that are fault-tolerant, fail-safe, or robust in the face of systemic failures.

As noted by [Pyle 91] and [Cullyer 91], no language alone can ensure the construction of safety-critical systems (additional formal methods are required).  However, Ada comes closer than other existing languages by an order of magnitude because of its support for system reliability [Pyle 91].  Rating: 4

Standardization - the extent to which the language definition has been formally standardized (by recognized bodies such as ANSI and ISO) and the extent to which it can be reasonably expected that this standard will be followed in a language translator.

Ada has been standardized by ANSI and ISO in a much different fashion than other languages, with compilers developed after the language was standardized.  The result is that virtually every Ada compiler in use today has been validated against the standard, and the compilers follow the standard without adding non-standard features to the language definition.  Rating: 10

Support for modern engineering methods - the extent to which inherent language features support the expression of source code which enforces good software engineering principles.
The original Ada requirements were developed explicitly to support good software engineering, as it was known at the time.  However, it does not provide full object-oriented support, and it supports some engineering features awkwardly.  Rating: 7
Appendix F

Ada 95

Ada 95 is an update to Ada 83, and it is still rich in constructs as well as support for the principles of software engineering.  It now has complete support for object-oriented programming with full inheritance and polymorphism, accompanied by additional support for managing program complexities through hierarchical libraries.  Support for real-time systems, distributed systems, information systems, safety and security systems, computationally-intensive systems, and interfacing to other languages have also been made more explicit and consistent to better support portability and reusability. [ANSI/ISO 95]

Language Criteria

The following assesses Ada 95 with respect to the language criteria presented in the Criteria for a Good Language section in the main document [ANSI/ISO 95, Barnes 94]:

1)
Its definition should be independent of any particular hardware or operating system.  As with Ada 83, Ada 95 is completely independent of any particular hardware or operating system. Ada’s interface to a given platform is through a well-defined, completely encapsulated package called System.  All system-dependent definitions are contained within this package and the user is isolated from them.

2)
Its definition should be standardized, and compiler implementations should comply with this standard.  The Ada 95 standard was developed in much the same manner as the Ada 83 standard, before compilers were developed.  However, compilers have had a boost from a prototype which was developed during the Ada 95 language development, and full, as well as mature, language implementations are arriving much more quickly than occurred with the original Ada 83.  Complete compliance with the new standard is tested through the Ada Compiler Validation Capability (ACVC) suite of tests, as it is with Ada 83, and non-standard compilers are not accepted in the Ada community.

3)
It should support software engineering technology, discouraging or prohibiting poor practices, and promoting or supporting maintenance activities.  The requirements for the Ada language were developed explicitly for it to provide good support for software engineering technology.  Ada 95 not only supports the known principles of good software engineering as it is known today, but it also discourages poor practices by prohibiting them where possible.  Maintenance is well supported by these characteristics.  Ada 95 improves upon these characteristics of Ada 83 because it has updated the language to the current state of software engineering technology.

4)
It should support the application domain(s) of interest effectively.  Ada was originally developed to support embedded software systems, although it took a number of years before most Ada 83 products were mature enough to provide good support for that domain.  In the meantime, Ada 83 has also proven to provide good support for real-time domains, computationally-intensive domains, communications systems domains, and information systems domains.  In short, with the proper compilers, supporting tools, and software libraries, Ada 83 has proven to provide good support for any domain in which it has been tried.  Although Ada 95 use is just beginning, it is already proving its ability to support real-time and computationally-intensive domains [Kayloe 94].

5) It should support the required level of system reliability and safety.  Ada provides many features which support system reliability.  For safety-critical systems, those on which human life may depend, no current language is entirely satisfactory.  [Cullyer 91] indicates that a subset of Ada can be used in safety-critical systems, along with at least static code analysis and preferably formal proofs.  [Pyle 91] indicates that Ada, with its automatic compile-time checking, along with careful inspection and preparation of test cases, can reduce residual error rates by an order of magnitude better than other languages, making Ada the most suitable language for safety-related software.  However, Ada must still be combined with mathematical specification, rigorous analysis, and formal proofs of correctness before it is appropriate for use in safety-critical systems.  Ada 95 improves upon this assessment with better language support and the addition of the Safety and Security Annex.

6)
Its compiler implementations should be commensurate with the current state of technology.  Ada 95 is currently very new, and implementations are just being introduced.  Nevertheless, implementations are already showing that they are not far from the current state of technology [Kayloe 94].

7)
Appropriate software engineering-based supporting tools and environments should be available.  Current Ada 83 tool sets will have to be modified somewhat for Ada 95 use.  Early Ada 95 versions are already appearing, however, and this will drive others to appear soon.

Language Characteristics

In this section, Ada 95 is rated with respect to the language characteristics used in Table 2 in the main document [ANSI/ISO 95, Barnes 94].  The ratings range from 0 to 10, where 0 means the language provides no support for the characteristic and 10 means it provides extensive support.  The ratings given below are those provided in Table 2. The reader must bear in mind that the support for a good characteristic in a language does not necessarily mean that it is always used, or used appropriately.  Bad programmers can write bad code in any language, but a good language facilitates the production of good code by good programmers.

Clarity of source code - the extent to which inherent language features support source code which is readable and understandable and which clearly reflects the underlying logical structure of the program.

Ada is considered by many to be very verbose, but one of the strengths of this language approach is that it supports code clarity.  Ada code also reflects program structure.  Clarity of form was one of the design goals of Ada 83, and it continues in Ada 95.  Rating: 9
Complexity management - the extent to which inherent language features support the management of system complexity, in terms of addressing issues of data, algorithm, interface, and architectural complexity.

The single most important contribution of Ada 83 to language design was the package construct.  This construct permits the encapsulation of abstract data types, finite state machines, classes, objects, etc.  Ada 95 has gone beyond this to providing additional support for managing the complexity of very large software components with hierarchical libraries.  It also provides partitions for distributed systems.  Rating: 9

Concurrency support - the extent to which inherent language features support the construction of code with multiple threads of control (also known as parallel processing).

Ada 95 has improved concurrency support over Ada 83, and it has also introduced a Real-Time Systems Annex. This has better specified the required implementation of a useful model of concurrency.  Rating: 8
Maintainability - the extent to which inherent language features support the construction of code which can be readily modified to satisfy new requirements or to correct deficiencies.

Many features of Ada support maintainability, such as those which support code clarity and encapsulation, to facilitate understanding followed by the ability to change isolated pieces of code while guaranteeing no side effects in other parts of the software system.  Ada 95 improves upon these characteristics with improved means of expression and hierarchical libraries. The addition of full object-oriented capabilities can have both good and bad effects on maintainability, but if used properly object-oriented programming will improve maintainability.  Rating: 9

Mixed language support - the extent to which inherent language features support interfacing to other languages.

Ada 95 improves on the support provided by Ada 83 by better standardizing the interface mechanism and providing an Interface to Other Languages Annex.  Rating: 8
Object-oriented programming support - the extent to which inherent language features support the construction of object-oriented code.

Unlike Ada 83, Ada 95 provides complete support for all aspects of a language generally recognized as making it object-oriented--encapsulation of objects and their operations, inheritance, and polymorphism.  Ada 95 also provides support for other programming paradigms, so an individual Ada 95 program will not necessarily be object-oriented.  Rating 10

Portability - the extent to which inherent language features support the transfer of a program from one hardware and/or software platform to another.

Ada features such as the type attributes, the ability to define numerical types using system independent range and digits declarations, and the ability to encapsulate dependencies provide good support for portability.  Ada 95 improves upon these characteristics of Ada 83 with improved features and better methods for interfacing with other languages.  Rating: 8

Real-time support - the extent to which inherent language features support the construction of real-time systems.

Ada 95 has improved real-time support over Ada 83 through improved features and the addition of the Real-Time Systems Annex.  This has better specified the language definition for the implementation of real-time features.  Rating: 7
Reliability - the extent to which inherent language features support the construction of components which can be expected to perform their intended functions in a satisfactory manner throughout the expected lifetime of the product.

Ada requires the specification of information, the omission of which can make a program unreliable, such as type specifications.  Ada also performs consistency checks across separately compiled units, providing excellent support for reliability.  Ada 95 improves upon these characteristics of Ada 83 and better defines language behavior.  Rating: 9

Reusability - the extent to which inherent language features support the adaptation of code for use in another application.

 Ada supports reusability with language features supporting code clarity (making code understandable), encapsulation (making code adaptable), maintainability, and portability.  Ada 95 improves on these characteristics of Ada 83 through features such as object-oriented programming and hierarchical libraries.  Rating: 8

Safety - the extent to which inherent language features support the construction of safety-critical systems, yielding systems that are fault-tolerant, fail-safe, or robust in the face of systemic failures.

As noted by [Pyle 91] and [Cullyer 91], no language alone can ensure the construction of safety-critical systems (additional formal methods are required).  However, Ada comes closer than other existing languages by an order of magnitude because of its support for system reliability [Pyle 91].  Ada 95 improves upon these characteristics of Ada 83 with an improved language definition and the Safety and Security Annex.  Rating: 6

Standardization - the extent to which the language definition has been formally standardized (by recognized bodies such as ANSI and ISO) and the extent to which it can be reasonably expected that this standard will be followed in a language translator.

