
MMaayy 22000000 TThhee JJoouurrnnaall ooff DDeeffeennssee SSooffttwwaarree EEnnggiinneeeerriinngg VVooll.. 1133 NNoo.. 55

CrossTalkCrossTalk

2 CrossTalk The Journal of Defense Software Engineering May 2000

Up Close with Maj. Gen. Claude Bolton Jr.
Maj. Gen. Claude M. Bolton Jr. talks about the value of the block approach and
ground-based laboratories to the F-22 program.

by Kathy Gurchiek

Up Close with Maj. Gen. (Ret.) Thomas Brandt
Thomas Brandt, one of the team members on the Independent Technical Assessment of the
F-22 avionics program, talks about modeling and simulation as a best practice for the F-22.

by Kathy Gurchiek

A View from Wright-Patterson Air Force Base
Technical challenges and the value of the block approach are addressed by Ron Dubs, F-22
Weapon System Chief Engineer, with excerpts from the Independent Technical Assessment.

by Kathy Gurchiek

F-22 Software Risk Reduction
Description of the Computer Resource Working Group and the Systems/Software Engineering
Environment Integrated Product Team in establishing the F-22 operational flight program.

by Beverly L. Moody

Reducing Software Project Productivity Risk
Three approaches to reduce software project productivity risk—minimizing process rules, maximi-
zing simple tools, and de-emphasizing the importance of technical skills in favor of basic abilities.

by Richard Bechtold

Goal-problem Approach for Scoping an Improvement Program
A program based on problems and goals to improve an organization’s process improvement model or standard.

by Mary Sakry and Neil Potter

Four Rs of Software Process Improvement
How to define requirements for process improvement projects and use reviews and retrospectives to assess the results.

by Johanna Rothman

The Determining Factor
Strong senior-level leadership is the factor that determines the success or failure of process improvement.

by Doug Dynes

4

6

9

12

Departments

About the Artist
Brandon Scott is
a graduate of Utah
Career College
where he studied
the latest multi-
media techniques
and software pro-
grams. He enjoys
everything from
abstract design to
web design.

3

15

25

From the Publisher

8 Web Addition from Boeing

22 Call for Articles

Letter to the Editor/Coming Events

16
18 F-22 Quiz/Web Sites

F-22 Poster

JAWS S3 Conference Announcement

31 BACKTALK

30 AFMC Command Change Notice

19

23

26

29

H. Bruce Allgood

Reuel S. Alder

Lynn Silver

Kathy Gurchiek

Matthew Welker

Heather Winward

801-775-5555
801-777-8069
crosstalk.staff@hill.af.mil
http://www.stsc.hill.af.mil
http://www.stsc.hill.af.mil/
Crosstalk/crostalk.html
http://www.crsip.hill.af.mil

Subscriptions : Send correspondence concerning
subscriptions and changes of address to the follow-
ing address:

Ogden ALC/TISE
7278 Fourth Street
Hill AFB, Utah 84056-5205

Article Submissions : We welcome articles of interest to the
defense software community. Articles must be approved by
the CROSSTALK editorial board prior to publication. Please fol-
low the Guidelines for CROSSTALK Authors, available upon
request. We do not pay for submissions. Articles published in
CROSSTALK remain the property of the authors and may be
submitted to other publications.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology
Support Center. All product names referenced in this issue
are trademarks of their companies.
Coming Events : We often list conferences, seminars, sym-
posiums, etc., that are of interest to our readers. There is
no fee for this service, but we must receive the information
at least 90 days before registration. Send an announcement
to the CROSSTALK Editorial Department.
STSC Online Services: at http://www.stsc.hill.af.mil.
Call 801-777-7026, e-mail randy.schreifels@hill.af.mil.
Back Issues Available: The STSC sometimes has extra
copies of back issues of CROSSTALK available free of charge.
The Software Technology Support Center was established
at Ogden Air Logistics Center (AFMC) by Headquarters
U.S. Air Force to help Air Force software organizations
identify, evaluate, and adopt technologies to improve the
quality of their software products, efficiency in producing
them, and their ability to accurately predict the cost and
schedule of their delivery.

