
Open Forum

January 2004 www.stsc.hill.af.mil 27

The software estimating tools in wide-
spread use today evolved from models

developed in the late 1970s to early 1980s
using project data available at the time.
These widely used tools include the
Constructive Cost Model (COCOMO) II,
Price-S, Sage and SEER-SEM. It is impor-
tant to note these mature tools are as use-
ful today as they were 20 years ago when
they were first formulated. Input data
parameter sets (analyst and programmer
capability, application experience, use of
modern practices and tools, etc.) developed
for Seer to describe organizations in the
early 1980s are, oddly enough, still general-
ly applicable today. Fortunately for the esti-
mating model developer, culture changes
very slowly, if at all.

We have been able to learn new things
about software development during this
period. For example, Barry Boehm wrote
the following in 1981:

Poor management can increase
software costs more rapidly than
any other factor. Each of the fol-
lowing mismanagement actions has
often been responsible for doubling
software development costs … [1]

Of course, you have to read the first
485 pages of his book to get to this logical,
yet profound statement. Most readers do
not seem to get that far. Gerald Weinberg’s
Second Law of Consulting [2] added a
supporting observation: “No matter how it
looks at first, it’s always a people problem.”

There have been several development
technology breakthroughs during the past
40 years that have significantly decreased
the cost of software products. For exam-
ple, the introduction of FORTRAN and

COBOL decreased the cost of a given
product functionality to one-third of the
cost when implemented in Assembler. The
transition from C++ to the newer visual
languages, and the advent of object-orient-
ed structures created additional large sav-
ings in product cost.

However, when we look at the effort
required to produce a single line of source
code in any given programming language,
we see that software development produc-
tivity (measured from start of development
through software-system integration) has
increased, with little blips and dips, almost
linearly at the rate of less than one source
line per person-month per year as shown in
Figure 1. The aged heuristic, which por-
tions the development effort into design,
code, and test (40-20-40 = 100%), shows
that eliminating the coding activity entirely
leaves 80 percent of the work remaining.
The advent of powerful programming
environments primarily affects only the
coding activity.

The importance of people shows up in
the literature as early as the Hawthorne
study by Elton Mayo [3]. This work
showed people are primarily driven by
esteem and self-actualization, and not by
physiological and safety needs (Rabble
hypothesis). The work of Mayo paved the
way for the development of the classic
Theory X – Theory Y proposal by Douglas
McGregor [4] and the Herzberg motivators
[5]. W. E. Deming [6] extended these ideas
with his total quality management work in
Japanese and American industry. In spite of
the work by these behavioral pioneers and
many others, software management
remains what Herzberg refers to as a
Theory X culture. Scott Adams’ Dilbert
cartoon character and DeMarco’s “Covert

Agenda” 1 are two examples of the exis-
tence and dominance of this culture.

There are three important dimensions
in software management: project, process,
and people, as shown in Figure 2 (see page
28). Project was the primary software
development focus in the 1960s when the
software development discipline was new.
The early 1970s brought a shift in focus to
the development process. The emphasis on
the Waterfall Model in software develop-
ment, defined and enforced through stan-
dards such as Mil-Std-2167A, began a
trend that is still flourishing today. The
mid-1980s introduced the Software
Engineering Institute’s Capability Maturity
Model® as an approach to stabilizing the
development process and improving quali-
ty and productivity. By focusing energy on
process improvement, we can ignore the
importance of people in the development
process. “Get the process right and people
are interchangeable” is a common battle
cry. Process is a necessary element of
process improvement, but not sufficient to
solve the software productivity problem.

Recent developments in teaming con-
cepts led to a focus on management and
people issues. The introduction of extreme
and agile development methods demon-
strated the importance of management

Extreme Software Cost Estimating

Dr. Randall W. Jensen
Software Technology Support Center

One dominating software development complaint is the inability to estimate cost, resources, and schedule with acceptable accu-
racy. Several methods of schedule and cost estimation have been proposed during the last 25 years with mixed results due, in
part, to the focus and capability limitations of traditional estimation models. A significant part of estimation failures can be
attributed to not understanding the inner workings of the software development process and its impact on the parameters used
in schedule and cost estimates. For example, poor management can increase software cost, schedule, and quality more rapidly
than any other variable, while good project management can decrease development cost and schedule just as rapidly. This arti-
cle describes a management-centric approach to predicting software development cost and schedule in a modern, or extreme,
development environment as opposed to the traditional technology-based approaches. Techniques necessary to produce realistic,
reliable software development estimates are introduced, as well as quantitative methods for predicting the impacts of manage-
ment decisions. This article was awarded the Outstanding Software Paper at the International Society of Parametric Analysts
2003 Annual Conference in Orlando, Fla.