Ada 95, as with Ada 83, has been standardized by ANSI and ISO in a much different fashion than other languages, with compilers developed after the language was standardized.  The expectation is that every Ada 95 compiler will be validated against the standard, and the compilers will follow the standard without adding non-standard features to the language definition, just as is the case with Ada 83.  Rating: 10

Support for modern engineering methods - the extent to which inherent language features support the expression of source code which enforces good software engineering principles.
Ada requirements were developed explicitly to support good software engineering.  Ada 95 improves upon this characteristic of Ada 83, adding and modifying features to support the latest advances in software engineering.  Rating: 9
Appendix G

C

C is a 3GL which is popular for its ease of code creation, efficiency, and availability on a wide variety of platforms, including Unix-based workstations and PCs.  It supports all of the usual language features found in a non-object-oriented 3GL (for its object-oriented counterpart, see Appendix H on C++).  C is usually associated with the quick creation of cryptic code, although it is possible to create readable C. [Plauger 89, Rabinowitz 90]

Language Criteria

The following assesses C with respect to the language criteria presented in the Criteria for a Good Language section in the main document:

1)
Its definition should be independent of any particular hardware or operating system.  C was originally defined as a language for system software on Unix platforms.  However, it has evolved to a language independent of Unix or any specific platform.

2)
Its definition should be standardized, and compiler implementations should comply with this standard.  C has followed the standardization path of most languages.  First the language was created and used.  As its popularity grew, it began to spawn a number of different dialects.  Then, C went through a standardization process, with the main core of the language being standardized.  It is common for compiler implementations to support standard C with additional, system-dependent features.  This results in the creation of much non-standard C code.

3)
It should support software engineering technology, discouraging or prohibiting poor practices, and promoting or supporting maintenance activities.  Because of its original purpose, the easy creation of system software, C has never emphasized support for software engineering technology.  As with any language, it is possible to use good software engineering practices with C.  However, the language neither prevents nor discourages poor practice, and it therefore does not provide good support for maintenance.

4)
It should support the application domain(s) of interest effectively.  Although it was originally developed to support system software, C has proven to be a very versatile language, supporting any domain in which it has been tried.

5)
It should support the required level of system reliability and safety.  Because of its lack of support for software engineering technology, C provides little support for reliability.  Safety-critical systems, those on which human life may depend, are also not effectively supported by C because of its lack of support for software engineering technology. [Cullyer 91, Pyle 91]

6)
Its compiler implementations should be commensurate with the current state of technology.  Because of its immense popularity, C compilers continue to be improved using current technology.

7)
Appropriate software engineering-based supporting tools and environments should be available.  Again because of its popularity, a wide variety of supporting tools and environments is available for C development.  Many of these are little more than tools to support code creation, with minimal support for engineering software.  However, many also provide appropriate software engineering-based support.

Language Characteristics

In this section, C is rated with respect to the language characteristics used in Table 2 in the main document.  The ratings range from 0 to 10, where 0 means the language provides no support for the characteristic and 10 means it provides extensive support.  The ratings given below are those provided in Table 2. The reader must bear in mind that the support for a good characteristic in a language does not necessarily mean that it is always used, or used appropriately.  Bad programmers can write bad code in any language, but a good language facilitates the production of good code by good programmers.

Clarity of source code - the extent to which inherent language features support source code which is readable and understandable and which clearly reflects the underlying logical structure of the program.

Although it is possible to write C code which is understandable, it is not common practice to use a verbose, understandable style.  C provides cryptic shortcuts which run counter to clarity and they are commonly used.  Rating: 5
Complexity management - the extent to which inherent language features support the management of system complexity, in terms of addressing issues of data, algorithm, interface, and architectural complexity.

C provides the capability to manage complexity through separate compilation of program pieces.  It also encourages the use of header files for grouping declarations of external resources used in a compilation unit.  However, it provides no consistency checking across compilation units, nor does it provide a mechanism for managing very large software components, such as subsystems.  Rating: 5

Concurrency support - the extent to which inherent language features support the construction of code with multiple threads of control (also known as parallel processing).

Although C is often used in concurrent systems, the standard language definition provides no inherent support for concurrency.  Note that some dialects of C do support concurrency, but they are not standards.  Rating: 0
Maintainability - the extent to which inherent language features support the construction of code which can be readily modified to satisfy new requirements or to correct deficiencies.

A C programmer must work very carefully to write maintainable code because the language provides little inherent support.  Rating: 2

Mixed language support - the extent to which inherent language features support interfacing to other languages.

C will readily use object files produced by any language compiler as it composes an application.  This is easy because C requires no consistency checking among these separate files.  While that makes the object files easy to use, it does not provide specific support for properly interfacing the languages or for verifying correct exchange of data across the established interface.  Rating: 5
Object-oriented programming support - the extent to which inherent language features support the construction of object-oriented code.

C provides no object-oriented programming support.  Rating: 0

Portability - the extent to which inherent language features support the transfer of a program from one hardware and/or software platform to another.

The existence of a standard for C makes portability possible.  However, common practice does not necessarily adhere to this standard.  There are also no inherent language features which facilitate portability, such as through the encapsulation of dependencies.  The tremendous popularity of C has spawned tools and tool sets which are widely available on many platforms, enhancing portability.  Rating: 5

Real-time support - the extent to which inherent language features support the construction of real-time systems.

C was developed as a systems programming language, where real-time performance is required.  It is a well streamlined language, inherently supporting real-time system performance and the ability to interact directly with low-level devices.  Rating: 7
Reliability - the extent to which inherent language features support the construction of components which can be expected to perform their intended functions in a satisfactory manner throughout the expected lifetime of the product.

C provides little in the way of inherent language features to support reliability.  It readily allows inconsistencies to show up in compiled code.  Rating: 1

Reusability - the extent to which inherent language features support the adaptation of code for use in another application.

 Support for reusability requires support for code clarity, encapsulation, maintainability, and portability.  C provides little inherent support for any of these characteristics.  Hence, it does not support development reuse on a large scale.  On the other hand, reuse of specialized C libraries, such as graphics libraries, is very effective.    Rating: 3

Safety - the extent to which inherent language features support the construction of safety-critical systems, yielding systems that are fault-tolerant, fail-safe, or robust in the face of systemic failures.

As noted by [Cullyer 91], C does not provide good support for any safety features.  Rating: 1

Standardization - the extent to which the language definition has been formally standardized (by recognized bodies such as ANSI and ISO) and the extent to which it can be reasonably expected that this standard will be followed in a language translator.

C is standardized by both ANSI and ISO.  However, there is no reasonable expectation that a C compiler will follow the standard without including additional features.  Rating: 5

Support for modern engineering methods - the extent to which inherent language features support the expression of source code which enforces good software engineering principles.
C was not created with support for software engineering in mind, and it provides little inherent support for modern engineering methods.  Rating: 1
Appendix H

C++

C++ is an object-oriented 3GL based on C.  As with C, C++ has become a very popular language for many types of applications.  C++ is a much newer language, and it is currently in the process of being standardized.  In this assessment of C++, ratings are based on the use of the C++ features of the language [Bar-David 93, Pohl 94, Stroustrup 88], as opposed to the use of only the C features.  It has become common practice to write C code, run it through a C++ compiler, and call it C++.  However, if C code is run through a C++ compiler, the result will still be C, and the language characteristics for C are in Appendix G.

Language Criteria

The following assesses C++ with respect to the language criteria presented in the Criteria for a Good Language section in the main document:

1)
Its definition should be independent of any particular hardware or operating system.  As with C, C++ is completely independent of any particular hardware or operating system.

2)
Its definition should be standardized, and compiler implementations should comply with this standard.  As with C, C++ has followed the standardization path of most languages.  First the language was created and used.  As its popularity grew, it began to spawn a number of different dialects.  Then, C++ started a standardization process, with the main core of the language being standardized.  Because C++ is a relatively new language, its standardization process is not yet complete.  It is expected that the C++ standard will be used much as the C standard, it will be common for compiler implementations to support standard C++ with additional, system-dependent features.  This will continue to result in the creation of much non-standard C++ code.

3)
It should support software engineering technology, discouraging or prohibiting poor practices, and promoting or supporting maintenance activities.  Unlike C, the structures and object-oriented features of C++ provide support for the concepts of encapsulation and data abstraction.

4)
It should support the application domain(s) of interest effectively.  As with C, C++ has proven to be a very versatile language, supporting any domain in which it has been tried.

5) It should support the required level of system reliability and safety.  Reliability is supported by the object-oriented features of C++.  Safety-critical systems, those on which human life may depend, are not effectively supported by C++ because of its lack of support for software engineering technology in its C subset. [Cullyer 91, Pyle 91]

6)
Its compiler implementations should be commensurate with the current state of technology.  As with C, because of its immense popularity, C++ compilers continue to be improved using current technology.

7)
Appropriate software engineering-based supporting tools and environments should be available.  Again because of its popularity, a wide variety of supporting tools and environments is available for C++ development.  As with C, many of these are little more than tools to support code creation, with minimal support for engineering software.  However, many also provide appropriate software engineering-based support.