SPONSOR

PUBLISHER

ASSOCIATE
PUBLISHER

MANAGING EDITOR

ASSOCIATE
EDITOR/LAYOUT

ASSOCIATE
EDITOR/FEATURES

VOICE

FAX

E-MAIL

STSC ONLINE

CROSSTALK ONLINE

CRSIP ONLINE

CrossTalk

The F-22

Software TechnologyEngineering

Open Forum

May 2000 www.stsc.hill.af.mil 3

From the Publisher

Study Success, Learn from Failure

We are always looking to improve the quality of information in CROSSTALK.
We rely upon articles that we run through a technical and editorial review
process. This has served us well, but is no substitute for a view from the senior
leadership upon whom we all depend for vision and direction. Reader surveys
of the past have shown us that the vision and direction of senior leaders is highly
desired. In fact, over the last year one of the top 10 articles as measured by our

Web hits was from Dr. Patricia Sanders, the director of test, systems engineering, and
evaluation for the Department of Defense.

With that vision in mind, I approached Brig. Gen. Michael Mushala. His gracious
response resulted in interviews with Maj. Gen. Claude M. Bolton Jr., Office of the
Assistant Secretary of the Air Force for Acquisition, Washington, D.C.; Thomas C. Brandt,
Associate Director at the Software Engineering Institute Carnegie Mellon University; and
Ronald D. Dubbs, F-22 Weapon Systems Chief Engineer, Wright-Patterson Air Force Base,
Ohio. The result of these interviews begins on page 4.

What stood out at each of these interviews was the outstanding job that the F-22
program has done with its software. The F-22's productivity numbers were impressive.
Those numbers impressed Dr. Dave Cook of Draper Laboratories, who serves on the STSC
consulting staff and acted as CROSSTALK's technical advisor on these interviews. The work
on the F-22 was done with a geographically and organizationally disperse community of
software developers. In addition, F-22 technical and managerial prowess is articulated in
detail by a recently completed SEI risk mitigation intervention that Maj. Gen. (Ret.) Brandt
shared with CROSSTALK. Brandt was lavish in his praise of the F-22 leadership.

Can everyone's software be as successful as an F-22 program? The laws of statistics may
challenge us on this, but I believe we need to study success and learn from failure. I also had
my eyes opened to the wealth of information that the F-22 has to offer. Clearly the F-22 did
a lot of things right. A case study of the process, methods, tools, and environment would
yield significant material for study and a broader range of future application. However, the
people doing the work often do not have time to report on their work and frequently are
too close to their work to understand the significance of what they have accomplished. The
CROSSTALK staff looks forward to doing more of this kind of information gathering and to
reach deeper into the valuable lessons learned.

CROSSTALK brings several special elements to readers in this issue, in addition to the
aforementioned interviews: an article on page 12 by Beverly Moody, the Avionics Software
Block Lead for the F-22; and a special pullout—an F-22 Raptor poster—created by graph-
ic artist Mark Driscoll of Salt Lake City, Utah.

Reuel Alder, Publisher
Software Technology Support Center

4 CrossTalk The Journal of Defense Software Engineering May 2000

The F-22

CrossTalk: Having seen the F-22 program from its beginning,
what actions in the software area could have been taken to
improve the current product or prevent problems you have
encountered?

Gen. Bolton: We could probably use another metric or two.
We had some that we got rid of and we could use a few more of
them. If we had to do it over again, we would look at all of our
metrics and leave them in there a bit longer until we understood
what they were telling us.

CrossTalk: For F-22-integrated avionics and software, how are
you doing and how do you know?

Gen. Bolton: Really well. We have a Monthly Executive
Review where we invite the key players from the contractor side
and the government side. The purpose is to look at the various
issues; one is how we are doing on software. We have a sched-
ule, a block approach that we are taking.

How are we doing on the burn down? What are we accom-
plishing in the ground-based laboratories? How are we doing in
the blocks, coding, verifying, and checking and putting that
through the laboratories and so forth? That is how we track it at
this level.

At the [Air Force] System Program Office, contractor and
the Integrated Device Technology [level], it is a day-to-day
thing; they are really into the details. We do not get into that.
We do not have the time and we would just muck it up. Right
now the biggest thing is the schedule. With everything we have
delivered—whether to the Avionics Integration Lab [in Seattle],
the flying test bed, to the test birds—over the last nine, 12
months it has been on or ahead of time.

CrossTalk: You attribute that to these monthly and daily
meetings?