1960 1970 1980 1990

100

90

80

70

60

50

Ada

OOD

Structured Analysis

Structured Design

Process Maturity

PWB

Structured Programming

3rd Generation Languages

lppm

P
ro

du
ct

iv
ity

Figure 1: Software Development Productivity
Gains: 1960 to 1990

Open Forum

28 CROSSTALK The Journal of Defense Software Engineering January 2004

and people issues in development produc-
tivity and quality. Unless people are consid-
ered an important part of the project-
process-people triad, software develop-
ment cost and schedule estimates will con-
tinue to be inconsistent and unstable.

Agile Software Development
The Manifesto for Agile Software
Development [7], first published Feb. 13,
2001, states the following:

We are uncovering better ways of
developing software by doing it and
helping others do it. Through this
work we have come to value:
• Individuals and interactions

over processes and tools.
• Working software over compre-

hensive documentation.
• Customer collaboration over

contract negotiation.
• Responding to change over fol-

lowing a plan.
That is, while we value the items on
the right, we value the items on the
left more.

The bulk of the work in the design and test
activities (again, 80 percent of the total)

involves a high level of communication
that is impacted by the environment, the
people, and the organization as well as the
development process.

Tonies’ Effectiveness Formula
Chuck Tonies introduced the concept that
the effectiveness of a software engineer is
more than IQ, training, and experience in
the 1979 text “Software Engineering” [8].
He pointed out that people in software-
related positions in industry work in high-
ly interactive environments. The software
development team consists of program-
mers, analysts, test engineers, managers,
customers, and users to name a few of the
participants.

I italicized team to emphasize the two
levels of teams: a group of people
assigned to a project (the normal use of
the term), and a team in the sense of a pro-
fessional basketball team. The team in ital-
ics suggests the first level: people working
as a unit even though their teamness is
simply a common charge number and a
loose relationship among the players in the
project. The second team-level type
involves a tight, highly communicative rela-
tionship, which is difficult to perceive
when all of the members are isolated in
cubicles like Dilbert and his cartoon co-
worker, Wally.

Members of the development team
may be cast in one or more of the roles
involved in a project. It is important that
people are aware of activities around them
and understand their relationship to these
activities to achieve their highest effective-
ness. They must understand and act in
concert with the project management plan,
which includes communicating coherently
with the other people assigned to the proj-
ect. However, if the team (either defini-
tion) members are unwilling or not moti-
vated to participate in sending or receiving
information about the task at hand, the
members’ technical contribution to the
project will be diminished, no matter how
gifted or brilliant the individuals are.

Some degree of change is present in
almost every development, even the stable
projects. The complexity of software
development carries with it incomplete
and incorrect interpretations of the
requirements, interface, and designs.
Constant communication among the par-
ticipants is the only way misunderstanding
and errors can be corrected. The danger of
emphasizing the process over people and
communications is a major point in the
Agile Manifesto as shown in Figure 3.
Process is only the tip of the iceberg, with
people making up the bulk of the iceberg.

Tonies postulated that an individual’s

value to the development organization in
an industrial environment depends on
three attributes: computer science skills,
communication skills, and management
skills. The product gives the effectiveness
of the individual in the organization in the
following equation:

E = CS x C x M (1)

where:

E = net effectiveness
CS = computer science technical

skills (0-1)
C = communication skills (0-1)
M = management skills (0-1)

The effectiveness formula in Equation
(1) shows that if any of the three elements
are missing, the effectiveness approaches
zero. Our experience in the software prod-
uct-centered environments shows it a real-
istic model of software engineering per-
formance. It is true that we live in an age
of technical specialization. It is also true
that software development and engineer-
ing is by its nature a complex interactive
process that requires careful intensive
management. The manager must con-
tribute to the free exchange of information
among software development players.

