
September 2002 www.stsc.hill.af.mil 9

When thinking about productivity
improvements, engineering man-

agement does not usually have precise
data from which to determine the impli-
cations to the profit-and-loss statement of
the organization. Deploying a new tech-
nology such as object oriented design is
often done because everyone else in the
industry is doing it, and the engineers
want to use the latest hot technology. It is
unclear how such process changes will
impact the balance sheet; there is often no
way to actually measure improvements.
As a result, many organizations go year
after year without knowing if meaningful
improvement has occurred. Few organi-
zations know the actual dollar cost of a
thousand lines of code (KLOC); they
think about head-count on a project, or
person-years of effort, and so on. But
when attrition is high and team turnover
is not accurately measured, development
costs become clouded.

This article will present a model of
determining process effectiveness using
the Team Software ProcessSM (TSPSM). The
costs to produce a KLOC using the TSP
will be compared to a more traditional
process focused on testing in quality.
Finally, total lifetime costs of the TSP will
be compared to the test-based process.

Software Development
Cost Model
A simple model of a development
process is used as the basis for compari-
son. The model will have five major phas-
es: requirements (REQ), high-level design
(HLD), implementation (IMPL), test
(TEST), and release (REL). The detailed
phase breakdown is shown in Table 1.
These phases represent the work required
of a software development project and
whether or not a process actually pro-
duces these products. All systems have
requirements; however, not all processes
produce them.

To determine cost, two pieces of
information are needed: how much time
is spent in each phase and the cost of an
engineer’s time. The problem is that most

software organizations do not have this
information available. Therefore, it is nec-
essary to take known aspects of develop-
ment and infer other information in order
to determine how much time is spent in
each activity.

For example, many organizations have
measured the time to find and fix defects
in various test activities, along with the
expected numbers of defects found in
these activities [1, 2]. Then this informa-
tion can be used to determine the time
spent in test. Using such data, Table 2 (see
page 10), on percentage of time spent in
phase, was created.

The numbers for the traditional test-
based process agree with studies that indi-
cate testing can take two-thirds of the
development effort [2, 3]. The TSP model
agrees with data from one TSP organiza-
tion [4]. The TSP costs are roughly 25
percent less than the costs required to
produce one KLOC using the traditional

test-based approach. But this is only the
cost to get the software into a state suffi-
cient for first-customer use. In a tradi-
tional development process, once the
software escapes from system testing, it
undergoes extended periods of field trial
and beta testing.

Defect repair costs typically soar up to
10 times the cost of integration and sys-
tem testing. In fact, as much as half the
cost to produce software is contained in
repairing the software after the system
test phase (termed release in this model, it
includes beta trial, acceptance test, and
customer use). Table 3 (see page 10)
includes the costs associated with the field
test and warranty periods. These numbers
are based on the author’s experience with
several actual TSP development projects
and are consistent with data from other
organizations [4, 5].

How the TSP Impacts the Top Line

Robert Musson
Software Engineering Institute

With the Team Software ProcessSM (TSPSM), developers are reporting significant productivity improvements. But what does
this mean to the profitability of the corporation? How do these productivity improvements affect the balance sheet? This arti-
cle compares the development costs associated with teams in a traditional test-based organization to those costs measured on
TSP teams. It also presents product and quality data from several TSP projects at one industry organization.

Major Phase Detailed Phase
Breakdown

 Planning

 Requirements (REQ) Requirements

 System test plan

 REQ inspection
 High-Level Design
(HLD) High-level design

 Integration test plan

 HLD inspection

 Implementation (IMPL) Detailed design (DLD)

 DLD review

 Test development

 DLD inspection

 Code

 Code review

 Compile

 Code inspection

 Unit test

 TEST Integration test

 System test

 Release (REL) Field trial

 Acceptance test

 Release

Table 1: Cost Model Phases

“The cost to find and fix
defects once the

software has been
released to the customer
represents a significant

portion of the total
development cost ... By
eliminating most of the

time required to fix
defects in a released

product, an organization
can focus its resources
on new opportunities.”

Team Software Process

10 CROSSTALK The Journal of Defense Software Engineering September 2002

The total lifetime cost for the TSP is
less than 40 percent of the total cost of
the traditional process. The total code
produced by a traditional development
organization is about four KLOC per
engineer per year, assuming 1, 000 useful
hours per engineer year divided by 252
hours per KLOC. This number agrees

with those measured by various studies [5,
7, 8]. A TSP organization will produce
just over 10 KLOC per engineer year,
again assuming 1,000 useful hours divided
by 95.6 hours per KLOC.

