
Open Forum

22 CROSSTALK The Journal of Defense Software Engineering August 2002

In 1990, I declared that the 1980s were a
lost decade from the perspective of

software development progress. The
question I posed was, “Will there be a
breakthrough in the 1990’s?” I went on to
say, “It won’t happen automatically; peo-
ple are too satisfied with unsatisfactory
ways. We dare not make the mistake of
complacency a la the automobile industry;
we must push awareness and resource
commitment to get ahead of the power
curve of demand.”

In 1994, I closed the annual Software
Technology Conference (STC) with the
observation that the underlying need
within the defense community is for pre-
dictability: “From a Pentagon perspective, it
is not the fact that software costs are
growing annually and consuming more
and more of our defense dollars that wor-
ries us. Nor is it the fact that our weapons
systems and commanders are becoming
more and more reliant on software to per-
form their mission. Our inability to pre-
dict how much a software system will cost,
when it will be operational, and whether
or not it will satisfy user requirements is
the major concern. What our senior man-
agers and DoD (Department of Defense)
leaders want most from us is to deliver on
our promises. They want systems that are
on time, within budget, that satisfy user
requirements, and are reliable.”

The question I pose now is: “Where
are we today, and where will we be tomor-
row?” Did we lose our religion?

Why did I use the metaphor of religion?
Because religion is the traditional example
of faith-based behavior – that is, behavior
that is based on a belief system rather
than on externally imposed rules such as
the law of gravity or “she that has the
gold, rules.” Emotional discussions
regarding whether Ada or C++ should be
preferred are frequently described as reli-
gious arguments based on beliefs rather
than facts.

Sadly, I still see the world of software
being governed by religious-like belief
systems rather than objective appraisals.
When I left the Pentagon six years ago, I
described some of what was happening as
bumper sticker management, and the situa-
tion has not changed for the better. I
sometimes have the feeling that the blind
are leading the blind – the leadership is
blissfully ignorant of the direction in
which they are headed.

The only meaningful direction from
either the Office of the Secretary of
Defense (OSD) or the military services in
the last few years was the Gansler memo
that directed the use of the Software
Engineering Institute’s (SEI) Capability
Maturity Model® (CMM®) Level 3 con-
tractor organizations for Acquisition
Category (ACAT) 1 systems. Do you
know how many large-dollar (by that I
mean $50 million or more) software inten-
sive acquisitions are not ACAT 1?
Virtually all Management Information
System (MIS) and Command, Control,
and Communications (C3) systems!

During the past two years, there has
been a 5.5 percent annual growth in the
cost of ACAT 1 programs due to cost and
schedule estimating and engineering
changes (sound like software?). Yet these
programs have the most experienced
DoD industry managers, and have a
requirement for CMM Level 3. About
two-thirds of DoD acquisition dollars are
for programs below the ACAT 1 thresh-
old for which there is currently no CMM
requirement. It is my guess that these non-
ACAT 1 programs are at least twice as bad
as ACAT 1 programs – in other words,
about $9 billion per year in cost growth
associated with estimating and engineer-
ing problems, many of which are likely
software related. In my opinion, they
deserve more software management
attention than results from the require-
ment to use best commercial practice.

CMM Maturity Reality
What is wrong with best commercial prac-
tice? It just does not exist among DoD
contractors. It is a fantasy created by those
who want to streamline acquisition, mak-
ing it possible to cut the number of over-
sight personnel by reducing the opportu-
nity for oversight. The best way to justify
a hands-off attitude is to insist that con-
tractors always do everything right!

There are more mature software
organizations today. Virtually every large
DoD contractor can boast at least one
organization at CMM Level 4 or above,
and several organizations at CMM Level 3.
On the other hand, most DoD software is
still being developed in less mature organ-
izations – mainly because the program
executive officer or program manager
(PM) doesn't demand that the part of the
company that will actually build the soft-
ware be Level 3!

