Avionics Modernization and the
C-130J Software Factory

Richard Conn, Stephen Traub, and Steven Chung

Lockheed Martin Aeronautics Company

The rollout of the first production C-130 aircrafi, the C-1304, took place on March 10, 1955. Since then, more
than 2,100 C-130s have been built in dozens of variations and are flown by more than 60 nations worldwide.
They carry troops, vehicles, and armaments into batle. They drop paratroopers and supplies from the sky. They serve
as airborne and ground refuelers. They serve as flying hospitals, hurricane hunters, and provide emergency evacua-
tion and humanitarian relief. They perform airborne early warning and maritime surveillance. Theyve worn skis
in Antarctica and have helped recover space capsules. In May 1992, the 2,000th C-130, a C-130H, was delivered.
In September 1992, formal development of the C-130] began. Unlike its predecessors, the C-130] is a software
intensive system employing modern avionics that have made significant improvements in its performance. By March
2001, the C-130] flew with a complete compliment of mission computer software setting 50 world records. This
article presents insight into Lockheed Martin's modernization of the C-130 airlifter family.

he C-130] looks like the earlier mod-
els, but it is really a brand new air-

plane with improved performance [1]. A

key difference is that the C-130] is a soft-

ware intensive system, where the earlier
models were largely mechanical aircraft.

Compared to the production C-130E,

here are the C-130] improvements:

* Maximum speed is 21 percent greater.

* Climbing time is 50 percent less.

* Cruising altitude is 40 percent higher.

* Range is 40 percent longer.

The introduction of software intensive
systems to the aircraft contributed signifi-
cantly to all of these improvements. By
June 1999, the C-130] had set 50 world
aeronautical records in two aircraft cate-
gories. Twenty-one records were set in
the Class C-1.N, Turboprop
category for speed over a
1,000 and 2,000 kilometer
closed course and for altitude with pay-
load. The other 29 records
were set in the Short
Takeoff and
Landing, Class N,

Turboprop category for 1,000 and 2,000

kilometer speed over a closed course, alti-

tude with payload, and time-to-climb to

3,000, 6,000, and 9,000 meters.

The C-130] also offers reduced man-
power requirements, lower operating
costs, lower support costs, and lower life-
cycle costs. Here are the three key distin-
guishing features of the C-130]:

* A new propulsion system featuring
four Full-Authority Digital Engine
Control Allison AE2100D3 engines
that generate 29 percent more thrust
while increasing fuel efficiency by 15
percent.

* Advanced avionics technology featur-

® Capability Maturity Model and CMM are registered
in the U.S. Patent and Trademark Office.

September 2001

ing two holographic heads-up displays
and four multifunctional heads-down
Liquid Crystal Displays for aircraft
flight control, onboard systems moni-
toring and control, and navigation;
the displays are night vision imaging
system compatible.

Two mission computers and two back-
up bus interface units provide infor-
mation flow and dual redundancy for
the onboard systems, including an
extensive integrated diagnostics sys-
tem.

“The C-130] also
offers reduced man-
power requirements,

lower operating
cOsts, lower support
c%;st&arpl lower life-

" cycle-costs.” e

The C-130] family started with
the 382], a commercial aircraft that
was created specifically to achieve
Type Certification by the Federal
Aviation Administration (FAA). FAA
Type Certification was at Level A (the
highest level) of the DO-178B stan-
dard. This milestone established that
the C-130] family has complied with
the safety critical requirements of the
FAA should we later have a commer-
cial customer. Once FAA Type
Certification was achieved, the C-
130] was derived from the 382],
establishing the military baseline soft-
ware for all future variants of the air-

craft. Each major version of software
for the C-130] is called a block, and
more than 96 percent of the 382] soft-
ware (Block 2) was reused in creating
the C-130] military baseline (Block
3). Ninety percent or more of the mil-
itary baseline software (Block 3) has
been reused so far for each variant of
the aircraft (Block 4):

¢ Block 1: basic airworthiness software.