Gen. Bolton: That is part of it. Most of it is because of the
structure of the avionics program, the block approach1 that we
take, and that we have ground-based labs. We have one in Fort
Worth; the big integration unit is in Seattle where all the pieces
come together. Once it is all proven there, we put it onto the
flying test bed, which is a converted 757.2 It is all there; we
duplicated the cockpit for the F-22. If you look at the flying
test bed, you will find the cunard [a sensor part] up front. We
have upwards of 30 engineers who look at the data streams and
say ‘that is what we expected, this is what we are getting, how
does that compare to what we have on the ground?’

Once it is run there, we put it into the actual airplane.
That process is really what is causing this success. When we
look at the schedule, it allows us to ask ‘how is it going, what
do you need from us?’

CrossTalk: It sounds as if you had to do it all over again, the
block approach and the intensive meetings are both things you
would keep. Is there anything that you would do differently?

Gen. Bolton: We put together a team [around December
1998] that emphasized the integration of the team approach.
We were looking at R-19. I said, does that mean we have 19
[schedule revisions] since we started research and development?
Well, yes . . . every six months we look at it and put another
revision on [the schedule].

We needed to be more proactive, rather than reactive and
changing the schedule. Let’s figure out where we ought to be.
Let’s put a team together across the enterprise and put the best
and the brightest folks on it. We made the 'i' a capital 'I' in the
Integrated Product Team (IPT). It brought more folks together.
That is paying big dividends.3 We went to R-20 and held sched-
ule longer than we ever have [April 2, 1999 to present].

We initially were going to fly the Block 3 software in April
2001. The team looked at that. Because of all the things we
were doing, because of the confidence we have in the processes
we have, because the successes we have had over the last year or
so, we believe we can move it from April 17, 2001 to [putting
software in the aircraft] around Oct. 30, 2000. It goes back to
the team understanding what is going on, and everybody work-
ing on the problem—the best way to get this sent to the aircraft
and do it safely, professionally, and correctly from an engineer-
ing standpoint.

CrossTalk: What do you believe are the key metrics for F-22
software development?

Gen. Bolton: The schedule and the cost. If it were not for the
cost, this would be easy. Inside the [Washington] Beltway, for
this program cost is the primary factor. Everyone is concerned
about that. The contributors to cost in this program are avionics
and airframe. I am very sensitive to how much it is costing, and
that sensitivity is shared by the team. From a software stand-
point that may not be the answer a lot of folks want, but unfor-
tunately we cannot do the things that need to be done if we do
not have the money to do them.

CrossTalk: Did your system have any unforeseen setbacks?

Gen. Bolton: Early on in Block Ø we had some surprises. That
is because we were going from a first-ever design, even though
the design tools and practices environment were the best I have
ever seen. You put it into some type of ground-based laboratory,

Up Close with Maj. Gen. Claude Bolton Jr.
Maj. Gen. Claude M. Bolton Jr. is the program executive officer for fighter and bomber programs for the Office
of the Assistant Secretary of the Air Force for Acquisition, Washington, D.C. His responsibilities include acquisi-
tion activities on the F-22, F-15, F-16, F-117, B-1, and B-2 programs and the Common Missile Warning System
and Joint Helmet Mounted Cueing System programs. He was commissioned through the University of Nebraska's
Air Force Reserve Officer Training Corps in 1969. He is a command pilot with more than 2,700 flying hours in
more than 30 different aircraft, and flew combat missions in Vietnam.

“We made the ‘i’ a capital ‘I’ in the Integrated
Product Team . . . That is paying big dividends.”

then into an integration laboratory. You say, ‘let's go fly this,’
and find a flying test bed.

That showed us early on that we had some problems. I
would not call them major. It is a whole lot better to find it
there, in the ground integration laboratory or the flying test bed.
We have found most of our errors on the ground in the integra-
tion test laboratory. To give you an example: We put the radar—
which is electronic, very complicated, software-intensive—into
the flying test bed, turned it on, and it received targets the first
go, [which is] unprecedented for radar.

CrossTalk: Did your team develop or collect best practices?

Gen. Bolton: Our first best practice is the IPT. The next is the
use of ground-based laboratories with the flying test bed. I am
not sure how we can do this program without the flying test bed.
You have the opportunity to take from the ground and put into a
flying environment all the boxes—you have the cockpit, all your
engineers there, and folks looking at the data stream. That is
beautiful. You can see it all right there. On a flight that can last
hours you can get a hell of a lot done, far more than you can on
an actual fighter and at a far reduced cost. Those are really key:
the IPT, the ground-based laboratory, and the flying test bed.