In the traditional process, early phase
activities of requirements and architectur-
al design tend to be cut short.

Additionally, inspection activities take
noticeably less time than in the TSP
process for three reasons: They are elimi-
nated under time pressure, engineers do
not use sound data-based review meth-
ods, and work products are often not in a
format that can be reviewed. The tradi-
tional process produces code very quickly,
and then the real work begins in test. In
contrast, the costs for the TSP tend to be
front-loaded in early phases. More
emphasis is placed on personal review
and team inspections. This causes almost
half of the effort to be expended before
any code is even written. Figure 1 shows
this graphically.

Notice that the phase investment of
the TSP is relatively constant over the
development cycle. Traditional processes
have a higher cost in coding, and expo-
nentially growing costs in test. The
crossover point where the investment is
equal in both processes occurs near the
end of integration testing. At this point,
we are indifferent to the two processes
from an investment point of view; costs
are roughly the same. Unfortunately, a tra-
ditional process has only just begun to
pour dollars into the effort at the start of
the system test.

Payback Time
The TSP does not come for free. The
training class requires two weeks of class-
room time and several homework assign-
ments. Most engineers complete training
in 100 (plus or minus 20) hours, or about
three weeks. Additionally, a TSP
coach/Personal Software ProcessSM

instructor is needed for every 50 to 100
engineers. That is the equivalent of
another week per engineer for the whole
organization to support the coach.
Therefore, the incremental cost to deploy
per engineer is about three weeks of fixed
training cost, plus one week of variable
cost per year. A payback graph of this
appears in Figure 2.

In this model, this cost is paid back in
1.6 KLOC. This compares well with the
1,200 lines of code as reported by
Teradyne [4].

Conclusions
The total cost to get software to market
using the TSP is much less than the cost
of using a process focused on testing.
However, this represents only a portion
of the total lifetime cost to develop soft-
ware. The cost to find and fix defects
once the software has been released to the
customer represents a significant portion
of the total development cost. The elimi-
nation of this cost results in the bulk of

Traditional Process Team Software Process

Phase
% Total
Effort

Detailed Phase
Breakdown

% Total
Effort

Total
Hours Phase

% Total
Effort

Detailed Phase
Breakdown

% Total
Effort

Total
Hours

0.99% Planning 0.99% 1.3 4.76% Planning 4.76% 4.4

REQ 4.22% Requirements 2.22% 2.9 REQ 19.87% Requirements 9.93% 9.3

System test plan 0.89% 1.1 System test plan 4.97% 4.6

REQ inspection 1.11% 1.4 REQ inspection 4.97% 4.6

HLD 4.22% High-level design 2.22% 2.9 HLD 18.06% High-level design 9.03% 8.4
Integration test
plan

0.89% 1.1 Integration test
plan

4.52% 4.2

HLD inspection 1.11% 1.4 HLD inspection 4.52% 4.2

IMPL 24.63% Detailed design 2.22% 2.9 IMPL 41.25% Detailed design 8.21% 7.7

DLD review 0.00% 0.0 DLD review 4.12% 3.8

Test development 0.00% 0.0 Test development 4.11% 3.8

DLD inspection 0.00% 0.0 DLD inspection 3.27% 3.1

Code 11.65% 15.0 Code 7.43% 6.9

Code review 0.00% 0.0 Code review 3.71% 3.5

Compile 2.22% 2.9 Compile 1.26% 1.2

Code inspection 0.78% 1.0 Code inspection 3.27% 3.1

Unit test 7.77% 10.0 Unit test 5.87% 5.5

TEST 65.94% Integration test 17.15% 22.1 TEST 16.05% Integration test 7.20% 6.7

System test 48.80% 62.8 System test 8.85% 8.3
Sub-
total

100% 100% 128.7 Sub-
total

100% 100% 93.3

Table 2: Cost to Market

Traditional Process Team Software Process

Phase
% Total
Effort

Detailed Phase
Breakdown

% Total
Effort

Total
Hours Phase

% Total
Effort

Detailed Phase
Breakdown

% Total
Effort

Total
Hours

0.51% Planning 0.51% 1.3 4.65% Planning 4.65% 4.4

REQ 2.15% Requirements 1.13% 2.9 REQ 19.40% Requirements 9.70% 9.3

System test plan 0.45% 1.1 System test plan 4.85% 4.6

REQ inspection 0.57% 1.4 REQ inspection 4.85% 4.6

HLD 2.15% High-level design 1.13% 2.9 HLD 17.64% High-level design 8.82% 8.4
Integration test
plan