* Block 2: safety-critical 382] aircraft
software.

* Block 3: military baseline of the C-
130] aircraft software.

¢ Block 4: custom variants of the C-

130] aircraft software.

Block 5: Block Upgrade Program.

Beyond Block 5: Hercules Improve-

ment Plan for soft-

ware/systems will

address future C-130]
"upgrades as a continuous

-

%)
A | .
process and product impr-ove-

" ment activity and to address new
and changed customer needs.

Each block provided a foundation of
reusable software for the following blocks.
As of March 2000, our level of software
reuse typically exceeded 90 percent for
most of our products:
¢ Block 3 military software baseline - 96

percent reused from Block 2.

e Block 4 software for the Royal Air
Force - 95 percent reused from Block
3.

* Block 4 software for the Royal
Australian Air Force - 95 percent
reused from Block 3.

* Block 4 software for the United States
Air Force - 97 percent reused from
Block 3.

e Block 4 software for the Italian Air
Force - 90 percent reused from Block
3.

¢ Block 4 software for the Tanker vari-

www.stschillafmil 19

Avionics Modernization

ant - 90 percent reused from Block 3.
¢ Reuse on the C-27] aircraft, the C-5

Aircraft Modernization Program, and

proposed for the C-130 Aircraft

Modernization Program is yet to be

measured but is expected to be equally

high.

The first flight of the C-130] was April
1996 with a minimum of onboard soft-
ware. The C-130] flew with a complete
mission computer software suite (Block
5.3) in March 2001. The new software is
expected to be installed in the deployed
worldwide fleet of C-130] aircraft during a
one-year period beginning the summer of
2001 after Air Force qualification testing is
completed at the Air Force Flight Test
Center at Edwards Air Force Base.

Plans for reuse of C-130] software and
technology were laid out during the early
days of the software development effort.
The C-130]’s advanced avionics technolo-
gy and mission computer software are
already being reused in the C-27] aircraft,
the C-5 Aircraft Modernization Program,
and Lockheed Martin’s proposed Joint
Strike Fighter. C-130] avionics and soft-
ware reuse has also been proposed for the
Lockheed Martin’s C-130 Aircraft
Modernization Program that is intended
to incorporate newer technology into the
older C-130 aircraft in the fleet.

The C-130J Aircraft as a
Software Intensive System

The C-130] aircraft is an integrated col-
lection of software systems produced by
more than 25 suppliers. These systems,
which are developed in compliance with
the Lockheed Martin C-130] Tier I
Software Development Plan, are integrat-
ed with the devices on the aircraft such as
the engines, pneumatics, flight station dis-
plays, and the radar. A common Tier I
Software Development Plan helped to
enforce commonality between all the sup-
pliers, making integration of their prod-
ucts into the air vehicle easier.

The Lockheed Martin C-130]
Software Integrated Product Team devel-
ops the air vehicle and ground-based data
system software also in compliance with
the Tier I plan. Thus Lockheed put the
same commonality requirements on itself
as it did its suppliers. All suppliers, includ-
ing Lockheed, produced their own Tier II
Software Development Plans per direc-
tions in the Tier I Software Development
Plan.

The air vehicle software consists of the
Mission Computer (MC) Operational
Flight Program (OFP) and Bus Interface
Unit (BIU) OFP. The MC OFP manages

20 CrossTALK The Journal of Defense Software Engineering

the overall software operations within the
C-130] aircraft and executes within a nor-
mal or backup mode. Both modes of the
MC OFP include the primary roles of
maintaining a central database, providing
executive control for all software func-
tions, providing interfaces to the MIL-
STD-1553 data buses, and performing
fault detection/fault isolation.

The BIU OFP operates in conjunction
with the MC OFP in performing the inte-
gration of the C-130] avionics. The BIU
OFP operates within a normal mode or an
MC backup mode. The primary roles of
the BIU OFP during normal mode opera-
tions are monitoring health, storing and
validating critical data, and providing
interfaces to non-MIL-STD-1553B data
sources. The primary roles of the BIU
OFP during MC backup mode operations
include acquiring the role as bus con-
troller and performing critical functions.