CrossTalk: What is your vision for process improvement
involving the F-22?

Gen. Bolton: We go back to the team. We are always hammer-
ing the cost for this. The team was already ahead of us. There is
continuous process improvement.

This process turns out not to be dependent solely on per-
sonalities. We have had Dr. Hans Mark [Director of Defense
Research and Engineering] take a look at us several times
because of his vast experience on other systems, particuarly
flight controls, avionics, software, and structures. The last time
(November 1999) we spent a couple of hours with him and
went through excruciating detail.

His bottom line was, ‘You are doing the right things.’

Notes
1. See page 10 for comments by Ron Dubbs, F-22 Weapon

System Chief Engineer at Wright-Patterson AFB on the useful-
ness of the block approach to the F-22 program.

2. See page 14 for more on using the flying test bed in the F-22
program.

3. See page 8 for comments by Maj. Gen. (Ret.) Thomas Brandt
on the value of the IPTs. See page 9 for Dubbs' comments on
the effectiveness of IPTs.

Maj. Gen. Claude Bolton Jr.
AFPEO/FB, 1060 Air Force Pentagon
Washington, DC 20330-1060
Voice: 703-588-7300

May 2000 www.stsc.hill.af.mil 5

Asking the Right Questions
The Air Force had a program, now defunct, called Bold Stroke

that was a two-day course for colonels and flight officers.
“The bottom line was to teach them how to ask the right ques-

tions,” said Maj. Gen. Claude Bolton Jr.
Asking the right questions goes all the way to the top. Bolton cited

the example of some software trouble reports he had studied that
showed that a particular program was 50 percent complete. Several
weeks later, the report showed the same thing: 50 percent complete.

“Wasn't that what it was two weeks ago?” he recalled asking a staff
member. 'Yes sir,' the staff member replied with a big smile.

Something was wrong, the general concluded. He told the staffer
he wanted the following points addressed regarding the report:

• What does the software trouble report tell me?
• How do I know?
• Show me.
“OK, you have a week. See you,” the general told the staff member.
Monday morning came.
The new report showed that the program was 52 percent com-

plete. Now they were getting somewhere, the general remembered
thinking. Confident that the staffer knew the answer, the general
asked what it meant for that program to be 52 percent complete.

“There was no answer,” Bolton recalled. “There were a lot of
words that came out, but there was no answer. It took us a month to
understand what that meant. And trying to answer that question, we
looked at our process in that program and with the contractor and
found out that our quality control folks were not in the process. The
library where we were supposed to be booking this was out of
sequence. And this had been going on long before I got there. We
had to get the right expertise in there. Just by going through those
questions we were able to turn that program around.”

Dwindling software expertise in the military is another factor in
managing a software-intensive program.

“When I first got into this part of the business and started what is
now the F-22, we knew we were going to have the heart and soul of
the avionics,” Bolton said.

“The pilot would be a manager of the weapon system. We were
going to have a lot of lines of code. An expert tells me he can give me
30 lines of code and cannot test it exhaustively because it takes him a
lifetime to do it.

“To that end I do not think we have come very far in the last 17,
18 years. We have put more manpower on writing the lines of code.
We have somewhat better tools. But if instead of 1.9 million lines of
code, I want a billion lines of code, how do we do that? Can't. And if
you say that, I guarantee you that you will never have a Star Trek. You
will never have the Enterprise.” Bolton said.

“I am of the notion that there is a way of doing that. Software has
got to get easier in terms of our ability to create it, test it, and use it.

“Military and industrial software expertise is dwindling on both
sides. Our expertise has gone by the wayside and it is not going to
improve. It is going to the commercial sector.

“Let us go back and look at what is causing concerns as we devel-
op software. Is it the writing of code? Is it the testing of the code? Is
it the integration? Is there a way we can engineer or manage our way
out of this so we do not have to have all that expertise?

“We have not stepped up to that.”
The next step in software management, Bolton concluded, is

answering the question of how to continue putting out a quality
product, but with far fewer resources.

“Our first best practice is the IPT. The next is
the use of ground-based laboratories with the
flying test bed. I am not sure how we can do
this program without the flying test bed.”

Up Close with Maj. Gen. Claude Bolton Jr.