Language Characteristics

In this section, C++ is rated with respect to the language characteristics used in Table 2 in the main document.  The ratings range from 0 to 10, where 0 means the language provides no support for the characteristic and 10 means it provides extensive support.  The ratings given below are those provided in Table 2. The reader must bear in mind that the support for a good characteristic in a language does not necessarily mean that it is always used, or used appropriately.  Bad programmers can write bad code in any language, but a good language facilitates the production of good code by good programmers.

Clarity of source code - the extent to which inherent language features support source code which is readable and understandable and which clearly reflects the underlying logical structure of the program.

 Although it is possible to write C++ code which is understandable, and the object-oriented nature of C++ is supported with understandable syntax, it is not common practice to use a verbose, understandable style for C++ any more than for C.  C++ still provides the cryptic C shortcuts which run counter to clarity and they are commonly used.  Rating: 6
Complexity management - the extent to which inherent language features support the management of system complexity, in terms of addressing issues of data, algorithm, interface, and architectural complexity.

C++ provides the capability to manage complexity through object-oriented organization and separate compilation of program pieces.  Like C, it also encourages the use of header files for grouping declarations of external resources used in a compilation unit.  However, it provides no consistency checking across compilation units, nor does it provide a mechanism for managing very large software components, such as subsystems.  Rating: 6

Concurrency support - the extent to which inherent language features support the construction of code with multiple threads of control (also known as parallel processing).

As with C, C++ provides no language constructs to support concurrency.  Rating: 0

Maintainability - the extent to which inherent language features support the construction of code which can be readily modified to satisfy new requirements or to correct deficiencies.

When C++ is being used to create object-oriented code, the programmer has good object-oriented features to facilitate maintainability.  However, the C problem of little inherent support for maintainability still remains in other language features.  Rating: 7

Mixed language support - the extent to which inherent language features support interfacing to other languages.

C++ will readily use object files produced by any language compiler as it composes an application.  This is easy because C++ requires no consistency checking among these separate files.  While that makes the object files easy to use, it does not provide specific support for properly interfacing the languages or for verifying correct exchange of data across the established interface.  C++ improves on C with better language constructs for facilitating language interfacing.  Rating: 7
Object-oriented programming support - the extent to which inherent language features support the construction of object-oriented code.

Unlike C, C++ provides complete support for all aspects of a language generally recognized as making it object-oriented--encapsulation of objects and their operations, inheritance, and polymorphism.  C++ also provides support for other programming paradigms, so a C++ program will not necessarily be object-oriented.  Rating: 10

Portability - the extent to which inherent language features support the transfer of a program from one hardware and/or software platform to another.

C++ does not yet have an existing standard, but when it does it will probably not alter the C characteristics in this respect.  Common practice will probably not necessarily adhere to the standard.  However, C++ does encourage the encapsulation of dependencies, a feature which facilitates portability.  C++ tools and tool sets are also widely available on many platforms.  Rating: 7

Real-time support - the extent to which inherent language features support the construction of real-time systems.

C++ does not significantly alter this characteristic of C.  Rating: 7
Reliability - the extent to which inherent language features support the construction of components which can be expected to perform their intended functions in a satisfactory manner throughout the expected lifetime of the product.

C++ improves considerably on the language characteristics of C for supporting reliability with features such as encapsulation as well as improved expression.   Rating: 5

Reusability - the extent to which inherent language features support the adaptation of code for use in another application.

 Support for reusability requires support for code clarity, encapsulation, maintainability, and portability.  C++ provides much more inherent support for these characteristics than C.  Rating: 8

Safety - the extent to which inherent language features support the construction of safety-critical systems, yielding systems that are fault-tolerant, fail-safe, or robust in the face of systemic failures.

As noted by [Cullyer 91], C does not provide good support for any safety features.  C++ improves on these characteristics of C somewhat since it facilitates better expression of abstractions.  Rating: 3

Standardization - the extent to which the language definition has been formally standardized (by recognized bodies such as ANSI and ISO) and the extent to which it can be reasonably expected that this standard will be followed in a language translator.

C++ is in the process of being standardized by both ANSI and ISO.  However, once completed, there is no reasonable expectation that a C++ compiler will follow the standard without including additional features.  Rating: 5

Support for modern engineering methods - the extent to which inherent language features support the expression of source code which enforces good software engineering principles.
C++ was created to support object-oriented programming, which provides support for encapsulation and data abstraction.  This makes its software engineering support rather one-dimensional, but still substantial.  Rating: 7
Appendix I

COBOL

COBOL was one of the earliest 3GLs developed, and its popularity has made it the most used language in the world.  It was developed specifically to support the data processing domain, and it is almost exclusively used in that domain today.  COBOL has been through several revisions over the years in an attempt to keep up with technology.  This assessment will consider the most popular forms used today. [Appleby 91, Eaves 85]

Language Criteria

The following assesses COBOL with respect to the language criteria presented in the Criteria for a Good Language section in the main document:

1)
Its definition should be independent of any particular hardware or operating system.  COBOL is completely independent of any particular hardware or operating system.

2)
Its definition should be standardized, and compiler implementations should comply with this standard.  The various versions of COBOL have been standardized.  However, COBOL has followed the standardization path of most languages, where the language was created and used before it was standardized.  Hence, it is common for its compiler implementations to support standard COBOL with additional, system-dependent features.  This results in the creation of much non-standard COBOL code.

3) It should support software engineering technology, discouraging or prohibiting poor practices, and promoting or supporting maintenance activities.  All versions of COBOL provide little software engineering support, and its history with respect to maintenance is not very good.

4)
It should support the application domain(s) of interest effectively.  COBOL is used almost exclusively in the business data processing domain, and it provides specific support for that domain.

5)
It should support the required level of system reliability and safety.  Reliability is not well-supported by language features since COBOL does not support software engineering technology.  Safety-critical systems, those on which human life may depend, are also not effectively supported by COBOL.

6)
Its compiler implementations should be commensurate with the current state of technology.  Since COBOL continues to be popular, compiler products continue to be updated to the current state of technology.

7)
Appropriate software engineering-based supporting tools and environments should be available.  The best support tools available for COBOL are 4GLs which generate COBOL code. However, most 4GLs do not support a complete software engineering process, and in this respect their usefulness is usually limited to systems which are small, or possibly medium, in size and complexity [Misra 88, Wojtkowski 90].

Language Characteristics

In this section, COBOL is rated with respect to the language characteristics used in Table 2 in the main document.  The ratings range from 0 to 10, where 0 means the language provides no support for the characteristic and 10 means it provides extensive support.  The ratings given below are those provided in Table 2. The reader must bear in mind that the support for a good characteristic in a language does not necessarily mean that it is always used, or used appropriately.  Bad programmers can write bad code in any language, but a good language facilitates the production of good code by good programmers.

Clarity of source code - the extent to which inherent language features support source code which is readable and understandable and which clearly reflects the underlying logical structure of the program.

Although COBOL encourages clear expression of identifiers, data structure, and control structure, language features do not support certain important forms of code structuring, such as encapsulation.  Rating: 7
Complexity management - the extent to which inherent language features support the management of system complexity, in terms of addressing issues of data, algorithm, interface, and architectural complexity.

Support for complexity management is minimal in COBOL, with no language features which support any structures larger than subprogram modules.  Rating: 2

Concurrency support - the extent to which inherent language features support the construction of code with multiple threads of control (also known as parallel processing).

COBOL provides no inherent support for concurrency.  Rating: 0
Maintainability - the extent to which inherent language features support the construction of code which can be readily modified to satisfy new requirements or to correct deficiencies.

A COBOL programmer must work very carefully to write maintainable code because the language provides little inherent support.  Rating: 2

Mixed language support - the extent to which inherent language features support interfacing to other languages.

COBOL provides no language features to support other languages.  Some COBOL compilers provide a capability to incorporate SQL statements, but this is a non-standard feature.  Rating: 0
Object-oriented programming support - the extent to which inherent language features support the construction of object-oriented code.

There is a very recent object-oriented form of COBOL.  However, this is a different language than the forms of COBOL discussed here (much like C++ is a different language from C, so they are considered separately).  If object-oriented COBOL is to be considered for language selection, it should be added to the language list as a separate language, and a new appendix should be created for it.  The forms of COBOL considered here are not object-oriented.  Rating: 0

Portability - the extent to which inherent language features support the transfer of a program from one hardware and/or software platform to another.

The existence of standards for COBOL makes portability possible.  However, common practice does not necessarily adhere to a standard.  There are also no inherent language features which facilitate portability, such as through the encapsulation of dependencies.  Rating: 3

Real-time support - the extent to which inherent language features support the construction of real-time systems.

COBOL provides no inherent support for real-time systems.  Rating: 0
Reliability - the extent to which inherent language features support the construction of components which can be expected to perform their intended functions in a satisfactory manner throughout the expected lifetime of the product.

COBOL provides little in the way of inherent language features to support reliability, other than its data management facilities which promote data reliability.  Rating: 3

Reusability - the extent to which inherent language features support the adaptation of code for use in another application.

  Support for reusability requires support for code clarity, encapsulation, maintainability, and portability.  The only one of these COBOL supports very well is code clarity.  Rating: 3

Safety - the extent to which inherent language features support the construction of safety-critical systems, yielding systems that are fault-tolerant, fail-safe, or robust in the face of systemic failures.