The ground-based data system soft-
ware includes the Ground Maintenance
System (GMS) and the Organizational
Maintenance System (OMS). The GMS is
a ground-based computer system that pro-
vides a central database for maintaining
line-replaceable unit (LRU) configuration
information and archived aircraft history
for each tail number in the C-130] fleet or
squadron. The GMS processes the main-
tenance-related data recorded to on-board
removable memory modules on the C-
130] aircraft.

The GMS provides an automated or
manual flight crew maintenance debrief
function and reads data stored on the
removable memory module. The GMS
validates the downloaded data, runs auto-
matic fault isolation routines, calculates
health and usage parameters, and gener-
ates maintenance work orders as required.
The system processes structural and
engine data to monitor component life
and supports configuration control and
status reporting of the air vehicle. The
GMS maintains a variety of printed
reports to support aircraft maintenance.
The GMS is also hosted on the Portable
Maintenance Aid, which is loose equip-
ment for each C-130]. This capability is
provided to support the need to forward
deploy the aircraft for operations away
from its home base.

The OMS provides the user interface
between the maintainer and the C-130]
aircraft systems for performing organiza-
tional level maintenance on the aircraft.
The OMS supports the maintainers by
accessing electronic technical orders, trou-
bleshooting aircraft failures, evaluating
status of aircraft systems, checking config-
uration of aircraft systems, and uploading

and downloading files to and from the air-
craft systems. The GMS interfaces with
the OMS for maintenance work order
processing, status reporting of mainte-
nance actions performed, and recording of
diagnostic data during ground mainte-
nance.

The Software Factory

In the culture of our aircraft manufactur-

ing facility, software is a part on the air-

craft, tracked just like the engines, pneu-

matic systems, and radar systems. The C-

130] Software Integrated Product Team

operates a software factory that produces

the air vehicle and ground-based data sys-
tem software parts and approves the soft-
ware parts for all computerized devices on
the aircraft. The air vehicle software parts
are written in Ada (250,000 lines of code),
and the ground-based data system soft-
ware parts are written in C++ and a fourth
generation language (400,000 lines of
code total) for each aircraft. Each software
part has a part number, a set of associated

drawings, and an assembly (such as a

removable memory module). The draw-

ings associated with each software part
include the following:

* Software Item Drawings assign a
unique part number to each computer
software configuration item that is 1)
installed on the aircraft, 2) used to cre-
ate or prepare a part for aircraft instal-
lation, or 3) used to install or transfer
a software item into an aircraft part.
The notes on each Software Item
Drawing describe 1) the host hardware
part number, 2) the image file names
and software version identities or a ref-
erence to the document containing
specific software configuration infor-
mation (i.e. version description docu-
ment), and 3) the software-to-software
compatibility dependencies.

* Software Assembly Drawings are pro-
duced for each software assembly
(integrated collection of software
items). A Software Assembly Drawing
describes 1) a software assembly used
in the production of a deliverable part,
or 2) a software assembly delivered to
a customer. Software Assembly
Drawings assign a unique part number
to each release of each software assem-
bly. The parts list in the Software
Assembly Drawing describes the soft-
ware items (by part number and loca-
tion code) contained on the assembly
and the specific media (i.e., 3.5-inch
diskette, 4mm tape, etc.) of which the
assembly is made. The notes on the
Software Assembly Drawing describe

September 2001

1) the configuration of any vendor-
supplied software items (i.e., reference
to Vendor’s Version Description
Document), 2) the specific software
assembly instructions used to create
the software assembly, and 3) the con-
tents of the label placed on the com-
pleted software assembly.