Boehm’s list of management problems
describes the common software manage-
ment style for that time – a style that is
prevalent today. He states the following:

Poor management can increase
software costs more rapidly than
any other factor. Each of the fol-
lowing mismanagement actions has
often been responsible for doubling
software development costs …
Despite this cost variation, COCO-
MO does not include a factor for
management quality, but instead
provides estimates that assume the
project will be well managed. [9]

G. M. Weinberg [10] extended this dis-
cussion by grouping cost impacts
described in Boehm’s “Software
Engineering Economics” to illustrate the
relative importance of each impact group.
Figure 4 presents Weinberg’s results
emphasizing the relative importance of
organization and management in project-
ing software development cost. The people
impact in Figure 4 represents education,
IQ, and experience. Weinberg also points
out in this text reference an interesting
relationship between the Software
Engineering Institute’s research publica-
tions and relative cost impacts.

The people facet in Figure 2 includes

PROJECT

PROCESS PEOPLE

Figure 2: Project-Process-People Triangle

PROCESS

PEOPLE

Figure 3: Process Is But the Tip of the Project
Iceberg

Extreme Software Cost Estimating

January 2004 www.stsc.hill.af.mil 29

the most important of the three manage-
ment facets in terms of productivity and
quality gains, and represents the bulk of
the communications and management fac-
tors that Tonies states.

Traditional Estimating
Methods
Traditional estimating methods focus on
the technical aspects of software develop-
ment: project and process. An example of
the traditional focus is the intrinsic capa-
bilities of the analysis and programming
team members. The principle measures of
analyst quality are ability (education, intel-
ligence, and problem solving skills), effi-
ciency and thoroughness, and team com-
munication.

The capability definition deals with
capabilities in terms of the team; the inter-
pretation generally is a collection of indi-
viduals working on a development activi-
ty. We abstractly discuss the concept of a
team, yet when we look at the project
environment, we see a cube farm 2 or a
group of people working in isolated
offices or widely dispersed locations.

Notice the traditional definition of
capability lists cooperation and communi-
cation as one of three primary measures,
but never mentions the factors that pro-
duce esteem and self-actualization; that is,
motivation and management.

Extreme Software Estimating
Methods
Traditional estimating methods are largely
based on Theory X management meth-
ods. That is, the soft, or organization
aspects of the environment, are difficult
to measure and are to be avoided. Boehm
said as much in “Software Engineering
Economics” [11].

I also avoided the soft factors in the
Seer years because of their assessment
difficulty. However, I found many proj-
ects over a 20-year period that defied rec-
onciling actual cost and schedule results
with estimates. It was often impossible to
turn the knobs on the estimating models
to obtain a cost or schedule match. Once
enough data was available to conduct an
analysis, I found that all of the abnormal-
ly successful projects (higher productivity,
etc.) had a common thread – Theory Y
managers managed the projects. The
problem remaining was to find a way to
evaluate organization management. The
measures are rather obvious (when out-
side the box) and easy to measure.

Several factors can be used to assess
the capability of an organization: (1)
motivation and management style, (2) use

of team methods and proximity of team
members, and (3) information flow in the
development environment. The remain-
ing traditional capability factors are prob-
lem solving ability and programming
skills.

Motivation and Management
Style
Motivation is one of the most effective and
important tasks facing any manager as
shown in Figure 5. This task becomes crit-
ical in managing a creative, communica-
tion-centered activity such as software
development. Management style must be
considered before other improvement
areas since it is the basis for both team con-
cepts and working environment.

Theory X managers manage by control
(as directors), closely supervise their
employees, and are devoted to structure in
both organization and process. Those who
search for tools and methods to solve the
productivity and quality problems are
inherently traditional Theory X personali-
ties. Theory X also underlies the concept
that people are interchangeable if the
development process is defined and stable.

Human behavior according to Theory
Y is quite unlike Theory X behavior.
Properly motivated people can achieve
their own goals best by directing their
efforts toward organizational goals. Theory
Y people are motivated at the self-actual-
ization, social, and esteem levels rather
than the physiological and safety levels as
assumed in Theory X. If the workers have
little process ownership, the process is
unlikely to change.