COBOL is not targeted to safety-critical systems and it does not provide any support for them.  Rating: 0

Standardization - the extent to which the language definition has been formally standardized (by recognized bodies such as ANSI and ISO) and the extent to which it can be reasonably expected that this standard will be followed in a language translator.

COBOL is standardized by both ANSI and ISO.  However, there is no reasonable expectation that a COBOL compiler will follow the standard without including additional features.  Rating: 5

Support for modern engineering methods - the extent to which inherent language features support the expression of source code which enforces good software engineering principles.
COBOL was not created with support for software engineering in mind, and it provides little inherent support for modern engineering methods.  Rating: 1
Appendix J

FORTRAN

FORTRAN was the very first 3GL, and it continues to be a popular language for use in numeric-intensive programs.  It was developed specifically to support scientific programming, and it is mostly used in that domain today.  FORTRAN has been through several revisions over the years in an attempt to keep up with technology.  This assessment will consider the most popular forms used today.  [Bezner 89, Buckley 94]

Language Criteria

The following assesses FORTRAN with respect to the language criteria presented in the Criteria for a Good Language section in the main document:

1)
Its definition should be independent of any particular hardware or operating system.  FORTRAN is completely independent of any particular hardware or operating system.

2)
Its definition should be standardized, and compiler implementations should comply with this standard.  The various versions of FORTRAN have been standardized.  However, FORTRAN has followed the standardization path of most languages, where the language was created and used before it was standardized.  Hence, it is common for its compiler implementations to support standard FORTRAN with additional, system-dependent features.  This results in the creation of much non-standard FORTRAN code.

3)
It should support software engineering technology, discouraging or prohibiting poor practices, and promoting or supporting maintenance activities.  FORTRAN 90, the newest version of FORTRAN, has introduced several new features, such as the ability for the user to define new data types and dynamic storage allocation, but these are not major steps forward in terms of software engineering support.  In general, FORTRAN provides little software engineering support, and its history with respect to maintenance is not very good.

4)
It should support the application domain(s) of interest effectively.  FORTRAN provides specific support for numeric-intensive, scientific programs.  It has also been used effectively in related domains, such as embedded systems and real-time systems domains.

5) It should support the required level of system reliability and safety.  Reliability is not well-supported by language features since FORTRAN provides very little support for software engineering technology.  It lacks consistency checking and provides no data protection.  Safety-critical systems, those on which human life may depend, are also not effectively supported by FORTRAN.

6)
Its compiler implementations should be commensurate with the current state of technology.  Since FORTRAN continues to be popular, compiler products continue to be updated to the current state of technology.

7)
Appropriate software engineering-based supporting tools and environments should be available.  Most software engineering-based support tools and environments do not support FORTRAN as the development language (although they may support interfacing FORTRAN code with other languages).  There are many FORTRAN tools available, but the most effective of these, in terms of system development, are specialized numeric packages which could be classified as 4GLs.  They help the user to set up and solve specific types of numeric problems.  As with most 4GLs, their usefulness is usually limited to systems which are small, or possibly medium, in size and complexity.

Language Characteristics

In this section, FORTRAN is rated with respect to the language characteristics used in Table 2 in the main document.  The ratings range from 0 to 10, where 0 means the language provides no support for the characteristic and 10 means it provides extensive support.  The ratings given below are those provided in Table 2. The reader must bear in mind that the support for a good characteristic in a language does not necessarily mean that it is always used, or used appropriately.  Bad programmers can write bad code in any language, but a good language facilitates the production of good code by good programmers.

Clarity of source code - the extent to which inherent language features support source code which is readable and understandable and which clearly reflects the underlying logical structure of the program.

FORTRAN has a very clear syntax for expressing numerical formulas and equations.  However, many language features are error-prone because FORTRAN compilers are very forgiving of strange forms of syntax, rather than flagging these as errors.  The improvements which have been made in this area in recent versions of FORTRAN are not nearly enough.  The improvements made in program structuring capabilities still do not support encapsulation.  Rating: 5
Complexity management - the extent to which inherent language features support the management of system complexity, in terms of addressing issues of data, algorithm, interface, and architectural complexity.

FORTRAN provides the capability to manage complexity through separate compilation of program pieces.  However, it provides no consistency checking across compilation units, nor does it provide a mechanism for managing very large software components, such as subsystems.  Rating: 4

Concurrency support - the extent to which inherent language features support the construction of code with multiple threads of control (also known as parallel processing).

Standard FORTRAN provides no inherent language support for concurrency. However, non-standard features supporting concurrency are sometimes included in compiler products.  Rating: 0
Maintainability - the extent to which inherent language features support the construction of code which can be readily modified to satisfy new requirements or to correct deficiencies.

A FORTRAN programmer must work very carefully to write maintainable code because the language provides little inherent support.  Rating: 2

Mixed language support - the extent to which inherent language features support interfacing to other languages.

FORTRAN will readily use object files produced by any language compiler as it composes an application.  This is easy because FORTRAN requires no consistency checking among these separate files.  While that makes the object files easy to use, it does not provide specific support for properly interfacing the languages.  Rating: 5
Object-oriented programming support - the extent to which inherent language features support the construction of object-oriented code.

FORTRAN provides no object-oriented programming support.  Rating: 0

Portability - the extent to which inherent language features support the transfer of a program from one hardware and/or software platform to another.

The existence of standards for FORTRAN makes portability possible.  However, common practice does not necessarily adhere to a standard.  There are also no inherent language features which facilitate portability, such as through the encapsulation of dependencies.  Rating: 3

Real-time support - the extent to which inherent language features support the construction of real-time systems.

FORTRAN was developed for computation, and it is often used in very computationally-intensive real-time systems.  The language definition has been streamlined for this purpose.  Rating: 5
Reliability - the extent to which inherent language features support the construction of components which can be expected to perform their intended functions in a satisfactory manner throughout the expected lifetime of the product.

FORTRAN provides little in the way of inherent language features to support reliability.  It readily allows inconsistencies to show up in compiled code.  Rating: 1

Reusability - the extent to which inherent language features support the adaptation of code for use in another application.

  Support for reusability requires support for code clarity, encapsulation, maintainability, and portability.  FORTRAN provides little inherent support for any of these characteristics.  Hence, it does not support development reuse on a large scale.  On the other hand, reuse of specialized FORTRAN libraries, such as libraries of mathematical functions, is very effective.  Rating: 3

Safety - the extent to which inherent language features support the construction of safety-critical systems, yielding systems that are fault-tolerant, fail-safe, or robust in the face of systemic failures.

 [Cullyer 91] does not even consider FORTRAN for safety-critical systems, although FORTRAN has been used in such systems.  The language provides no support for safety-critical systems and has created problems in such systems in the past.  Rating: 0

Standardization - the extent to which the language definition has been formally standardized (by recognized bodies such as ANSI and ISO) and the extent to which it can be reasonably expected that this standard will be followed in a language translator.

FORTRAN is standardized by both ANSI and ISO.  However, there is no reasonable expectation that a FORTRAN compiler will follow the standard without including additional features.  Rating: 5

Support for modern engineering methods - the extent to which inherent language features support the expression of source code which enforces good software engineering principles.
FORTRAN was not created with support for software engineering in mind, and it provides little inherent support for modern engineering methods.  Rating: 1
Appendix K

Smalltalk

Smalltalk is a strictly object-oriented 3GL which has become one of the fastest-growing languages in recent years.  It is derived from research conducted at the Xerox Palo Alto Research Center in the 1970s.  It is described as a graphical, interactive programming environment, based on a small number of concepts.  Those concepts have become the basis for object-oriented programming.  [Brown 94, Goldberg 89]

Language Criteria

The following assesses Smalltalk with respect to the language criteria presented in the Criteria for a Good Language section in the main document:

1)
Its definition should be independent of any particular hardware or operating system.  Smalltalk is completely independent of any particular hardware or operating system.

2)
Its definition should be standardized, and compiler implementations should comply with this standard.  A standardization effort is presently underway, but current implementations of Smalltalk tend to represent individual vendor versions of the language. 

3) It should support software engineering technology, discouraging or prohibiting poor practices, and promoting or supporting maintenance activities.  Because of its strictly object-oriented nature, Smalltalk provides excellent support for object-oriented technology, which embodies many software engineering principles.  Smalltalk prohibits any style of programming other than object-oriented, and this facilitates maintenance.

4)
It should support the application domain(s) of interest effectively.  Smalltalk is currently being used in many different domains, and different vendor products are targeted to different domains.  It is proving to be a very versatile language, supporting any domain in which it has been tried.

5)
It should support the required level of system reliability and safety.  The strict object-oriented nature of Smalltalk enhances its reliability largely because of the rigor of the interfaces in the system.  Although there are some Smalltalk implementations which support such activities as exception handling, no additional features common to all versions of the language further support reliability.  Safety-critical systems, those on which human life may depend, are not effectively supported by Smalltalk.

6)
Its compiler implementations should be commensurate with the current state of technology.  With much current interest in Smalltalk, language products continue to be updated and created with the current state of technology.