* Software Assembly Instruction Draw-
ings are produced for each deliverable
software assembly. The Software
Assembly Instruction Drawing de-
scribes the required hardware equip-
ment, software environment, person-
nel, access privileges, and detailed pro-
cedures necessary to produce the soft-
ware assembly.

e Software Installation Instruction
Drawings are produced for each soft-
ware item installed into a deliverable
part. The Software Installation
Instruction Drawing describes the
required hardware equipment, soft-
ware environment, personnel, access
privileges, and detailed procedures
necessary to install the software
item(s) into the host hardware part.

* Software Index Drawings facilitate the
identification of customer deliverable
software on each aircraft model, thus
allowing the software design organiza-
tion to control interim software releas-
es to production aircraft without
changing the master index for produc-
tion software releases that are not
delivered to a customer.

* Software Control Drawings are pro-
duced for each C-130] customer. The
Software Control Drawing details the
software and hardware combinations
delivered to each customer. The body
of the Software Control Drawing con-
tains the following information for
each deliverable software item: 1) find
number, 2) software description, 3)
identification of the software manu-
facturer, 4) software part number, 5)
software version identity, 6) the air-
craft model, version, serialization
usage of the software/hardware combi-
nation, 7) note references, 8) hardware
description, 9) identification of the
hardware manufacturer, and 10) the
host hardware part number. Notes in
the Software Control Drawing
describe: 1) which software items are
loadable in the field and 2) any soft-
ware compatibility/usage limitations.
The people who work in the C-130]

Software Factory are collectively called

knowledge workers, and they serve in

many distinct roles such as software prod-
uct managers, software requirements engi-
neers, software development engineers,

September 2001

Avionics Modernization and the C-130) Software Factory

software test engineers, software process
engineers, software quality assurance spe-
cialists, and documentation specialists.
These knowledge workers are tied togeth-
er through a digital nervous system
(DNS), a term coined by Bill Gates of
Microsoft [2]:

“A DNS comprises the digital
processes that closely link every
aspect of a company’s thoughts and
actions. Basic operations such as
finance and production, plus feed-
back from customers, are electron-
ically accessible to a company’s
knowledge workers, who use digi-
tal tools to quickly adapt and
respond. The immediate availabili-
ty of accurate information changes
strategic thinking from a separate,
stand-alone activity to an ongoing
process integrated with regular
business activities.”

Reuse

Software reuse has been at the heart of the
C-130] Software Factory since develop-
ment of the C-130] aircraft began in
1992. The program started with domain
analysis and engineering, looking at what
could be reused from other programs,
defining the domain of the C-130], and
creating reusable assets that have been
exploited throughout the program. The
cost of developing air vehicle and ground-
based data system software is the primary
reason for Lockheed’s aggressive efforts to
achieve real, effective reuse. Reuse has sig-
nificantly lowered the life-cycle cost and
program risk.

Many products of the C-130]
Software Factory were designed from the
beginning to be reusable:

* Template-Based Design: Six domain-
specific design patterns were originally
created to serve as class definitions for
all device interfaces to the MC OFP
and the BIU OFP. Since 1992, three
more design patterns were created to
address new technology transition,
bringing the total to nine design pat-
terns. Courseware was prepared to
document these design patterns and
teach newcomers how to use the pat-
terns. The productivity gains,
improved reliability, and reduced test-
ing overhead provided by applying
template-based design were observed
throughout the development of the
software.

* Source Code: For many device inter-
faces, source code used for other device
interfaces could be reused with very

minor modification. In addition,
source code from previous blocks
could be reused extensively on later
blocks (note the reuse figures between
Blocks 2 and 3 and Blocks 3 and 4, see
page 19).

e Test Scripts: Due to the definition of
the classes of device interfaces, test
scripts could also be reused.
Requirements-based testing also
helped by supporting automated gen-
eration of test cases directly from the
requirements specifications.

* Documentation: Delivered and inter-
nal documentation was designed to be
reusable, facilitating its production
from one software build to the next.

e Software Development Domain
Specific Kits (DSKs): Commercially-
available DSKs, such as Microsoft
Visual Studio .NET and Microsoft
Visual Basic for Applications, greatly
enhance productivity. We also employ
homegrown DSKs, such as our Data
Collection System Version 3, which is
a DSK designed to build data collec-
tion applications.