Many people used to tell me that the
DoD needed to get on the dot-com band-
wagon – those folks develop and deliver
software fast. Yes, the Internet and the
availability of Web browsers have funda-
mentally changed the environment within
which even mission critical software is
being developed. But instead of adapting
proven software methods, the software
research community has all but dropped
its concerns with formal methods, peer
reviews, clean-room processes, and other
reliability techniques, including Ada,
which was designed to promote reliability.
Except for Barry Boehm at the University
of Southern California, much of the aca-
demic community has more or less
stopped investigating better ways of esti-
mating system complexity and measuring
software growth. Instead, invention of
new user interfaces, new distributed com-
puting architectures, and new (more flexi-
ble and less reliable) programming lan-
guages have been given top priority. The
goals of reliable performance and pre-

Did We Lose Our Religion?

Lloyd K. Mosemann II
Science Applications International Corporation

This article was presented as a keynote address at the Software Technology Conference 2002 in Salt Lake City in May and
has been edited for length and clarity. The author takes the government to task for using religious-like belief systems rather
than objective appraisals to build and buy software. The author says that best commercial practices do not exist in govern-
ment contractors as they do in the real commercial world: in-house software expertise, a robust software development environ-
ment, and sound software architecture. While he is not suggesting that the government develops software in-house, the author
does suggest that it needs enough in-house software expertise to know what it is buying.

August 2002 www.stsc.hill.af.mil 23

Did We Lose Our Religion?

dictable development costs have been
largely ignored.

Wayt Gibbs, author of the 1994 Scien-
tific American article, “Software's Chronic
Crisis” told me: “It is tempting to argue
that the lack of a disciplined approach to
software development is the principal rea-
son that so many dot-com ventures failed
– and consumed such flabbergasting
amounts of money as they failed.”

That may be stretching it. Addle-
brained business models clearly played a
starring role as well. But it is interesting
that, with very few exceptions, the dot-
com startups embraced the programmer-
as-master-craftsman model of develop-
ment. That very old-fashioned model is
still considered avant-garde in the open
source movement. How many software
startups in the past eight years have sub-
mitted to SEI evaluation or tried to
achieve CMM Level 3? You won't need
many fingers to count them all.

In addition to abandonment of for-
mal methods, the Internet has also made
obsolete the fortress model of security
and the notion that an astute administra-
tor can enforce central control of all com-
ponents of a system. It is no longer real-
istic to dream of a mathematical certainty
that each software component in a system
is correct. In a world where network com-
munication and user interface standards
depend on change every 12-18 months, it
does not make sense to lock down
detailed requirements, spend a year prov-
ing them consistent, then spend two years
building to spec.

A Move to Self-Sustaining
Systems
There is a new move toward something
called autonomic computing. This is a vague
term that encompasses several lines of
research aimed at taming complexity to
achieve reliability. The approach is not for-
mal but organic, i.e., find ways to build sys-
tems that can heal, that can achieve their
mission despite bugs, equipment failures,
and even sabotage. In other words, design
systems that constantly monitor their own
performance, that notice failures, can per-
form self-maintenance, and do not crash
but degrade gradually. Some folks say
these goals can be achieved in 10 to 20
years, but do not bet your paycheck on it.

Ironically, the problem facing much of
industry is exactly the opposite. Wayt
Gibbs told me the following: “Executives
who woke up one day in 1997 to discover
a time bomb in the form of Y2K bugs
ticking inside their systems were forced to
take a substantial hit to their bottom line.
But an ironic consequence of Y2K is that

many companies upgraded their affected
systems in 1999 to work with or through
the Internet and various fly-by-night stan-
dards and startup-built solutions that are
now as obsolete as Algol. As a result, their
systems are again ticking time bombs.
Though they will not all fail at the same
time, their failure will be just as unpre-
dictable and much harder to fix.”

The Missing Agenda
Some subjects have been notably missing
from the plenary sessions of conferences
during the past few years: software engi-
neering, product line development, formal
methods programming, and predictability.

In 1991, Paul Strassmann, then-direc-
tor of Defense Information, said: “The
No. 1 priority of the DoD, as I see it, is to
convert its software technology capability
from a cottage industry into a modern
industrial method of production.”