7)
Appropriate software engineering-based supporting tools and environments should be available.  Only a few Smalltalk systems include support for software engineering-based environments.  Most only provide programming tools.

Language Characteristics

In this section, Smalltalk is rated with respect to the language characteristics used in Table 2 in the main document.  The ratings range from 0 to 10, where 0 means the language provides no support for the characteristic and 10 means it provides extensive support.  The ratings given below are those provided in Table 2. The reader must bear in mind that the support for a good characteristic in a language does not necessarily mean that it is always used, or used appropriately.  Bad programmers can write bad code in any language, but a good language facilitates the production of good code by good programmers.

Clarity of source code - the extent to which inherent language features support source code which is readable and understandable and which clearly reflects the underlying logical structure of the program.

Clarity is enhanced because Smalltalk enforces a particular object-oriented style of writing code, and this also reflects the program structure.  Rating: 9 

Complexity management - the extent to which inherent language features support the management of system complexity, in terms of addressing issues of data, algorithm, interface, and architectural complexity.

The object-oriented nature of Smalltalk reflects the encapsulation of classes and objects, and this supports complexity management.  However, it provides no mechanism for managing very large software components, such as subsystems.  Rating: 6

Concurrency support - the extent to which inherent language features support the construction of code with multiple threads of control (also known as parallel processing).

It is not uncommon for a Smalltalk implementation to provide some support for concurrency.  Rating: 2
Maintainability - the extent to which inherent language features support the construction of code which can be readily modified to satisfy new requirements or to correct deficiencies.

The object-oriented nature of Smalltalk greatly facilitates code maintainability because of class and object encapsulation.  It makes the structure easy to understand, and facilitates making changes.  Inheritance and polymorphism can have both good and bad effects on maintainability.  Rating: 7

Mixed language support - the extent to which inherent language features support interfacing to other languages.

Smalltalk provides no language features to support other languages.  Some Smalltalk products provide language interfacing capabilities, but this is a feature which varies greatly with specific products.  Rating: 3
Object-oriented programming support - the extent to which inherent language features support the construction of object-oriented code.

Smalltalk provides complete support for object-oriented programming, and it provides no support for any other style of programming.  Rating: 10

Portability - the extent to which inherent language features support the transfer of a program from one hardware and/or software platform to another.

Because it is not standardized and vendors have created several different de facto standards, Smalltalk has poor portability characteristics, in general.  However, its ability to encapsulate dependencies makes it as easy to port as many other standardized languages.   Rating: 3

Real-time support - the extent to which inherent language features support the construction of real-time systems.

Smalltalk provides no inherent language support for real-time systems.  Rating: 0
Reliability - the extent to which inherent language features support the construction of components which can be expected to perform their intended functions in a satisfactory manner throughout the expected lifetime of the product.

Smalltalk’s only real support for reliability is in its rigid enforcement of programming style.  Rating: 3

Reusability - the extent to which inherent language features support the adaptation of code for use in another application.

  Support for reusability requires support for code clarity, encapsulation, maintainability, and portability.  Smalltalk provides excellent support in all of these areas except portability.  Rating: 8

Safety - the extent to which inherent language features support the construction of safety-critical systems, yielding systems that are fault-tolerant, fail-safe, or robust in the face of systemic failures.

Smalltalk provides no features to support safety-critical systems.  Rating: 0

Standardization - the extent to which the language definition has been formally standardized (by recognized bodies such as ANSI and ISO) and the extent to which it can be reasonably expected that this standard will be followed in a language translator.

Smalltalk is currently in the standardization process, and vendors have created many different versions of the language.  It is unlikely that standardization at this point will prevent different versions, but it may at least ensure that a standard subset will be in all language products.  Rating: 3

Support for modern engineering methods - the extent to which inherent language features support the expression of source code which enforces good software engineering principles.
Smalltalk supports object-oriented programming, which provides support for encapsulation and data abstraction, and it requires the programmer to adhere to a strict programming style.  This makes its support for software engineering rather one-dimensional but substantial.  Rating: 7
Appendix L

Assembly Language

Assembly languages are available for virtually every make and model of computer hardware, and each specific type of hardware has its own assembly language.  Some computer manufacturers have families of computers which use the same instruction set, and therefore they use the same assembly language.  Otherwise, there is little in common from one assembly language to another.  An assembly language is considered a 2GL because it is just one step up from the native language of the hardware, called machine language, which is a set of instructions in the form of combinations of one’s and zero’s.  An assembly language provides an instruction mnemonic, usually three letters long, corresponding to each machine instruction.  The letters used are usually abbreviations of a sort for what the instruction does.  Hence, assembly languages make it easier for people to remember how to write instructions to the computer, but an assembly language is still a representation of the computer’s native instruction set.  Since each different type of computer uses a different native instruction set, assembly languages cannot be standardized from one machine to another, nor can instructions from one computer be expected to work on another.

Language Criteria

It is impossible to assess individual assembly languages, but the language characteristics vary little from one to another.  The following assesses the category of assembly languages with respect to the language criteria presented in the Criteria for a Good Language section in the main document:

1)
Its definition should be independent of any particular hardware or operating system.  Each assembly language is specific to a particular computer hardware architecture.

2)
Its definition should be standardized, and compiler implementations should comply with this standard.  Assembly languages cannot be standardized  because each type of computer has a different instruction set and therefore a different assembly language.

3)
It should support software engineering technology, discouraging or prohibiting poor practices, and promoting or supporting maintenance activities.  Assembly languages provide no support for software engineering technology.  They do not work with abstractions, just machine-level specifics.

4)
It should support the application domain(s) of interest effectively.  Assembly languages support a particular hardware architecture, and, in general, they have no inherent relationship with any particular application domains.

5)
It should support the required level of system reliability and safety.  Assembly languages provide no support for reliability or safety.  The assembly language will not object to any form of programming, good or bad.

6) Its compiler implementations should be commensurate with the current state of technology.  In the sense that an assembler, the “compiler” for an assembly language, is created for each new assembly language as it is introduced, language implementations keep up with computer technology.  However, in the sense of supporting the current level of software technology, assembly languages do not.

7)
Appropriate software engineering-based supporting tools and environments should be available.  The tools available for working with assembly languages are typically other very low-level tools, and they do not provide software engineering support.

Language Characteristics

In this section, assembly languages are rated with respect to the language characteristics used in Table 2 in the main document.  The given ratings are for this category of languages, rather than a specific language.  The ratings range from 0 to 10, where 0 means the language provides no support for the characteristic and 10 means it provides extensive support.  The ratings given below are those provided in Table 2. The reader must bear in mind that the support for a good characteristic in a language does not necessarily mean that it is always used, or used appropriately.  Bad programmers can write bad code in any language, but a good language facilitates the production of good code by good programmers.

Clarity of source code - the extent to which inherent language features support source code which is readable and understandable and which clearly reflects the underlying logical structure of the program.

 The source code for an assembly language is cryptic and in a very low machine-specific form.  Hence it is error-prone, and the structure of the program is not evident.  Rating: 1
Complexity management - the extent to which inherent language features support the management of system complexity, in terms of addressing issues of data, algorithm, interface, and architectural complexity.

An assembly language provides minimal support for complexity management.  Modern assembly languages have some algorithmic complexity management and limited structuring.  Rating: 2

Concurrency support - the extent to which inherent language features support the construction of code with multiple threads of control (also known as parallel processing).

An assembly language will often provide instructions for accomplishing multiple threads of control.  However, such support is neither straightforward nor easy to use.  Rating: 2
Maintainability - the extent to which inherent language features support the construction of code which can be readily modified to satisfy new requirements or to correct deficiencies.

An assembly language provides no inherent support for maintainability.  Rating: 0

Mixed language support - the extent to which inherent language features support interfacing to other languages.

An assembly language provides no capability to interface to a higher level language (however, some high level languages provide a capability to interface with an assembly language).  Rating: 0
Object-oriented programming support - the extent to which inherent language features support the construction of object-oriented code.

An assembly language provides no object-oriented programming support.  Rating: 0

Portability - the extent to which inherent language features support the transfer of a program from one hardware and/or software platform to another.

An assembly language is not portable from one type of computer to another.  At best it can be portable to another computer within the same family of computers built by the same manufacturer.  Rating: 1

Real-time support - the extent to which inherent language features support the construction of real-time systems.

An assembly language inherently supports a streamlined version of code because it does not contain the inefficiencies of expression found in HOLs.  This is often assumed to mean that an assembly language produces the best possible performance, but this is not the case.  Today’s compiler technology benefits both from current technology improvements as well as from the experience of hundreds of language performance experts.  Hence, compiler optimizers can often do a better job of streamlining code than a programmer can do using an assembly language [Lawlis 92].  Assembly languages are also inherently more difficult to use to accomplish streamlining.  Rating: 5 

Reliability - the extent to which inherent language features support the construction of components which can be expected to perform their intended functions in a satisfactory manner throughout the expected lifetime of the product.

An assembly language provides no inherent support for reliability.  Rating: 0

Reusability - the extent to which inherent language features support the adaptation of code for use in another application.

  Assembly languages provide very little opportunity for reuse.  Rating: 1

Safety - the extent to which inherent language features support the construction of safety-critical systems, yielding systems that are fault-tolerant, fail-safe, or robust in the face of systemic failures.