* Common Software Development
Tools: Our Environment and Tools
Working Group establishes a set of
common software development tools,
such as Rational APEX and Cadre
Teamwork for use on several Lockheed
Martin programs. We save cost in
terms of both purchase price and train-
ing, and we gain by having more read-
ily interchangeable personnel. Reuse is
also enhanced in that tool-specific
conversions are reduced or eliminated
should an asset produced by one pro-
gram be adopted by another.

* Domain Knowledge: Knowledge cap-
tured during the early domain analysis
and engineering activities was stored in
courseware, reusable as a teaching
instrument throughout the life of the
program.

Challenges

The C-130] aircraft denotes a cultural
change in a significant part of a major cor-
poration from producing largely mechan-
ical aircraft to producing software inten-
sive aircraft. Such a change takes time for
the culture to adapt, and there are many
challenges that both the management and
technical communities within that culture
must face. These are the challenges faced
by the C-130] Software Integrated
Product Team:
* Building safety critical, high integrity
[3] software for an aircraft with corpo-
rate funding (the development of the

www.stsc.hillafmil 21

Avionics Modernization

Statistic Tracked 1998 1999 2000

Number of changes processed 2,430 2,350 2,115
Number of engineering software builds 240 300 330
Number of software qualification tests 79 85 81
Number of pages of documentation produced | 472,500| 564,200 | 531,010
Number of software tests executed 700,450| 798,683 | 751,700
Test success percentage 98.27% | 98.75% | 99.00%

Table 1: Modern Avionics in the C-130] has Contributed to its Improved Performance

C-130] was done without funding
from external sources, such as the
United States government), the corpo-
rate investment and risk were high.

* Reducing risk and life-cycle cost for a
software intensive system with a 30-
year life span by achieving effective
software reuse.

* Designing a software intensive system
that is adaptable to changing technol-
ogy during a 30-year life span.

* Meeting the requirements of FAA
Type Certification.

* Controlling changes and software ver-
sions in light of thousands of require-
ments against multiple baselines for
multiple customers, and creating dif-
ferent builds for different customers
concurrently — satisfying the needs of a
diverse group of customers, each with
their own unique requirements during
a 30-year life span.

e Achieving Capability = Maturity
Model® Level 3 and ISO 9001 certifi-
cations and continuing the investment
needed to maintain these certifica-
tions.

From a broad perspective, the chal-
lenges may be grouped into four areas:
software reuse, process, certification (for
CMM Level 3, ISO 9001, and the FAA),
and culture. Within the domain of our
company (aircraft development and man-
ufacturing), these challenges were
addressed from the point of view of the
pre-software intensive culture that was
already in place:

* Software reuse was one of the easier
challenges to address. The concept of
line replaceable units (LRUs) was
already in management’s minds from a
hardware perspective, so adding soft-
ware parts as LRUs was not a signifi-
cant leap. Neither was viewing those
software parts as complex parts con-
taining smaller component parts.
Domain engineering was done at the
beginning of the program, at a time
when the development laboratories
were not yet ready and the systems
engineers were engaged in design and
simulation. Ideas were also picked up

22 CrossTALK The Journal of Defense Software Engineering

from other existing aircraft programs,
adding credibility to our domain engi-
neering effort.

Introducing a software process orienta-
tion was also an easier challenge to
address. Management was already
aware of manufacturing process con-
cepts, so software development process
concepts were not a significant leap in
the early stages. A common Software
Engineering Process Group was readi-
ly established to share ideas and infra-
structure between the various software
development Integrated Product
Teams, such as the C-130], F-22, C-5
AMP, and C-27].