6 CrossTalk The Journal of Defense Software Engineering May 2000

Brandt: The F-22 is, at this stage, a very happy story. That is
good to report because the stories that I have recently encoun-
tered generally are not in that category. Quite often when people
find their program troubled they will ask for someone to come
in—like an independent review group, a Tiger Team. In this cir-
cumstance you are cast in the role of the pathologist, or the coro-
ner, or even Jack Kevorkian: 'I am here to help you, breathe
deeply two times.'

That was not the case for the F-22 review late last June. It
was really a risk mitigation intervention, to look at the state of
the development [of the F-22 avionics]. This was late in the
research and development phase to determine:
• The risks before and during the terminal phase of the

Engineering and Manufacturing Development.
• The segue into low-rate initial production.
• The tradeoff between live fly testing, which tends to be

very expensive, and modeling and simulation testing as an
alternative.

There are two advantages to modeling and simulation,
which in this program turn out to be a best practice. Modeling
and simulation, with the fidelity we now have in computation,
allows testing of the dynamic envelope of a product as it per-
forms. We were focused on the avionics suite that has some
unprecedented application of emerging technologies. An exam-
ple is sensor data fusion—not an easy technical job—compo-
nent in the avionics tend to be software-intensive, whether it is
the inertial reference system or the so-called Communications
Navigation and Intelligence suite. The avionics is a federated
system of components, all of which must interoperate in highly
complex, sophisticated ways. From the software perspective, we
have made progress over the last decades. However, the contin-
ued evolution of electronics is accompanied by demands for
increasing complexity and has masked progress. As our method-
ologies to solve complex problems have evolved, the problems
tend to expand, driven by even greater complexity.

CrossTalk: What was it about modeling and simulation that
made it a best practice? Did you test in real environments?

Brandt: There are two aspects that have made it so good—the
maturity of the technology now, and the fact that it was employed
as a strategy in the program early on and is pervasive. It is not just
one model and simulation; it tends to go down and across the

tiers. The F-22 is complex and employs a workforce that is creat-
ing the product. As you look at these various tiers, there are about
4,500 contractors, so the management challenge is large. The
ability to have common references—sets of models and simula-
tions—can play together and give you good information consis-
tently. No model is perfect but some models are better than oth-
ers. The ones that are repeatable and give you good fidelity are
crucial. That is why this area is definitely a best practice.

In the software area in this distributive subsystem, another
thing that was an excellent best practice was the early adoption
of the systems software-engineering environment (S/SEE).1

[That is] a big payoff when that happens because of the ability,
in this distributive work force, to share in a proper way.

One of the key things when we do an independent technical
course system is use of a consistent methodology. The paradigm
is really like the Ballantine beer commercial—with the three
rings, not the five. One [ring] is people, the second is process,
and the third is product. (See Figure 1.)

From the people perspective we look at all of the people.
What is the intellectual capital invested in creating an F-22?
It is not just the primary contractor resource; it is what total
resources the government brings to bear to create the system.
What are the resource requirements of the government in con-
ducting business as a better buyer vis á vis a better builder?

Thomas C. Brandt is Associate Director at the Software Engineering Institute (SEI) at Carnegie Mellon University.
Appointed to that position in January 1995, he is responsible for SEI activities relating to strategic development initia-
tives for rapid transition of software technology. Brandt has more than 39 years experience as an engineer and senior
executive specializing in the development and operation of high technology space, missile, and command and control
systems. He was a test director for both the Atlas and Minuteman programs and participated in more than 40 ballistic
missile launches. As an associate professor in the department of astronautics and computer science at the United States

Air Force Academy, he helped develop digital-based open form solutions to complex problems in celestial mechanics.He has been associ-
ated with the military space program for more than 25 years and was responsible to the Joint Chiefs of Staff as the planner for the
United States Space Command. As vice commander of the Electronic Systems Division he had a broad range of responsibilities for the
research, development, and acquisition of strategic systems. He is a graduate of the United States Naval Academy at Annapolis, Md., and
holds a master’s degree in electrical engineering from the Air Force Institute of Technology. He is also a distinguished graduate of the
Industrial College of the Armed Forces and the Executive Program of the School of Business at the University of Virginia.

Up Close with Maj. Gen. (Ret.) Thomas C. Brandt

Figure 1. The Independent Technical Assessment Methodology

Environment

People

ProcessProduct

capability and capacity
process knowledge
product knowledge

technical processes
management processes

©1999 by Carnegie Mellon University

usability
deployability

maintainability

May 2000 www.stsc.hill.af.mil 7

When you go to processes, it is not
just the key process areas that are in the
Capability Maturity Model®. It is all the
methodologies, the procedures, and the
tools linked together that gives these peo-
ple, the willing workers, the wherewithal
to create the product.