Assembly languages provide no inherent support for safety-critical systems, although they are often used in this domain.  Rating: 0

Standardization - the extent to which the language definition has been formally standardized (by recognized bodies such as ANSI and ISO) and the extent to which it can be reasonably expected that this standard will be followed in a language translator.

Assembly languages are not standardized.  Rating: 0

Support for modern engineering methods - the extent to which inherent language features support the expression of source code which enforces good software engineering principles.
Assembly languages provide no inherent support for software engineering principles.  Rating: 0
Appendix M

Cost Factors

The following cost factors are used in Table 4 in the main document.  They are defined below, along with a discussion of why they are important to the cost considerations.

Purchase of product - the purchase cost of the software development tool(s).

This is an obvious cost, but it should only be considered if the product, or additional licenses for the product, must be purchased.  Be sure to consider enough licenses for all who will need to use them.  Also consider whether the products will be used by individual workstations or across a network.

Maintenance on product - the cost of maintenance on the product for the expected duration of use.

The purchase of maintenance ensures support for problems which arise with the product.  It usually also includes upgrades to the product as they become available.  Upgrades can be a very important way to resolve problems that impact the ability to use the product as anticipated.  

Training - the cost to train personnel to use the tool(s) (including learning the language, if necessary).

The cost for adequate training for personnel to learn to use tools properly should not be underestimated.  People should also not be expected to use tools which assume background knowledge they do not have.  Additional training and/or education may be necessary to properly prepare personnel for the job they will be expected to perform.

Installation - the cost to install the tool(s), including check-out.

The more elaborate a tool set, the more time and effort will be necessary to get it properly set up and checked out.  System configurations may need to be altered, and all functions of the tool set should be checked out for ease of use as well as proper functionality.  Some of this process may require help from the vendor.

Additional hardware needed - the cost of additional hardware (including things such as networking cables) required by the specific tool(s).

It is important that this be considered as a possibility from the very beginning.  All products should come with a specification of the hardware necessary for them to run.  This is easy to check.  The biggest problems usually arise with special needs, such as special cables needed for the configuration which will be used.

Additional software needed - the cost of additional software (including operating systems, networking software, etc.) required by the specific tool(s).

It is very important to determine the compatibility of all the tools with each other as well as with the system software.  If the output of one tool is expected to be used as input to another, a conversion of format may be required.  Conversions may also be required if information will be exchanged across a network.

Additional people needed - the cost of additional personnel (over the lifetime of the project) required by the specific tool(s), to the extent that such personnel would not otherwise be employed by the organization for use with other candidate tool sets.

 Some tool sets may be far superior to others in capability, but they may also require people with different skills or different educational backgrounds in addition to existing project personnel.  It is not usually a bad move to bring in new people with a desirable level of education and training.  However, any extra expense for people, who would not be used on a project except for the requirement of a particular tool set, should be considered as a part of the cost of using that tool set.

Appendix N

Product Characteristics

The following product characteristics are used in Table 5 in the main document.  They are defined below [ANSI/IEEE 90, Lawlis 89], along with an explanation of how each characteristic affects the software development process.  A product evaluator must assign a rating for each characteristic of interest.  The value assigned to each characteristic is a number between 0 and 10, where 0 means this characteristic of the product is extremely poor or non-existent, and 10 means this characteristic is extremely good or as good as it could possibly be.
Cost value - the relative value of the total cost of the product as compared with other products considered.

Cost is always a consideration when buying any product.  The total cost of purchasing a candidate product is calculated in Table 4.  In Table 5, how this cost compares with the cost of other products, as well as the relative importance of cost as a product selection factor, can be figured into the final product decision.  The product characteristic of cost value indicates how well the cost of this product compares with other products being considered.  The cost value should be high if the cost is relatively low, and conversely the cost value should be low if the cost is relatively high.  The importance of cost as a selection factor is determined by the weight assigned to the cost value characteristic.
Compilation - the performance of a translator (compiler or assembler) in the areas of compilation speed, size of object code produced, and ability to produce correct results.

This characteristic is an indicator of the performance of the product with respect to compilation.  Compilation speed can have an effect on the productivity of those using the development product, but it does not impact those using the software produced by the development team (see execution speed for that).  The size of the executable file produced by the compilation is an issue for executables which must meet size constraints.  Another issue is whether the compiler can process large programs, at least as large as expected on the project, and the effect of program size on speed of compilation.  While larger programs are expected to take longer to compile, the execution speed can be orders of magnitude slower as the compiler reaches its capacity limits.  The correctness of the code produced by compilation is of particular concern if optimization techniques have been used in producing the executable code.

Execution speed - the performance of object code produced by a translator in terms of execution speed.

Execution speed is a particularly tricky characteristic to measure.  It is common to run benchmark programs on each candidate product to compare the execution times.  However, it should be recognized that each benchmark program has been created to exercise a particular mixture of selected language features, so compiler products may fare differently with different benchmark programs.  Benchmark programs which are representative of the mixture of language features expected in programs developed using the compiler should be selected.  Suites of tests are also often available for measuring execution speeds of particular compiler features.

Ability to handle large programs - the performance of a translator with respect to large programs in terms of limits of capacity and efficiency of performance.

It is not uncommon for a product to work very well under expected operating conditions, but to become completely unusable when stressed beyond its expected limits.  If a product is to be used in the development of a large software system, it must be stress tested to determine if it can handle the expected system size, number of compilation units, etc., without slowing down to less than acceptable response times.

Tool support for requirements specification - the extent of automated support for the preparation of the specification of requirements, including both textual and graphical forms of documentation.

Requirements specification is an important part of the development process, both for capturing the initial system requirements and for evolving those requirements as the development proceeds.  System testing also depends on the specification of system requirements.  Without automated support, requirements are often not specified to the desirable level of detail, and they are usually not updated as requirements change.  Hence, automated support for requirements specification facilitates the process of keeping the development under management control.

Tool support for design - the extent of automated support for the process of defining the architecture, components, interfaces, and other characteristics of a system or component.

Design is a very creative process, the results of which are difficult to capture under the best of conditions.  Without automated support for design, many of the important design decisions (why a process was designed one way as opposed to another, what assumptions were used, what constraints were considered, how problems were resolved, etc.) often go undocumented, and even the design structure is often not properly addressed.  Automated support facilitates the creation of graphical diagrams to express the design structure, as well as the capture of design decisions which are important, not only to those developing the original system but also to those who will later maintain it.

Tool support for code generation - the extent of automated support for translating a requirements or design specification into source code for a program.

If an automated design tool has been used, it is often possible to generate a code template from the design specification.  This automates a very straightforward part of the coding process, ensures that the code reflects the design, and permits the programmers to spend their time on the part of the programming process which cannot be automated easily.  In some well-defined domains, enough knowledge of software systems for that domain can be captured in automated tools that a large portion of the software can be generated automatically from specifications provided by non-programmers using the tool.  These are usually referred to as 4GLs, although those which use knowledge-based systems are sometimes called 5GLs [ANSI/IEEE 90].  A caution applies here, however.  A 4GL or 5GL should not be used outside of the domain for which it was intended, for its effectiveness is lost [Appleby 91, DoD 87, Glass 91, Martin 86, Misra 88, Wojtkowski 90].  Also, the quality of software produced by a 4GL or 5GL is often lower than the quality of a similar system produced with a 3GL [Misra 88, Verner 88, Wojtkowski 90].

Tool support for documentation - the extent of automated support for generating reports, certifying activities, and revising and managing any written or pictorial information describing, defining, or specifying requirements, procedures, or results.

This is the type of documentation which is rarely done unless it has automated support.  Yet it is also the type of documentation which is important for maintaining management control of a project.

Tool support for interfacing with a database - the extent of automated support for creating and managing a database to be used by the developed software.

A commercial database product is often used to provide the database in systems requiring one, and the product will usually provide its own 4GL for interfacing with the database.  In this case, the ability of the development language to interface with the database product may also become an issue (see the language characteristic of mixed language support as well as the product characteristic of tool support for interfacing with other languages).  If a database product does not provide an appropriate interfacing mechanism, or if a special database will be created without using an existing database product, then the interface from the development language to the database must either come from another source or else be created as a part of the system development.

Tool support for testing - the extent of automated support for the activities in which a system or component is executed under specified conditions, and the results are recorded and analyzed.

It is important that a system provide the correct functionality according to its requirements.  The purpose of testing is to exercise the system in such a way that any inconsistencies with the requirements will be found.  Automated support for testing can facilitate this process by automatically producing many of the tests from the requirements specification and then documenting the results of tests that are run.  Automated support can also ensure proper regression testing, testing which must be repeated after changes have been made to a system.

Tool support for static analysis - the extent of automated support for the process of evaluating a system or component based on its form, structure, content, or documentation.

Static analysis is an important part of evaluating software quality.  It includes everything which can be evaluated about a system without executing it.  It is very difficult to do much static analysis without automated support, and many tools are available which do a very thorough static analysis.

Tool support for dynamic analysis - the extent of automated support for the process of evaluating a system or component based on its behavior during execution.