The primary obstacle to our
process definition efforts arose when
management implemented a lean ini-
tiative to reduce waste in both the
hardware and software processes. In
the efforts to completely document the
processes, it became evident how
expensive a complete process descrip-
tion would be to produce. In describ-
ing our software development process-
es down to the level of following the
trail of paper and electronic data
between people’s desks, the C-130]
Software Integrated Product Team
alone ended up with 114 distinct
processes in a hierarchy that was three
levels deep.

This collection of process
descriptions was a small part of the
overall detailed process description for
the development and manufacturing
of the entire aircraft, which is current-
ly incomplete and estimated to be
between 3,000 and 5,000 distinct
processes. The effort to create the
detailed process description for the
hardware side is continuing as we are
moving to CMMI adoption.
Certification activities were more chal-
lenging than software reuse and
process. Our lean effort described in
the previous bullet was a significant
aid in our CMM Level 3 certification
activities, and applying web technolo-
gies to describe our processes allowed
us to present this information from the

point of view of a CMM assessor,
organized by Key Process Area and
Key Practice. The introduction of
automated data collection during the
last three years has made it much easi-
er to produce the evidence demanded
by the CMM assessors, but gathering
more than 300 artifacts for a CMM
assessment is still a daunting task. The
challenge of FAA Type Certification
was similar to CMM Level 3 certifica-
tion, and the ISO 9001 certification
challenges fell nicely into place as our
CMM Level 3 certification challenges
were addressed.

* The cultural shift required by manage-
ment to understand the issues and cul-
ture of the software engineers was our
greatest challenge. Management
expectations were originally high that
software engineers could possess the
same domain knowledge as systems
engineers, and this was simply not the
case. The mindset of someone with a
master’s degree in mechanical or elec-
trical engineering, especially if that
degree was granted more than 10 years
ago, is fundamentally different from
the mindset of a contemporary soft-
ware engineer.

Attempts were made to have sys-
tems engineers perform software engi-
neering work — the success of these
attempts was mixed. Over time, sys-
tems engineers and software engineers
gradually came to understand each
other’s mindsets, but occasional per-
sonnel turnover disrupted this under-
standing; we found a continual need
to reeducate engineers on both sides.

Likewise, management’s accept-
ance of software engineering concepts
has been gradual, again requiring reed-
ucation with personnel turnovers.
After a decade, the three groups —
management, systems engineering,
and software engineering — still do not
completely accept each other’s mind-
sets. We expect this cultural difference
to continue for some time to come.
The following statistics are noted in

the more than 5 million source lines of

code delivered to date: The C-130] soft-
ware has been built for a 30-year life span.

A lot can change in terms of the demands

placed on the C-130] aircraft and its mis-

sion during these many years. Incorpor-
ation of a Global Air Traffic Management
system and a comprehensive software
maintenance plan are two of the efforts
currently underway, and software produc-
tion is continuing with a projection of
more than 9 million lines of code deliv-
ered by the end of 2001. New missions,

September 2001

different requirements from new cus-
tomers, changing requirements from exist-
ing customers, and the introduction of
even newer technology to the aircraft are
the key factors causing this software
growth. Continual process improvement,
particularly through the C-130] Digital
Nervous System, is underway, and increas-
ing levels of capability maturity, through
CMM Level 4 to Level 5, are planned.

Lessons Learned

Many lessons were learned during the last
decade of the C-130] software develop-
ment. Here are some key lessons:

* Objectives and requirements must be
nailed down specifically from the
beginning. It is never possible to get
the requirements right the first time if
the problem is of any significant
degree of complexity. Requirements
traceability and requirements grading
are required. Conduct software prod-
uct evaluations on requirements as
intensely as you would review the
code.

Richard L. Conn has
more than 20 years
experience in software
engineering and proj-
N cct management.

Conn is currently the
software process engineer for the C-
130] Airlifter at Lockheed Martin
Aecronautics Company. He graduated
with bachelor’s and master’s degrees in
computer science from Rose-Hulman
Institute of Technology in 1976 and
the University of Illinois in 1978,
respectively. Conn was an Army offi-
cer from 1978-82 at the Army’s
Satellite Communications Agency and
the Air Force Institute of Technology,
where he taught computer science.
Conn was a member of the Federal
Advisory Board for Ada and a distin-
guished reviewer of the Department of
Defense’s Software Reuse Technology
Road Map.