Finally [there is] the product. What
is the corpus? What is its nature? What is
its design? What are the attributes that
have to be manifested for it to provide
the full functionality that you will need?
Underpinning all this is the ability to
view operational requirements in the clas-
sic context. The program director [Maj.
Gen. Michael Mushalla] is enlightened in
this regard. He insists that everyone
understand they are trying to produce the
product with the needed operational
functionality; it is the operational require-
ments, not just the specification, which is
nothing more than trying to represent
operational requirements technically. It is
everyone knowing that the F-22 has to fly
this fast, this high, at this degree of
stealth, for this mission. That is the way
this has been approached and we applaud
it. It is one of the best we have seen in 30
or 40 years, and that includes the testers
like Alpha Tech in the early involvement
and at Langley [Va.] with its SMO22.

Even if you are the acquirer, maintain
that perspective. Your job is not to satisfy a
specification that has derived maybe logi-
cally, maybe illogically, from operational
requirements. [Your job is] to produce the
fighting machine. It is a different mindset.
It is the enlightened leadership of the sys-
tem program director that permeates the
whole organization, both on the govern-
ment side and the contractor side. Here is
a best practice that has emerged out of
that over the last decade.

You are creating a system that will
exist beyond the middle of the new centu-
ry. It is going to be here in 2050. Think
of the F-15. The F-15 is not programmed
out of the inventory until 2026, at which
time it will have been in [the inventory]
for well over 50 years. [This] creates a
huge challenge.

The biggest challenge is not to get
caught myopically in one program phase
and begin making technical decisions or

business decisions that do not consider
the whole life cycle. Although they are
very important, we do not do business
reasons. We do not do politics. We do
not do programmatics. We do technical
considerations. We think there are plenty
of other people who can do the political
or programmatic aspects. It is true that
occasionally business decisions or pro-
grammatics constrain a technical solu-
tion, sometimes to the degree where there
is no remaining technical solution space.

CrossTalk: What is the underpinning
of that enlightened leadership? Do you
depend on a lot of research? How do you
get to that stage?

Brandt: It is hard to quantify leadership.
The big problem was not that they had
not created a lot of intellectual capital, but
to maintain that in our very fluid society.2

You have a learning curve. The great dan-
ger is to lose momentum. There are two
things that are the long-term risks, people
and creeping obsolescence, as in the soft-
ware-engineering environment. That has
to be reinvested in and maintained because
it is a needed tool from beginning to end.
Also, you need simulation and modeling
capability for the life of the system.

There is going to be evolution of
software. Components are going to be
evolving to avoid obsolescence. The long
pole in the tent is not only managing the
viability of the workforce but the tools,
like the environment. More importantly
we believe that diminishing manufactur-
ing resources is the biggest long-term
threat to this system.3 Look at the evolu-
tion of our industrial base. What is hap-
pening beyond the millennium? The
trend in the aerospace and defense indus-
tries has been one of blurring what those
companies do. Many have become very
large, like Lockheed Martin, for example.

What does it mean when we have
vendors who are disappearing, going out
of business? The challenge becomes man-
aging the diminishing resources as vendors

come and go, and the recognition that you
are going to have continuous technology
insertions. Do any of us have any insight
into the hardware that will exist in the
middle of the new century? Go back to
1950 and look at all this. There have
always been prognosticators; on the scien-
tific side they have tended to be conserva-
tive in general, and they have always pooh-
poohed the likes of Jules Verne or anybody
who is the out-of-the-box kind of thinker
because [those types] threaten the conven-
tional paradigm of institutions.

CrossTalk: How did you tie testing to
requirements and to processes?

Brandt: You should test the requirements.
You should always be geared to look at
the operational performance of the sys-
tem. You should not get sucked into wor-
rying about the inner workings or hidden
mechanisms. That is really the proper
function for developmental testing. The
ultimate in operational test and evaluation
is going back and saying, ‘What is this
thing supposed to do? What are the oper-
ational specifications? Is it satisfying all
these operational specifications?’