The importance of motivation in the
development organization is much greater
than the space devoted to it here. It is a
topic worth additional study by those
searching for major gains in quality and
productivity.

Team Methods and Proximity
of Team Members
A good example of a team approach that
did not work is the Chief-Programmer
Team [12] introduced by IBM in the 1970s.
The team consisted of a chief programmer
(creative, good problem solver, intelligent,
etc.), a backup programmer (backup and
insurance in case the chief programmer
became incapacitated or went to the com-
petitor for higher wages), functional spe-
cialists (dealt with narrow issues outside
the chief programmer’s expertise), coders
to implement the architecture and design,
and a librarian to keep track of all the stuff
being developed.

The team structure was controlled central-

ized, meaning top-level problem solving
and team coordination are the responsibil-
ity of a team leader. Communication tend-
ed to be vertical. The chief programmer
planned, coordinated, and reviewed all
technical activities. This team structure had
all the elements necessary to satisfy a high
capability rating for the organization.

However, the concept failed. Why?
First, the team was sensitive to the nature
of the chief programmer, which helped
to create a low morale environment.
Second, the chief programmer team
failed to congeal into a team (second def-
inition). It is interesting to note the chief
programmer team was still listed as one of
the 10 most important ideas in software
engineering in 1972 and 1982 by
Construx Software Builders, Inc. in a
2002 keynote address3.

Information Flow in the
Development Environment
A project’s productivity is tightly related to
“how long it takes for information [to
flow] from one person’s mind to another’s
[13].” There are a number of factors to
consider when evaluating information flow
(or convection as Cockburn describes flow).
The obvious measures are distance
between developers and noise, including
background noise; that is, sound not relat-
ed to the task at hand. The best represen-
tation of good information flow is two
people working at a whiteboard. This com-
munication channel contains the best of
good communication features: visual cues,
visual persistence, sensation of movement,
sound, timing (real-time questions and
answers), and emotion.

Locating multiple projects (tasks) with-
in the project area creates significant noise.

Source: G. Weinberg, Quality Software Management, Vol. 3

PEOPLE

TOOLS

SYSTEMS

3

11

17

64 MANAGEMENT

Figure 4: Relative Impacts of Development
Environment Elements on Software Costs

EMPLOYEE

80% to 90%

20% to 30%

Area affecte
d by m

otiva
tion

P
er

ce
nt

 o
f A

bi
lit

y

Figure 5: Motivation Impact on Productivity

Open Forum

30 CROSSTALK The Journal of Defense Software Engineering January 2004

Interruptions are also significant flow
problems. Other less obvious information
flow disrupters are doors and aisles.
Telephones and e-mail are useful
approaches to decrease information flow.
Some programmers are information radia-
tors, such as a programming language con-
sultant located in a project area.
Information radiation can take place as
information displayed where the develop-
ers can readily see it. Walls are common
locations for radiators. Note: Web pages
are not information radiators.

Other programmers tend to be infor-
mation sinks. Sinks include people who do
not participate in the circulation of infor-
mation. The infamous lone programmer
who works alone, behind a closed door or
a closed mind is a typical sink that demon-
strates restricted information flow.

Estimating Method Needs
Projects can only be described through
input parameters. Estimating tools cannot
conjure information that has not been sup-
plied by the estimator. The question we
must ask ourselves is, can my estimating
tool account for the following:
• Organization and management style

(Theory X/Y).
• Motivation.
• Team use.
• Development environment (cube

farms, skunk works).

Summary and Conclusions
Traditional estimating methods have
worked well in the past because 90 percent
of software projects have been developed
by traditional organizations. Boehm’s
assumption that management style and
capability could be ignored was generally
true in 1981 when COCOMO was initially
released. The term well managed was an
overstatement, and still is, for most devel-
opment organizations. Consistent manage-
ment has become a better process descrip-
tor than well managed in the focus era.

Well-managed projects, using the
Tonies effectiveness formula, are still the
exception rather than the rule. Traditional
estimating methods and tools will continue
to work in the near future because the style
change is risky and very difficult.