0.45% 1.1 Integration test
plan

4.41% 4.2

HLD inspection 0.57% 1.4 HLD inspection 4.41% 4.2

IMPL 12.58% Detailed design 1.13% 2.9 IMPL 40.28% Detailed design 8.02% 7.7

DLD review 0.00% 0.0 DLD review 4.03% 3.8

Test development 0.00% 0.0 Test development 4.01% 3.8

DLD inspection 0.00% 0.0 DLD inspection 3.19% 3.1

Code 5.95% 15.0 Code 7.25% 6.9

Code review 0.00% 0.0 Code review 3.63% 3.5

Compile 1.13% 2.9 Compile 1.23% 1.2

Code inspection 0.40% 1.0 Code inspection 3.19% 3.1

Unit test 3.97% 10.0 Unit test 5.73% 5.5

TEST 33.69% Integration test 8.76% 22.1 TEST 15.67% Integration test 7.03% 6.7

System test 24.93% 62.8 System test 8.64% 8.3
Sub-
total 51.09% 51.09% 128.7 Sub-

total 97.64% 97.64% 93.3

REL 48.91% All post TEST 48.91% 123.3 REL 2.36% All post TEST 2.36% 2.3

Total 100% 100% 252.0 Total 100% 100% 95.6

Table 3: Lifetime Software Development Costs

How the TSP Impacts the Top Line

September 2002 www.stsc.hill.af.mil 11

the savings for an organization using the
TSP. By eliminating most of the time
required to fix defects in a released prod-
uct, an organization can focus its
resources on new opportunities. The only
investments required are training and a
willingness to change.◆

References
1. Davani-Chulani, Sunita. Modeling

Software Defect Introduction. Uni-
versity of Southern California. Center
for Software Engineering, 1998.

2. Cole, Oliver E. The Cost of Debugg-
ing. OC-Systems White Paper. Avail-
able at: <www.ocsystems.com>.

3. Colburn, Timothy R., James H. Fetzer,
and Terry L. Rankin, ed. Program
Verification: Fundamental Issues in
Computer Science. Kluwer Academic
Publishers, 1993.

4. Musson, Robert. “The Results of
Using a Team Software Process.”
Presentation at the Software
Engineering Symposium. Software
Engineering Institute, Sept. 1999.
Pittsburgh, PA.

5. Reifer, Donald J. “Let the Numbers
Do the Talking.” CrossTalk Mar.
2002: 4-9.

6. Hatton, Les. “How Do We Satisfy
Customers in the Long Run?”
ESCOM 2001.

7. Caron, Michael. “Cost Justifying a
Test Coverage Analyzer Tool.”
Newsletter of the Boston Software
Process Improvement Network. Nov.
1995.

-$
20,000

-$
10,000

$0

$10,000
$20,000
$30,000
$40,000
$50,000

Plan
nin

g

Req
uir

em
en

ts

Sys
tem

 Tes
t P

lan

REQ In
sp

ec
tio

n

High
-Le

ve
l D

es
ign

Int
eg

rat
ion

 Tes
t P

lan

HLD
 In

sp
ec

tio
n

Deta
ile

d D
es

ign

DLD
 R

ev
iew

Tes
t D

ev
elo

pm
en

t

DLD
 In

sp
ec

tio
n

Code R
evie

w

Cod
e

Cod
e I

ns
pe

cti
on

Com
pile

Unit
 te

st

Int
eg

rat
ion

 te
st

Sys
tem te

st

Pos
t R

ele
as

e

Phase

D
ol

la
rs

 S
pe

nt

TSP

Traditional

Difference

Figure 1: Cost per Phase

$0

$10,000

$20,000

$30,000

$40,000

$50,000

$60,000

$70,000

$80,000

0 1 2 3KLOC

C
o

st

TSP

Traditional

Figure 2: Payback on Training

About the Author

Robert Musson has
more than 25 years of
software experience as a
development engineer
and in various manage-
ment positions. He spent

15 years at Teradyne helping bring to
market a variety of products for the
telecommunications industry. While
there, he helped deploy the Team
Software ProcessSM (TSPSM) to the first
industry site. He was vice president of
business strategy at a small start-up
before becoming a member of the TSP

Initiative at the Software Engineering
Institute. He has a master’s degree in
computer science from Illinois Institute
of Technology and a master’s degree in
business administration from North-
western University's Kellogg School of
Management.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
Phone: (412) 268-9130
Fax: (412) 268-5758
E-mail: ram@sei.cmu.edu