Guess what? That has not happened.
Why not? Because this requires software
engineering, which encompasses a set of
three key elements – methods, tools, and
procedures – that enable the manager to
control the process of software develop-
ment and provide the practitioner with a
foundation for building high quality soft-
ware in a productive manner.

The fundamental ingredient in a soft-
ware engineering approach is the design of
robust software architecture. Architecture
does not refer to grouping and linkage of
servers, routers, and PCs, but rather to the
inherent design of the software itself –
the identity of modules and their relation-
ships, including the infrastructure, control,
and data interfaces that permit software
components to operate as a system.

I was told by an attendee at a DoD
Systems Design Review several months
ago that a contractor had described his

proposed system as modular. That is a
good architectural term, and it was accept-
ed at face value. In fact the system, when
looked at by the independent attendee,
only had two modules. When this was
brought to the government program man-
ager's attention he said, “The contractor
says it is modular. He's smarter than we
are.” This little incident underscores two
facts: architecture was understood by nei-
ther the contractor nor by the government
PM, and the probability of a successful
software delivery is low.

All too often the DoD excuse for not
requiring an architectural evaluation is that
“requirements change rapidly – we can't
afford to be locked into a specific archi-
tecture.” Wrong. That is the very reason
that attention should be given to architec-
ture, so that changes to requirements can
be accommodated easily.

I am told that SEI is still being asked
to do Independent Technical Assessments
of why a software acquisition has not pro-
duced the desired working software sys-
tem. Why wait to ask SEI to come in to do
a post-mortem and tell you how you
screwed up? Why not ask them to come in
first and review the Request for Proposal
(RFP) and Statement of Work and, sec-
ond, assist in evaluating the software engi-
neering practices, software development
environment, and architecture proposed
in response to the RFP, and then after-
wards assess the quality of the software
engineering and development process?
SEI is not cheap, but terminating a $100-
million project for lack of satisfactory per-
formance is not cheap either.

Interestingly, when one thinks about
best commercial practice, there are two
very different worlds out there. There is
the government contractor world and
there is the real commercial world – banks,

100

90

80

70

60

50

40

30

20

10

0

-10

-20

88
And

Earlier

89 90 91 92 93 94 95 96 97

Project Start Date
%

 O
ve

rr
u

n
 S

ch
ed

u
le

Legend
 Finished ProgramsL2

Assessment
L3
Assessment

L2
Processes
Initiated

L3
Processes
Initiated

Figure 1: Impact of SPI on Schedule Compliance

24 CROSSTALK The Journal of Defense Software Engineering August 2002

Open Forum

insurance companies, UPS, FedEx, Eckerd
Drug, and Disney World. These compa-
nies developed their own software using
the best available tools like Rational's soft-
ware development environment. They did
not pick the cheapest tools. They did not
rely on commercial-off-the-shelf (COTS)
or outside software developers – their
software is their business. They consider
that it provides them a competitive advan-
tage. They want to control it, and they use
the best tools available regardless of cost.

Architecture-Centered
Approaches
Product line developments are also
becoming increasingly commonplace in
the true commercial world. The Swedish
firm CelsiusTech was the first to exploit
the benefits of a product line architecture
approach to software application develop-
ment back in the late 1980s. There are
now a number of well-known firms who
are using an architecture-centered
approach: Nokia, Motorola, Hewlett-
Packard, Philips, Cummins Engine, and
(believe it or not) one government appli-
cation at the National Reconnaissance
Office (NRO).

The NRO is enjoying a 50 percent
reduction in overall cost and schedule, and
nearly tenfold reductions in defects and
development personnel. Let me list the
most common and relevant-to-DoD rea-
sons that these companies give for adopt-
ing the architecture-centered product line
approach to software development:
• Large-scale productivity gains.
• Improved time-to-market = field

weapons faster.
• Improved product quality.
• Increased customer satisfaction =

warfighter satisfaction.

• Enabled mass customization.
• Compensated for inability to hire

software engineers.
These companies and the NRO do

have best practices but are not yet widely
recognized as such. Frankly, it will take
DoD program executive officers (PEOs)
(not program managers) and their over-
seers, the service acquisition executives,
and especially the DoD comptroller and
program analysis and evaluation folks, to
recognize and direct the product line
approach to software development and
acquisition. (Unfortunately, these folks are
not known for their software acumen.)