In our car, there is plenty of software.
Do we care about that or do we care
about the car’s performance? We care if
someone says the brakes went out because
of the software. You need to do rigorous
engineering during engineering and man-
ufacturing development and development
test and evaluation. But as you phase over
to operational testing and evaluation your
mantra has to be the requirements that
were stated by the operator. You are deliv-
ering capability to him. You are delivering
not just a piece of hardware but a weapon
system that is conforming to the require-
ments that the Air Force has to fly and
[use to] fight.

CrossTalk: What made that F-22
testing successful?

Brandt: It is the early involvement and
the ability to stabilize these requirements.
Any requirement will evolve. There has
always been a lot of negative thinking
attached to the term ‘requirements.’ The
plain fact is every system as it evolves has
technology inserted, or as new missions
emerge you discover more about the sys-
tem’s potential. It simply evolves. There is
hardly anything anymore that would be

“The biggest challenge is not
to get caught myopically in
one phase and begin making
technical decisions or business
decisions that are not consid-
ering the whole life cycle.”

Up Close with Maj. Gen. (Ret.)Thomas C. Brandt

The Capability and Maturity Model and CMM
are registered in the U.S. Patent and Trademark
office to Carnegie Mellon University.

8 CrossTalk The Journal of Defense Software Engineering May 2000

The F-22

considered a static or set piece system.
The B-52 is going to have been in

the inventory nearly 100 years. Does it
look anything like the original avionics
suites that were inside the airplane or even
the engines? I don't think so. It has had
this long century of evolution as a plat-
form. The F-22, even though it is going
to be the most capable fighter aircraft we
have ever fielded, would be nothing more
than good for air shows if it did not have
this highly capable avionics suite where
the heart of the aircraft resides and where
the ability to deploy weapons is focused.

You must maintain capacity, capabili-
ty, and full commitment of your work-
force. It must be continuously managed
—the keeping of the experience, the
intellectual capital, all that you would
need to prosecute the rest of this program
because we will be tending this system for
another 50 years.

Adopt that mindset when it comes to
the evolution of hardware. That makes
the issue of process, and institutionalizing
good practice, so important because you
know those who are here today are not
going to be here 50 years from now.
How do you carry forward the legacy of
understanding? Sometimes you carry it
through highly defined processes that
have matured over time, and the accom-
panying documentation, so when you
lose good ol' Charlie you do not lose a
huge chunk of your memory and your
experience, creating a void and therefore
creating problems.

[Regarding Integrated Product
Teams], we found them relatively mature
across this program, beginning with
Lockheed Martin.4 As we went out and
across the next tiers, they actually do exist.

It is not the government over here pre-
tending they are integrated, or the contrac-
tors, or the vendors. They are truly inte-
grated and that is a great risk mitigation
strategy because what it gains is better
understanding overall of exactly the condi-
tion and state of the program. This inter-
communication that goes through IPTs is
quite mature.

There is a special kind of integrated
product and process development, a
Software Engineering Integration and Test
Team. That is crucial when you come to
this phase in a program [that is] highly
complex; lots of things have to fit together,
lots of contractors [are] involved, and now
you are going to try to prove out this
highly complex article.

CrossTalk: How do you handle discre-
pancies between testing and requirements?

Brandt: Sometimes it depends on when a
discrepancy is known or not known, how
you can or cannot recover. Often you have
to do some negotiation and do that up
front. The tester, if he is the operational
tester, is constrained. I do not think you
can negotiate a lot. [The tester] has the
operational requirement; he is trying to
validate that. What if there is some vari-
ance? There would have to be negotiation
between the requirements persons—the
combat command—and the development
persons. It is always good to have a good
understanding of what things are so sacro-
sanct that they could not change—the
degree of stealthiness; performance param-
eters related to the aircraft; or more impor-
tantly, performance parameters that focus
around the avionics and the functionalities
you need to deliver weapons.

The evolution of complex systems,

especially knowing that they are going to
be legacies for a long time, is the proper
mindset—nothing is totally static and all
things become negotiable. They are nego-
tiable in the sense you are resource-con-
strained, you are mission-constrained.
There are various constraints that need to
be looked at. You probably, over time,
come to these suboptimal solutions that
are at least within the solution space where
you have a minimal satisfaction of all of
these considerations.

CrossTalk: Which did you consider the
greatest challenge—testing the hardware
or the software?

Brandt: It is not an either/or situation
because these are all software-intensive
components. When you have embedded
software, it is increasingly difficult to
rationalize separation of pure hardware
and software. You do not separate them.
You make sure you have plenty of testing
in the systems component area.