Lockheed Martin Aeronautics Company
86 South Cobb Drive

Dept. 70-D6, Mail Zone 0674

Marietta, GA 30063-0674

Phone: (770) 494-1670

Fax: (770) 494-1345

E-mail: richard.l.conn@Imco.com

September 2001

Avionics Modernization and the C-130) Software Factory

You can never have too many simula-
tions or laboratory resources.

Software engineering capability matu-
rity is not enough by itself to improve
the quality of an integrated system like
an aircraft. Systems engineering and
management capability maturity are
also required.

Driving a product by schedule is
unavoidable. Be prepared to deal with
it and be prepared to adapt when the
schedule slips. Define all your process-
es and measure their performance.
Remember that the last process in the
sequence is not necessarily the source
of the problem when a schedule slips.
Automate testing as much as possible.
Always plan on running a test again.
Always base test cases on requirements,
trace test cases to those requirements,
and employ automated tools to build
your test cases from your requirements
specifications when possible.
Successful reuse requires a significant
up-front cost and an effective, com-
pelling producer/consumer model that

About the Authors

| Stephen M. Traub has
," more than 20 years
i » experience in software
' engineering and proj-
ect management.

Traub is currently the
software designated engineering rep-
resentative at Lockheed Martin
Aeronautics Company on behalf of
the Federal Aviation Administration.
Graduating from Elon University in
North Carolina in 1984, Traub
worked for Unisys from 1980-1984 as
the principal software engineer for
Weapons Assignment tasks for several
Navy shipboard systems. He has been
at Lockheed Martin since 1984, first
working on the C-5B aircraft, and
then working on the C-130] in the
roles of Mission Computer Software
Development lead, software product
manager, and Software Integrated
Product Team lead.

Lockheed Martin Aeronautics Company
86 South Cobb Drive

Dept. 70-D6, Mail Zone 0674

Marietta, GA 30063-0674

Phone: (770) 494-1670

Fax: (770) 494-1345

E-mail: stephen.m.traub@Imco.com

makes it economically viable.
Management must see reuse values
and accept the costs as well as the ben-
efits.

Measurement comes with capability
maturity, but no measurements can
replace the in-depth, detailed knowl-
edge of the people on the development
line. Management must journey to the
(software) factory floor before they can
really understand the issues. ¢

References
1. Lockheed Martin. C-130] Hercules

Web site, <www.lmasc.com/c-130j/
index.htm>.

. Bill Gates. Business @ The Speed of
Thought — Using a Digital Nervous
System, Warner Books, 1999,
<www.speed-of-thought.com>.

. Sutton, James (Lockheed Martin), and
Carre, B.A. (Praxis Critical Systems).
Achieving High Integrity at Low Cost:
A Constructive Approach, ERA 1995
Conference, London, United King-
dom.

' Steven J. Chung has
a 1 18 years of experience
< . in software engineer-

i

=

ing and project man-
agement. Chung is
f,{ "« currently the Software
Integrated Product Team lead for the
C-130] Airlifter at Lockheed Martin
Aecronautics Company. Graduating
from the University of South Florida
in 1983, he worked for Honeywell
Space Systems as a software engineer
on the Space Shuttle and the
Advanced Space Communications
Technology programs and E-Systems
on a real-time communications net-
work. Chung came to the C-130]
program at Lockheed in 1996 as a
staff engineer and was promoted to
Software Integrated Product Team
lead in 2001.

Lockheed Martin Aeronautics Company
86 South Cobb Drive

Dept. 70-D6, Mail Zone 0674

Marietta, GA 30063-0674

Phone: (770) 494-1670

Fax: (770) 494-1345

E-mail: steven.j.chung@Imco.com

www.stschillafmil 23