The major impediment to the product
line development approach, aside from
ignorance of its benefits, are cultural, orga-
nizational, and, especially, the DoD's
stovepipe approach to budgeting and
funding. The DoD has many potential
software product lines. None of them
have been built largely for political and
stovepipe budgeting reasons. As a result,
development and fielding of defense sys-
tems continues to take longer, cost more,
and lack predictable quality. Product lines
require strategic investment, which appears
to be outside the DoD comptroller and
acquisition communities' frames of refer-
ence. Yet, it is the DoD that most often
uses the term strategic.

Cummins’ Engine Company used to
take a year or more to bring software for a
new engine to the test lab – now they can
do it in less than a week! I strongly recom-
mend that readers obtain a copy of a new
book, “Software Product Lines,” just pub-
lished by Addison-Wesley. The authors are
from SEI. Sadly, with the exception of the
NRO, it appears that the readers are main-
ly from commercial organizations.

I work for one, but let me tell you,

although government contractors are
commercial organizations, they do not
have an identifiable best commercial prac-
tice. They basically provide what the gov-
ernment asks for. The only reason many of
them can now boast of having at least a
few SEI maturity level organizations is
because 10 years ago, many government
RFPs required a Software Capability
Evaluation (SCE) as a condition of bid-
ding. In fact, sad to say, many contractors
today put satisfactory CMM credentials in
their proposals but then perform the work
with an organization that could not spell
CMM.

Why does the government let this hap-
pen? Why aren't there SCEs anymore? Do
they take too long and cost too much? Is it
better to make a quick award, and then,
down the line, accept an inferior product
or terminate for convenience? Too often
what the government has been asking for
is COTS. How many failures of COTS-
based acquisitions have there been over
the past decade? Too many!

What is Best Commercial
Practice?
Best commercial practice is not eliminat-
ing all software smarts in government and
relying 100 percent on contractors to
deliver good software. Best commercial
practice is what real commercial compa-
nies are doing. They have in-house soft-
ware expertise, they use a robust software
development environment, and they base
their software development on sound
software architecture. It is no secret that
Rational and their competitors have a
growing market in the commercial world
and a shrinking market in the government.
I am not suggesting that the government
can or should develop software in-house. I
am strongly suggesting that the govern-
ment needs enough in-house software
expertise to know what it is buying. It is
still true that you “get what you pay for.”

Watts Humphrey recently published
“Winning with Software - An Executive
Strategy.” This book is directed primarily
at executives of commercial companies.
But every DoD acquisition executive,
PEO and PM needs to read and under-
stand its simple message: Software proj-
ects rarely fail for technical reasons; invari-
ably, the problem is poor management.

Watts poses two interesting questions
buttressed by numerous examples: “Why
do competent software professionals
agree to dates when they have no idea how
to meet them?” “Why do executives
accept schedule commitments when the
engineers offer no evidence that they can

100

90

80

70

60

50

40

30

20

10

0

-10

-20

88
And

Earlier

89 90 91 92 93 94 95 96 97

Project Start Date

%
 O

ve
rr

u
n

 C
o

st

Legend
 Finished Programs

L2
Assessment

L3
Assessment

L2 Processes
Initiated L3 Processes

Initiated

Figure 2: Impact of SEI on Cost Compliance

August 2002 www.stsc.hill.af.mil 25

Did We Lose Our Religion?

meet these commitments?” He asserts that
management's undisciplined approach to
commitment contributes to every one of
the five most common causes of project
failure:
• Unrealistic schedules.
• Inappropriate staffing.
• Changing requirements.
• Poor quality work.
• Believing in magic.

What is Formal Methods Program-
ming (FMP)? Basically, FMP is all of the
above rolled together: sound management,
established engineering processes, robust
software development environment,
model-based architecture, and a reliable
programming language. Peter Amey of
Praxis Critical Systems said in March 2002
CrossTalk: “There is now compelling
evidence that development methods that
focus on bug prevention rather than bug
detection can raise quality and save time
and money.” He went on to say that a key
ingredient is the use of unambiguous pro-
gramming languages that allow rigorous
analysis early in the development process.