Evaluating a system as it executes can provide important information about the product under development.  Dynamic analysis provides a summary of the flow of execution, finding program segments which are not executed as well as those parts of the program in which the execution spends most of its time.  This can help to locate logic errors.  It can also help to optimize program execution by indicating those portions of the code which are bottlenecks and will most benefit from the time and effort of optimization.

Tool support for traceability analysis - the extent of automated support for the process of evaluating the degree to which each element in a software development product establishes its reason for existing through a relationship between itself and other products of the development process.

Traceability analysis establishes a trace from the program units back through the design to the original system requirements.  In this way the reason for existence of each part of the development can be validated and management can maintain better control over product development.

Tool support for configuration management - the extent of automated support for technical and administrative direction and surveillance to identify and document the functional and physical characteristics of a configuration item, control changes to those characteristics, record and report change processing and implementation status, and verify compliance with specified requirements.

Configuration management (CM) is a process which lends itself especially well to automation.  People cannot perform the tedious administrative tasks required for CM nearly as quickly or correctly as an automated tool, yet CM is an important management function which facilitates management control over product development.

Tool support for interfacing with other languages - the extent of support for interfacing with products or components written in other languages.

This is the complement to the mixed language support provided by the development language (described in Appendix B).  A tool provides support for interfacing with a development language by providing a specific set of interface calls, called a binding, which permits direct access to the capabilities of the tool from the development language.  In this case, the tool could be a development tool, such as a database system, or it could be a COTS product.  In either case the tool will become an integral part of the developed system.  When bindings do not already exist for interfacing to a product, they must be developed.

Ease of set-up - the extent that setting up a tool set for use in the software development process is straightforward and without difficulty.

Set-up includes all aspects of preparing the tools for use in the development process.  This includes everything from getting all the correct versions, documentation, etc., in the first place to making sure the tools will operate properly for all users, whether it be over a network or through individual copies of the tools.  Difficulties often arise when users cannot get access to a needed tool or a tool cannot be easily set up to work in the desired configuration.

Ease of use - the extent that the effort required to learn, operate, prepare inputs for, and interpret outputs of development tools is minimal and without difficulty. 

The specific areas of interest with respect to usability vary with each product.  They include all of the features which make a product difficult or easy to learn and use.  A user usually wants a product which is very intuitive and thus easy to learn, has icons or easy menu selections (not many levels of menus) to access the tool’s capabilities, has readily accessible and understandable additional information available when the user wants it, can be tailored to the user’s preferences, etc.  A user typically judges a product more by how easy it is to use than by how many functions it can perform, and a product which is judged difficult to use will often not be used.

Appendix O

Examples

The following examples illustrate the use of the process described in this document.  These are only hypothetical examples and are not intended to represent any real set of requirements or products.  However, they are representative of real types of problems and the existing state of technology in language products.

Example 1 - Small Database

A system is required to organize approximately 20,000 sets of data which are to be collected.  The system must be able to show relationships among various types of data, and reports must be created which summarize this information.  John has been tasked with creating a database and working with this data.  Funds are tight, and the need is immediate.

  This is a small and straightforward database requirement.  Although the current projection is for 20,000 sets of data, John anticipated that this might grow to a number twice or three times that size, especially if working with the data turns out to be easy.  However, the application will remain relatively simple and straightforward.  He recognized that future company growth could eventually make it desirable to incorporate this database of information into a larger database with a much broader range of requirements, and if this should happen a small database will be unable to scale up for the new requirements.  However, there is no basis for projecting such growth at this time, so a small and straightforward database application will be required for at least a few years.

  John talked with his boss, Jane, about how this software requirement should be met.  Jane consulted Table 1, and found that a COTS product or 4GL would be ideal for handling this requirement.  Jane and John worked together to try to find a suitable product.  They determined that there is one database product that the company already owns, purchased more than three years ago.  There are also a number of COTS products readily available in stores and catalogs, some of which are called 4GLs and some of which incorporate SQL, itself considered a 4GL.  The primary concerns with choosing a product to use were:

•
The product should be able to meet the current requirements, including having the capacity to handle 50,000 to 100,000 records without becoming unusable because of capacity limitations (establishing this took some research--the vendor was not the only source consulted for this type of information)

•
The vendor should have a good reputation, with reasonable expectation of available technical assistance and that the product will continue to be updated

•
The product should be easy to learn and use, so John can create the data records, the relationships among the data, and the necessary reports

•
The cost of the product should be within the current budget constraints, and cost considerations must include the purchase price, cost of maintenance (technical support and product upgrades), and cost of training and installation (Table 4 was helpful in laying out all the factors that need to be considered with cost)

Jane and John determined that the product currently owned by the company would not be able to meet the capacity requirements of the database.  Hence, they began to evaluate a product to purchase.  They came up with three candidate products which they investigated in some detail.  They examined product evaluations in popular weekly computer publications, and they tried to find people they know who have used each of the products.  They also talked with the vendors of the products about each of their concerns listed above.

When their evaluation process was complete, John determined that one of the products will not be suitable because both its capacity limits and its usability are questionable.  The other two products are reasonably comparable in capabilities and in purchase cost.  The deciding factor was that one will run on the Macintosh computer John already uses at his desk, while the other would require the purchase of a product which runs Windows.  In this case, the extra expense of purchasing a new computer platform is not justified, so Jane authorized the purchase of the Macintosh 4GL product.

Example 2 - Large Information Management System

A large organization with thousands of employees requires the integrated management of large amounts of data, along with automated support for five different manufacturing processes.  The system must automate all of the functions which control each of the individual manufacturing processes, and it must also be able to organize and manage all of the data related to these processes.  In addition, it must track all of the relevant information on all employees working with these processes, including training, experience, professional licensing and certification, and hours worked on specific projects.  Information from this system must be shared with the corporate personnel system which handles functions such as payroll on all employees of the organization, including many in support positions which are not directly included in any of the manufacturing processes.  Management reports of many varieties must be created which summarize both large and small portions of data in the system.  Betty is the organization’s lead software engineer, and she has been tasked with determining how the organization will get this automated system.  Some funds are available to develop a new system, and the need is immediate.

  This is a large and complex system which could grow into a very large and immensely complex system as the organization grows.  Betty worked with Bob, her boss, to develop a plan for accommodating this computer system requirement.  Bob consulted Table 1 and determined that this is a system which will probably need to be developed in-house.  The organization’s business plan called for Bob to manage the development of the new system, with Betty as the lead technical engineer.  Their first step was to determine what similar systems exist, either in other divisions of their corporation or in other companies.  COTS and 4GL or 5GL products must be explored for possibly satisfying some well-defined parts of the system requirements, not excluding the outside chance that an existing product could satisfy the whole requirement.

 Bob and Betty determined that no existing product can satisfy all of their requirements, but a number of potential COTS and 4GL products could be used to satisfy some parts of the requirements.  For example, a robust database product can be used to manage the immense amount of data which must be stored, updated, and retrieved by many different people in various different locations.  The important consideration about COTS products is that they must be able to satisfy a requirement as is, because the COTS advantage is immediately lost if the organization tries to modify the product in any way, no matter how tempting that may seem to be.

Bob made the decision that Betty’s software group would develop a system to meet the requirements. The spiral model will be used to guide the development process because it emphasizes risk management, and risk is high for such a large project.  The process will use prototyping, both because it will help to mitigate the development risk (making sure the system will meet requirements through feedback collected early and often) and because it will provide a system with minimum functionality relatively quickly.  This minimal system will be evolved into the robust system required for full functionality over time.  Betty got Bob’s concurrence to use an object-oriented methodology in the system development.  One of her groups has recently completed a relatively small project using an object-oriented approach because Betty is trying to establish a repeatable development process for her group which is founded on solid software engineering principles.  The object-oriented trial was a decided success, even though there were some up-front training costs associated with it, so it is time to commit to this process and invest in it.  

Bob and Betty are anxious to get going with this project because there is a lot of pressure coming from the corporate level to get it done quickly.  However, they know better than to jump in to start system development without proper planning.  This includes budgeting, selecting an appropriate development language, and selecting appropriate development tools.