Traditional estimating methods also
benefit from organization stability. No
change in organization style equates to no
need for change in estimating approach or
tools. Traditional estimating tools use fewer
estimating parameters because manage-
ment and communication effects can be
ignored. Last, but not least, there is one
estimate area that can be avoided – evalua-
tion of the organization’s management

style and effectiveness.
Extreme software estimating methods

are needed because accurate software
development estimates require more
robust estimating models. Ignoring man-
agement style and motivation produces
high schedule and cost estimates in mod-
ern organizations, and produces low esti-
mates in poorly managed organizations.
The most important estimating parameter
is ignored, or poorly treated, in traditional
approaches.

Competitive pressures are forcing
organizations to rethink their approaches
to effective software development. The
number of software projects developed by
modern, and possibly agile, organizations is
rapidly increasing and driving a need for
more estimating flexibility. Extreme esti-
mating methods and tools provide a level
of visibility in organization effectiveness
that encourages both process and organi-
zation improvement.◆

References
1. Boehm, B. W. Software Engineering

Economics. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1981: 486.

2. Weinberg, G. W. The Secrets of
Consulting. New York: Dorset House
Publishing, 1985: 5.

3. Mayo, Elton. The Human Problems of
an Industrial Civilization. New York:
The MacMillan Company, 1933.

4. McGregor, Douglas. The Human Side
of Enterprise. New York: McGraw-
Hill Book Company, 1960.

5. Herzberg, Frederick. Work and the
Nature of Man. New York: World
Publishing Co., 1966.

6. Deming, W. Edwards. Out of the
Crisis. Cambridge, Mass: MIT Press,
1982.

7. Fowler, M., and J. Highsmith. “The
Agile Manifesto.” Software Develop-
ment Aug. 2001.

8. Jensen, R. W., and C. C. Tonies.
Software Engineering. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1979:
24ff.

9. Boehm 486-7.
10. Weinberg, G. W. Quality Software Man-

agement: Congruent Action, Vol. 3.
New York: Dorset House Publishing,
1994: 14.

11. Boehm 487.
12. Baker, F. Terry. “Structured Program-

ming in a Production Programming
Environment.” IEEE Transactions on
Software Engineering SE-1.2 (1975):
241-252.

13. Cockburn, A. Agile Software
Development. Boston, MA: Pearson
Education, Inc., 2002: 77.

Notes
1. Covert Agenda: To apply pressure to

developers to get them to work longer
and harder by the following:
• Promote an ethic of workaholism.
• Get project members to sacrifice

personal lives.
• Gull members into accepting hope-

less schedules.
• Hold members’ feet to the fire to

make them deliver.
2. A cube farm is a descriptive term for a

facility in which the floor is divided into
a large group of cubicles. Another term
for this facility organization is a maze.
Dilbert works in a cube farm.

3. “The 10 Most Important Ideas in
Software Engineering.” Construx
Software Builders, Inc., 2002
<www.construx.com/docs/open/10
MostImportantIdeas-Keynote.pdf>.

About the Author

Randall W. Jensen,
Ph.D., is a consultant
for the Software
Technology Support
Center, Hill AFB, with
more than 40 years of

practical experience as a computer pro-
fessional in hardware and software
development. He developed the model
that underlies the Sage and the GAI
SEER-SEM software cost and schedule
estimating systems. He retired as chief
scientist in the Software Engineering
Division of Hughes Aircraft Company’s
Ground Systems Group. Jensen found-
ed Software Engineering, Inc., a soft-
ware management-consulting firm in
1980. Jensen received the International
Society of Parametric Analysts Freiman
Award for Outstanding Contributions
to Parametric Estimating in 1984. He
has published several computer-related
texts, including “Software Engineering,”
and numerous software and hardware
analysis papers. He has a Bachelor of
Science, a Master of Science, and a doc-
torate all in electrical engineering from
Utah State University.

Software Technology
Support Center
6022 Fir Ave., Bldg. 1238
Hill AFB, UT 84056-5820
Phone: (801) 775-5742
Fax: (801) 777-8069
E-mail: randall.jensen@hill.af.mil