I was an early and vocal advocate of
Ada, primarily because, unlike other lan-
guages, it enforces basic software engineer-
ing practice. Amey’s article describes the
use of a subset of Ada known as SPARK,
which he says requires software writers to
think carefully and express themselves
clearly; otherwise, lack of precision is
exposed by SPARK Examiner. He said
there were significant savings in using
SPARK in a critical avionics program,
including an 80 percent reduction in formal
test costs. Unfortunately, this is an isolated
DoD example.

Finally, let me say a word about pre-
dictability. Predictability is the only metric
that warfighters care about. The question
is, how can we make the warfighters
(including the PEOs and PMs charged with
delivering the needed capabilities) know
that you cannot just buy software as a
product off the showroom floor? There
must be an understanding of the software-
engineering paradigm. More than this, to
be assured of getting software that works
on a predictable schedule and at pre-
dictable cost requires that someone in gov-
ernment enunciate requirements. Or else,
competitors will lowball price and set an
unrealistically fast schedule and be awarded
the contract. To perform at low cost means
no robust software development environ-
ment, no time and effort devoted to creat-
ing a valid software architecture, and prob-
ably means cheap people. Sufficient
process guidance must be given to assure
that contractors all bid at the same capabil-
ity level. Government should be explicit

about its need for architecture, a robust
software development environment, and
perhaps even the requirement for a lan-
guage like SPARK. At a minimum, it needs
to specify at least CMM Level 3. As the fig-
ures illustrate, (see pages 23, 24) at Level 1
virtually all projects have cost and schedule
overruns, whereas at Level 3 virtually all
projects are on target. Regarding defect
rates and cost ($) per source line of code,
there is substantial improvement on the
order of 20 percent to 50 percent. It really
is true that “you get what you pay for.” If
you want it cheap, you’ll get it cheap – but
the software may not work in the manner
envisioned, if it will work at all.

As for CMMI, I believe it is very impor-
tant for the embedded world... but it would
be a gross mistake to discontinue support
of the Software CMM.

Are there best commercial practices?
You bet! The banks, insurance companies
and other truly commercial enterprises
have them. Not because of some automat-
ic external happenstance, but because their
senior managers have had the moxie to
realize that it takes money to make money,
and that it takes software expertise to
develop or acquire software. The govern-
ment needs to go and do likewise. Otherwise,
the decade of 2000 will likely not show any
lessening of the software crisis that has
carried over from the 1990s.◆

About the Author
Lloyd K. Mosemann
II, is the senior vice
president of Corporate
Development for Sci-
ence Applications Inter-
national Corporation
(SAIC). Formerly, for

almost 25 years, Mosemann was deputy
assistant secretary of the Air Force for
Communications, Computers, and
Logistics. During this time, he chartered
and guided the Air Force’s Software
Technology Support Center and spon-
sored its annual Software Technology
Conference. Prior to that, Mosemann
spent 11 years with the Navy. He has a
bachelor’s and master’s degree from the
University of Chicago, and has received
two Presidential Meritorious Rank
Awards, five Air Force Exceptional
Service Medals, among other awards.

Science Applications
International Corp.
E-mail: lloyd.k.mosemann.II@
saic.com

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/TISE

7278 Fourth Street

Hill AFB, UT 84056-5205

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

APR2001 F WEB-BASED APPS

JUL2001 F TESTING & CM

AUG2001 F SW AROUND THE WORLD

SEP2001 F AVIONICS MODERNIZATION

JAN2002 F TOP 5 PROJECTS

MAR2002 F SOFTWARE BY NUMBERS

APR2002 F RISKY REQUIREMENTS

MAY2002 F FORGING THE FUTURE OF DEF

JUN2002 F SOFTWARE ESTIMATION

JULY2002 F Information Assurance

To Request Back Issues on Topics Not
Listed Above, Please Contact Karen
Rasmussen at <karen.rasmussen@
hill.af.mil>.

