
18 CROSSTALK The Journal of Defense Software Engineering June 2002

Two issues are at the core of the esti-
mation challenge. First, is the need

to understand and define (as early as pos-
sible) the problem domain. Second, is
the need to understand the capacity to
deliver the required software solution
within a specified environment. Then
and only then can accurate predictions
be made of the effort necessary to deliv-
er the required product.

The problem domain can be defined
as the definition of requirements. The
problem domain must be accurately
assessed in size and complexity.
Furthermore, the ability to develop an
initial estimate (early in the system’s life
cycle) must exist since we cannot pre-
sume to have all of the necessary infor-
mation at our disposal. Therefore, a rig-
orous process must exist that permits
further clarification of the problem
domain as additional knowledge of the
required solution is gained.

The capability to deliver is derived
from an assessment of risk factors that
are known to impact rate of delivery.

An effective estimation model con-
siders three elements: functional size,
complexity, and risk factors. When fac-
tored together, the opportunity to
achieve an accurate estimate is signifi-
cantly increased (see Figure 1).

Functional Size
By far, the project-sizing technique that
delivers the greatest accuracy and flexi-
bility is function point analysis. Based
upon several recent analytical studies

performed for client organizations, the
function point sizing method was com-
pared with other sizing techniques,
including backfiring from source lines of
code, approximation, ratios, and estima-
tion. The results concluded that the
function point method consistently pro-
duced more accurate sizing of the soft-
ware product.

As to its flexibility, the function point
methodology presents the opportunity
to size a user requirement regardless of
the level of detail available. An accurate

function point size can be determined
from the detailed information included
in a logical, user-defined requirements
document or from the limited informa-
tion provided in an early proposal.

The function point method is
dependent upon the identification of
five elements: inputs, outputs, inquiries,
internal stores of data, and external ref-
erences to data. During the early stages
of development, these elements are
exposed at a functional level. (For exam-

ple, we know that we will generate an
output report, although we may not
know the detailed characteristics of that
report.)

The first level of function point
counting is to identify these five ele-
ments. As more information becomes
available regarding the characteristics of
these elements such as data fields, file
types, and so on, the function point
count will become more detailed. During
the early phases of a count, it may be
necessary to assume levels of complexi-
ty within the system (for example,
whether the report will be simple or
complex). The value of using function
points is that it allows for this distinction
and, in fact, requires it early in the
process.

Function points accurately size the
stated requirement. If the problem
domain is not clearly or fully defined, the
project will not be properly sized. When
there are missing, brief, or vague require-
ments, a simple process using basic dia-
gramming techniques with the request-
ing user can be executed to more fully
define the requirements. Function points
can be utilized early in the life cycle in
conjunction with a context diagram or
other diagramming devices such as mind
maps or use case diagrams. The devel-
oped diagram is used to identify stated
inputs, outputs, inquiries, internal stores
of data, and external stores of data (see
Figure 2). For an average-size project,
hours (not days) are required to com-
plete the diagramming and sizing task.

From the example in Figure 2, we can
quickly identify, at a high level, the
inputs, outputs, internal, and external
files. At this level, we could easily assign
average values of complexity and quick-
ly determine a functional value that we
would then use in our estimating model.

Project Complexity
The second element addressed in our
estimation model is project complexity.

Estimating Software Earlier and
More Accurately

David Garmus and David Herron
The David Consulting Group

Software practitioners are frequently challenged to provide early and accurate software project estimates. A U.S. government
study on software development projects revealed the extent of that challenge: 60 percent of projects were behind schedule, 50
percent of projects were over cost, and 45 percent of delivered projects were unusable. This article explores the use of a basic
estimating model, which utilizes functional sizing as one of its key components. The primary value gained from utilizing a
functional sizing technique such as function points is the capability to accurately estimate a project early in the development
process.

REQUIREMENT FUNCTIONAL
SIZE

=X X RISK
FACTORS

ESTIMATES
• Schedule
• Effort
• Costs
• Deliverables

PROJECT
COMPLEXITY

DEFINITION CAPABILITY

Figure 1: An Effective Estimation Model

“An effective
estimation model

considers three elements:
functional size,
complexity, and
risk factors.”

June 2002 www.stsc.hill.af.mil 19

Project complexity must be properly
evaluated and should consider the
impact of various contributing charac-
teristics that may influence the ease or
difficulty in developing the required
solution. In part, complexity level is eval-
uated as part of the function point
methodology.