Betty was ready to choose COBOL as the development language and begin looking at tools for developing in COBOL.  She and her software staff have used COBOL in the past for database applications.  Although some of the young upstarts in her organization have started talking a lot about C and C++, and some managers from a higher corporate level have been talking about Ada, this is a traditional COBOL-type application.  However, Bob insisted on following the guidelines for choosing a language first.  This has never been done in the past, and his software group is now making good progress in establishing a solid, repeatable process.  Bob wanted to go through the language selection process at least once to be sure to establish a good language foundation for computer systems to be developed both now and in the future.
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Clarity of source code
0

5
9
9
5
6
7
5
9
1

Complexity

management
5

2
7
9
5
6
2
4
6
2

Concurrency support
0

0
4
8
0
0
0
0
2
2

Maintainability
10

5
5
9
2
7
2
2
7
0

Mixed language support
5

0
5
8
5
7
0
5
3
0

Object-oriented programming support
5

0
6
10
0
10
0
0
10
0

Portability
5

1
5
8
5
7
3
3
3
1

Real-time support 
0

0
4
7
7
7
0
5
0
5

Reliability
10

3
6
9
1
5
3
1
3
0

Reusability
0

1
5
8
3
8
3
3
8
1

Safety
0

0
4
6
1
3
0
0
0
0

Standardization
5

1
10
10
5
5
5
5
3
0

Support for modern engineering methods
0

3
7
9
1
7
1
1
7
0

Support for information management
10

10
5
5
5
5
10
1
5
1

Overall 

Language Rating
55

4
6
8
3
6
4
2
5
0


Table O-1 - Calculations of Language Ratings from Table 2
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Language weight and ratings from Table 2
55
4
6
8
6
4
5

Development Methods








Support for development method to be used
 8
2
8
10
10
2
10

Development Process








Support for development process to be used
 0







Metrics and Measurement








Availability of automated tools for collecting metrics
 10
3
7
3
7
7
3

Application Domains








Support for application domain
 0







Software Reuse








Support for structuring architectural framework
 8
2
5
9
7
3
7

Availability of code 

generators
 0







Availability of components
 0







Reengineering








Compatibility with reengineering plan
 0







Development Environment








Compatibility with existing tools/environment
 5
5
3
8
3
10
0

Availability of tools 

required
 0







Availability of bindings/

libraries required
 0







Availability of compiler for platform to be used
 0







Education and Training








Extent of education/training completed
8
5
2
2
4
8
2

Availability of qualified professionals
 0







Availability of required education/training
 0
















Overall 

Language Rating
94
3
6
7
6
5
5


Table O-2 - Calculations of Software Engineering Factors from Table 3

Referring to Table 2, Bob and Betty agreed that no languages needed to be added to the table, but they added support for information management as a language characteristic to the table.  Then they agreed that the most important language characteristics to use in their language decision process were: complexity management, maintainability, mixed language support, object-oriented programming support, portability, reliability, standardization, and support for information management.  They laid out Table 2 in a spreadsheet, as shown in Table O-1, with appropriate weights given to each of the language characteristics they chose as important and a 0 weight given to all others.  They had to add ratings for each language for the characteristic support for information management, and these new ratings are shown in Table O-1.  Note that only a 4GL or 5GL which supports the specific need within the information management domain would be considered at this point, so that column is rated at 10.  Also, the languages which provide general-purpose support for many domains are rated at 5.  When this rating process was completed, calculations were done according to the Rating Formula, and the results are shown in Table O-1.

As stated in the explanation for using Table 2, the results are rounded to one digit, with no decimal places.  This rounding was included in the spreadsheet set-up so it was done automatically.  There is too little precision in the numbers used (they are all one significant digit estimates) to be able to make more out of the results than is shown in Table O-1, and even those results were taken as estimates.

Based on the results of Table O-1, C, FORTRAN, and Assembly were ruled out as contenders.  The remaining language ratings, along with the total weight used to determine those ratings, were entered into the first row of Table 3.  Bob again employed Betty’s assistance in determining which software engineering factors were most important and in establishing ratings for each language for those factors.  The factors chosen for consideration were support for development method to be used, availability of automated tools for collecting metrics, support for structuring architectural framework, compatibility with existing tools/environment, and extent of education/training completed.  They were going to choose support for application domain, but then Betty realized that had already been considered in Table O-1 when they had added support for information management as a language characteristic.  Table O-2 shows the spreadsheet derived from Table 3, with three languages eliminated, the chosen factors weighted appropriately and other factors weighted 0, and ratings given for each language for each chosen factor.  As for Table O-1, the calculations were done according to the Rating Formula.

After completing Table O-1, Betty had been surprised to see that Ada 95 had come out so much better than the other languages.  However, as a part of the process of filling in the ratings in Table O-2, she studied the material in the appendices concerning the various languages.  From this she learned a lot about the capabilities of these languages.  Then she understood why the corporate level managers have been talking about Ada.  Ada provides good support for developing large, complex systems, including complexity management, maintainability, and reliability, as well as good support for structuring an architectural framework which will significantly enhance future reusability.  Since this will be a very large application, it will be important that it will have a long lifetime, and that it be able to be modified as requirements change.  Ada’s standardization is also taken very seriously, and this will enhance the ability to move this application to another platform in future years, as technology continues to advance.  Ada 95 will also facilitate the interface with COBOL code which can be reused, 4GLs or 5GLs (even though not chosen as the main development language, they will still be valuable development tools), or COTS products.

Once Table O-2 was completed, Betty was not surprised to see Ada 95 still out in front of the pack.  It showed more strengths and fewer weaknesses in the areas of interest than the other languages.  She decided that she can live with a decision to use Ada 95 as long as good development products can be found to support it, and this will be determined in the next steps.  If appropriate products cannot be found for Ada 95, the language choice can be reexamined, with C++ and Ada 83 getting serious consideration.

Bob asked Betty to develop a list of candidate development products which use Ada 95 and then evaluate them, using Tables 4 and 5 to structure the process.  Because this is a large, expensive development effort, Betty spent a lot of time considering potential development products.  She examined suites of tools, and then she looked at possible combinations of individual tools.  She also considered 4GLs which may be used for developing very specific parts of the system.  She came up with four candidate tool sets, all including an integrated tool set as at least a part of the complete candidate set.

The next step was to use Table 4 to consider costs.  Betty laid out the expected expenses for each cost factor for each tool set.  She was careful to include training as a significant cost so there would be enough budgeted for this important need.  She considered that most of her software people will need training in the areas of language and object-oriented methods as a part of how to use any of the tool sets.  In some cases, little additional hardware or software will be needed for system development because the tool sets will work with computer platforms already in-house, but in other cases new hardware and/or software would be required.

Once Betty estimated all of the cost factors as well as possible at this point, she entered them into Table 4.  Two of the complete tool sets had significantly lower cost than the others, at least partly because they required little additional purchase of hardware or software.  They stood out as the best candidates at this point, so Betty entered them into Table 5.  However, if neither of them would turn out to have high enough quality, she was prepared to go back and consider the others.

Next Betty had to consider which product characteristics from Table 5 were most important in the product selection.  Again she conferred with Bob, and they studied Appendix N, which describes all the product characteristics.  They chose compilation speed, ability to handle large programs, design, code generation, documentation, interfacing with a database, static analysis, configuration management, interfacing with other languages, and ease of use.  They did not have any additional product characteristics to add.  They gave non-zero weights to each of these chosen characteristics, and a 0 weight to all other product characteristics.  This is shown in Table O-3.  
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Cost value
0



Performance




Compilation speed
5
4
8

Execution speed
0



Ability to handle large programs
10
8
7

Tool support




Requirements

specification
0



Design
8
7
9

Code generation
5
9
7

Documentation
5
6
8

Interfacing with a

database
10
5
5

Testing
0



Static analysis
8
7
9

Dynamic analysis
0



Traceability analysis
0



Configuration management
5
6
9

Interfacing with other languages
5
5
5

Usability




Ease of set-up
0



Ease of use
8
3
7






Overall

Product Rating
69
6
7

Table O-3 - Tool Set Product Ratings from Table 5

For each of the tool sets, Betty then had to provide a rating for each product characteristic with a non-zero weight.  This was the most time-consuming part of the planning process.  Betty contacted the vendors for each of the products considered and asked for evaluation copies.  She also contacted some of her colleagues in other parts of her corporation and in other companies to get as much information as possible from people who had used any of the tools.  She put a small cadre of people in her software group to work on developing a scenario to properly test out the capabilities of the candidate tool sets, making sure they could perform all of the required functions and testing the performance of the tools in the process.  Meanwhile, she assigned 5 of her experienced and trusted workers, who already had some experience with object-oriented technology, as the tool evaluators, and she assigned them to start learning about Ada 95.  Betty also decided at this time that an overall product rating greater than 5 would be acceptable.  She wanted to make this decision now, before the products were rated, so she would be sure to set an unbiased goal.

When the evaluation copies of the tools arrived, Betty sent her evaluators off to test each of the tools and tool sets, each working independently to exercise the planned scenario.  They were each instructed to come up with a rating between 0 and 10 for an entire tool set for each of the product characteristics already chosen.  None of them knew what weights had been assigned to each of the product characteristics nor what Betty had decided was an acceptable rating, and they had all been instructed not to talk with each other about the ratings or the evaluation process until everyone had turned in an evaluation report.  When they had all completed the entire scenario on both tool sets, Betty collected the reports and established the ratings for each product characteristic for each tool set.  She did this by adding together the five ratings from the five evaluators for each product characteristic for a tool set, dividing by 5, and then rounding the result to the nearest integer.  The results of this process are the ratings given in Table O-3.

Finally, Betty laid out Table 5 in a spreadsheet and used the Rating Formula once again.  The results are shown in Table O-3.  Again note that the overall ratings have been rounded to one digit, with no decimal places, because to show more digits would be misleading.

Tool Set B comes out best in this process.  This does not necessarily mean that Tool Set B will be satisfactory.  However, Betty had already determined that a rating greater than 5 would be acceptable, so Tool Set B’s rating of 7 was good enough to get it selected.  As it turned out, Tool Set A would also have been acceptable.

Betty showed her product evaluation results to Bob, who enthusiastically approved the purchase of Tool Set B.  It was then time to start training everyone who would be involved in the development in the appropriate areas.
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