A value adjustment factor (VAF) is
used as a multiplier of the unadjusted
function point count to calculate the
adjusted function point count of an
application. The VAF is determined by
identifying 14 general system characteris-
tics (GSCs). Each characteristic has an
associated description that helps in
determining the degree of influence (of
that characteristic). The degree of influ-
ence for each characteristic ranges on a
scale from zero (no influence) to five
(strong influence). The 14 GSCs are
totaled to calculate a total degree of
influence (TDI).

A VAF is calculated from the follow-
ing formula: VAF = (TDI * 0.01) + 0.65.
When applied, the VAF adjusts the unad-
justed function point count by ±35 per-
cent to produce the adjusted function
point count. Detailed guidance is con-
tained within the International Function
Point Users Group (IFPUG) Counting
Practices Manual. Information on
IFPUG can be found on their Web site
at <www.ifpug.org>.

Each of the following 14 GSCs is
evaluated and assigned a degree of influ-
ence between zero and five:
1. Data Communications: Describes the

degree to which the application com-
municates directly with the processor.

2. Distributed Data Processing:
Describes the degree to which the
application transfers data among
components of the application.

3. Performance: Describes the degree
to which response time and through-
put performance considerations
influenced the application develop-
ment.

4. Heavily Used Configuration:
Describes the degree to which com-
puter resource restrictions influenced
the development of the application.

5. Transaction Rate: Describes the
degree to which the rate of business
transactions influenced the develop-
ment of the application.

6. Online Data Entry: Describes the
degree to which data are entered
through interactive transactions.

7. End-User Efficiency: Describes the
degree of consideration for human
factors and ease of use for the user of
the application measured.

8. Online Update: Describes the degree
to which internal logical files are
updated online.

9. Complex Processing: Describes the
degree to which processing logic
influenced the development of the
application.

10. Reusability: Describes the degree to
which the application and the code in
the application have been specifically
designed, developed, and supported
to be usable in other applications.

11. Installation Ease: Describes the
degree to which conversion from
previous environments influenced
the development of the application.

12. Operational Ease: Describes the
degree to which the application
attends to operational aspects such as
start-up, back-up, and recovery
processes.

13. Multiple Sites: Describes the degree
to which the application has been
developed for multiple locations and
user organizations.

14. Facilitate Change: Describes the
degree to which the application has
been developed for easy modification
of processing logic or data structure.
In addition to the 14 GSCs, a pro-

ject’s complexity assessment must take
into consideration complex interfaces,
database structures, and contained algo-
rithms. These complexity factors impact
the project delivery, and they do not
serve as an adjustment to the function
point count. The complexity assessment
can be based upon five varying levels of
complexity:
Level 1:

• Simple addition/subtraction.
• Simple logical algorithms.
• Simple data relationships.

Level 2:
• Many calculations, including mul-

tiplication/division in series.
• More complex, nested algorithms.
• Multidimensional data relation-

ships.

Level 3:
• Significant number of calcula-

tions typically contained in pay-
roll/actuarial/rating/scheduling
applications.

• Complex, nested algorithms.
• Multidimensional and relational

data relationships with a signifi-
cant number of attributive and
associative relationships.

Level 4:
• Differential equations typical.
• Fuzzy logic.
• Extremely complex, logical, and

mathematical algorithms typically
seen in military/telecommunica-
tions/real-time/automated process
control/navigation systems.

• Extremely complex data.

Level 5:
• Online, continuously available,

critically timed.
• Event-driven outputs that occur

simultaneously with inputs.
• Buffer area or queue determines

processing priorities.
• Memory, timing, and communica-

tion constraints.
• The most advanced applications

developed.

Risk Factors
The capability to effectively deliver soft-
ware on time and within budget is based
upon a variety of risk factors. The third
element in our estimating model is an
evaluation of risk factors, including soft-

USER

INVOICE PURCHASE
ORDER

PURCHASE ORDERS
INVOICE BANK SYSTEM

PAYMENT FILE

PAYMENTACCOUNTS PAYABLE

VENDOR

Internal Logical Files

External Inputs

External Interface File

External Output

Figure 2: Example of a Function Point Diagramming Device

Estimating Software Earlier and More Accurately

20 CROSSTALK The Journal of Defense Software Engineering June 2002

Software Estimation

ware processes utilized, staff skill levels
(including user personnel), automation
utilized, and the influences of the physi-
cal (development conditions) and busi-
ness environment (competition and reg-
ulatory requirements). Categorized in
Figure 3 are some examples of influenc-
ing factors that must be evaluated to pro-
duce an accurate estimate.

As each project commences, the size,
complexity, and various risk factors are
assessed, and an estimate is derived.
Initially, the resulting estimate would
typically be based upon industry data
that reflect average occurrences of
behavior given a project’s size, complex-
ity, and performance profile. Over time,
as an organization develops a historical
baseline of information regarding its
own behaviors, performance profiles
would reflect a more accurate represen-
tation of likely outcomes (see Figure 4).
This information can be used to predict
and explore what-if scenarios on future
projects.

Bringing It All Together
As an example of how the elements of
the estimating model fit together,

assume we are about to initiate a project
that requires an enhancement to an
existing system. The first step would be
to fully understand the stated require-
ments and to evaluate those require-
ments from a functional perspective.
Based upon our understanding of the
functionality being added, changed, or
deleted from the existing system, we
would apply the function point method
to determine the size of the require-
ments.

The function point method would
consider all new or changed inputs, out-
puts, inquiries, interfaces, and internal
stores of data. Based on a series of
weights and algorithms, an unadjusted
function point size would be derived.
This unadjusted value would then be fine
tuned by an examination of the 14 gen-
eral system characteristics and value
adjustment factors noted earlier. The
result would equate to an adjusted func-
tion point value.

Let us assume in this example that
the resulting function point size is 250
function points. This information alone
tells us very little about what it will take
to make the required changes to the

existing system. We need to consider any
additional levels of complexity that may
inherently be part of the change
required, and we need to assess our
capacity to design, develop, and deploy a
project of this given size.

Industry data indicate that (on aver-
age) an enhancement project of a given
size would equate to a range of delivery
rates. Considering our example’s size of
250 function points, we know from stan-
dard industry data that we could expect a
delivery rate ranging from four to 25
function points per person-month. That
is a wide range, which will of course be
influenced by a variety of factors, includ-
ing those previously mentioned.

To effectively complete the estimate
(and our example), we must evaluate all
of the risk factors that will influence the
ability to deliver the required changes. If
project data have been collected and ana-
lyzed for a statistically relevant period of
time, performance profiles would be
available that would pinpoint a likely out-
come when we matched the current pro-
file of risk factors to an existing profile.

In place of an internal historical base
of information, organizations are
dependent upon industry data sources.
These sources of industry data will pro-
duce varied results relative to an organi-
zation’s actual experiences, but they are
of significant value when there is little
information available from within.

Industry Data
Companies have not typically invested
the resources to develop internal rate-of-
delivery performance baselines that can
be used to derive estimating templates.
Therefore, industry data baselines of
performance delivery rates are of signif-
icant value. The industry data points
allow organizations to use these generic
delivery rates to ballpark their estimates.
As they continue to develop an experi-
ence base of their own, they can transi-
tion from using industry data to using
their own data.

The International Software Bench-
marking Standard Group (ISBSG) is one
of several opportunities that currently
exist for gathering, retrieving, and shar-
ing industry data. ISBSG operates on the
principle of a well-defined collection
process that feeds a central repository,
making the data available for detailed
access and comparison to industry best
practices. The advantage of industry
databases is the accessibility of detailed
data. Information on ISBSG can be
found at <www.isbsg.org.au>.

MANAGEMENT

•• Team Dynamics

• Morale

• Project Tracking

• Project Planning

• Automation

• Management Skills

DEFINITION

• Clearly Stated Requirements

• Formal Process

• Customer Involvement

• Experience Levels

• Business Impact

DESIGN

• Formal Process

• Rigorous Reviews

• Design Reuse

• Customer Involvement

• Experienced Development Staff

• Automation

BUILD

• Code Reviews

• Source Code Tracking

• Code Reuse

• Data Administration

• Computer Availability

• Experienced Staff

• Automation

TEST

• Formal Testing Methods

• Test Plans

• Development Staff Experience

• Effective Test Tools

• Customer Involvement

ENVIRONMENT

• New Technology

• Automated Process

• Training

• Organizational Dynamics

• Certification

Figure 3: Factors That Influence Risk

Project Initialization

Selected
Profile of
Performance

Create Profile:
Rate of Delivery
Time to Market
Defects

 Estimate

Assess: Size
 Complexity
 Risk Factors

Project Completion

 Record Actuals:
 Size
 Effort
 Defects

Historical Data Base

Performance
Profiles

Rate of Delivery
Productivity

Quality
Time to Market

Figure 4: Developing and Using a Historical Baseline

June 2002 www.stsc.hill.af.mil 21

Estimating Software Earlier and More Accurately

Summary
Accurate and early estimating requires
the following:
• Proper identification of the problem

domain, including functional size and
complexity.

• An assessment of the organization’s
capacity to deliver based upon known
risk factors.

• Use of industry data points as neces-
sary to provide delivery rates or as a
point of comparison.
As Robert Glass says in Building

Software Quality [1], “If there is one man-
agement danger zone to mark above all
others, it is software estimation.”

Furthermore, an investment in skills
training and risk profile development is
critical. Project managers must be
equipped with the proper tools and tech-
niques necessary to accurately estimate

projects. The return on that investment
is obvious to any organization that has
misspent dollars because of inaccurate
estimating.

Reference
1. Glass, Robert. Building Software

Quality. Prentice Hall PTR, 1997.

Additional Reading
1. Garmus, David, and David Herron.

Measuring the Software Process: A
Practical Guide to Functional Meas-
urement. Prentice Hall, 1996.

2. Garmus, David, and David Herron.
Function Point Analysis: Measure-
ment Practices for Successful
Software Projects. Addison-Wesley
Information Technology Series,
2000.

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/TISE

7278 Fourth Street

Hill AFB, UT 84056-5205

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:___@_________________________

CHECK BOX(ES) TO REQUEST BACK ISSUES:

JUN2000 � PSP & TSP

APR2001 � WEB-BASED APPS

JUL2001 � TESTING & CM

AUG2001 � SW AROUND THE WORLD

SEP2001 � AVIONICS MODERNIZATION

DEC2001 � SW LEGACY SYSTEMS

JAN2002 � TOP 5 PROJECTS

MAR2002 � SOFTWARE BY NUMBERS

APR2002 � RISKY REQUIREMENTS

MAY2002 � FORGING THE FUTURE OF DEF

To Request Back Issues on Topics Not

Listed Above, Please Contact Karen

Rasmussen at <karen.rasmussen@

hill.af.mil>.

About the Authors
David Garmus is a prin-
cipal and founder of The
David Consulting Group.
He is an acknowledged
authority in sizing, meas-
uring, and estimating

software application development and
maintenance with more than 25 years of
experience in managing, developing, and
maintaining computer software systems.
Concurrently, as a university instructor
he taught courses in computer program-
ming, system development, information
systems management, data processing,
accounting, finance, and banking.
Garmus is the immediate past president
of the International Function Point
Users Group (IFPUG) and a member of
the Counting Practices Committee from
1989 through 2001. He previously served
IFPUG as chair of the Certification
Committee, chair of the New
Environments Committee, and on the
Board of Directors as director of
Applied Programs, vice president, and
president. Garmus has a bachelor’s of
science degree from the University of
California at Los Angeles, and a master’s
degree from Harvard University.

The David Consulting Group
1935 Salt Myrtle Lane
Orange Park, FL 32003
Phone: (904) 269-0211
Fax: (904) 215-0444
E-mail: dcg_dg@compuserve.com

David Herron is a
principal and founder
of The David Consult-
ing Group. He is an
acknowledged authority
in using metrics to

monitor information technology’s (IT)
impact on business, including advance-
ment of IT organizations to higher
levels on the Software Engineering
Institute’s Capability Maturity Model®

and on the governance of outsourcing
arrangements. He assists clients in
establishing software measurement,
process improvement, and quality pro-
grams and to enhance their project
management techniques. Herron has
more than 25 years experience in man-
aging, developing, and maintaining
computer software systems. He serves
as a Cutter Consortium Expert Con-
sultant. Herron attended Union
College and Northeastern University.
He is chair of the International
Function Point Users Group (IFPUG)
Management Reporting Committee, a
member of the IFPUG IT Perfor-
mance Committee, and a member of
the American Society for Quality.

The David Consulting Group
19 Pointe View Drive
Medford, NJ 08055
Phone: (609) 654-6227
Fax: (609) 654-2338
E-mail: dcg_dh@compuserve.com