I have found those who have experi-
ence with software tend to make better
systems engineers than those who came
solely up the hardware route. I suspect that
not all engineers agree with this finding.

Notes
1. See page 9 and 14 for more on the

Independent Technical Assessment of the
F-22 as it relates to the S/SEE.

2. See page 10 for comments by Ron
Dubbs of Wright-Patterson AFB on
engineer turnover.

3. See page 9 for Dubbs' comments on
diminishing manufacturing resources.

4. See page 4 for Maj. Gen. Bolton’s com-
ments and page 9 for more on how the
IPTs were found to be highly effective in
the F-22 program.

F-22 Avionics Integration On Track

by Robert Barnes
Boeing Vice President and F-22 Program Manager

Web Addition

Boeing vice president and F-22 program manager Robert Barnes discusses how the company is reduc-
ing avionics risks and development costs by using both its ground-based lab and 757 Flying Test Bed
to evaluate and troubleshoot the integrated avionics software long before it is installed on the F-22
Raptor. Barnes explains the software integration process and says that the F-22’s avionics already have
been through more rigorous testing than any previous fighter at a similar stage in its development.

Available online at www.stsc.hill.af.mil

May 2000 www.stsc.hill.af.mil 9

According to the Independent Technical Assessment (ITA)
accomplished by the Software Engineering Institute (SEI), the
F-22 fighter aircraft is a Department of Defense (DoD) acquisi-
tion of unprecedented scale with a highly complex avionics suite.

Last year, a 10-member ITA Team from the SEI conducted
an independent technical assessment of F-22 avionics.1 The
team was made up of a wide range of technical backgrounds,
including computer science, systems engineering, avionics, space
systems, F-15 simulation development, and integrated product
and process development. The ITA Team found that major
technical challenges for the F-22 included integrating the hard-
ware and management of integrated resources, fusion of sensor
data, and automation of pilot tasks. The major managerial chal-
lenges include the large number of contractors and the highly
distributed work force.

The ITA Team produced findings in three separate areas:
1) People
2) Process
3) Product
The ITA found that using integrated product teams (IPTs)

to develop F-22 avionics was highly effective and a good model
for continued use.2 They also found, with regard to people, that
maintaining the capacity, capability, and full commitment of the
entire work force is vital to the continued success of the F-22
program.

In the process area, the ITA Team found the systems/soft-
ware engineering environment (S/SEE) is critical to the success
of the F-22 avionics software,3 common technical processes are
defined and used across the avionics IPTs, and management
processes anchored in the IPT approach are highly effective.
(See Figure 1.)

Among the findings in the product area were that sensor
data fusion has a significant impact on overall system effective-
ness, and that there are known performance issues with the
common integrated processor (CIP) for real-time avionics per-
formance.4 The team also learned that anomalies observed dur-
ing testing of the inertial reference system (IRS) at Edwards
AFB in the summer of 1999 had been resolved.

The ITA Team found that diminishing manufacturing
sources (DMS) is a major issue affecting the F-22 over the
weapon system's life cycle.5

“It is a problem you just cannot solve,” agreed Ron Dubbs,
Chief Engineer for the F-22 Weapon System Products (formerly
the F-22 Avionics IPT Lead). “You can come up with a strategy
to deal with it, but you cannot solve it,” he said. “It definitely
caused us to do some major redesign efforts to recover from that.”

Decisions must be made on whether to make a lifetime buy

of old technology or go to redesign, he said. The ITA Team
learned that DMS has been identified by the System Program
Director, Maj. Gen. Michael Mushala, as a major issue for the
F-22. The ITA recommended adoption of a longer range horizon
for looking at DMS in the F-22, as well as to a larger Pentagon
Engineering Office Fighters/Bombers portfolio strategy.

In addition to DMS, Dubbs noted that keeping good
people was not easy to do. The F-22 team had a significant
turnover in software engineers, particularly in geographical areas
with strong, competitive markets.6 A steep learning curve and
on-the-job training requires existing staff to help train new staff.
The lengthy DoD security clearance process and difficulty in
finding people with avionics domain experience further com-
pounds the problem.

In other findings, the ITA team thought that the F-22
program has done a much better job than most avionics systems
development programs in providing an architecture to guide
designers and implementers.

“The architecture was set early on (1991-92), particularly
the CIP architecture,” Dubbs said. “That architecture went
through the straw man, wooden man, and iron man models,
before being definitized.”

Dubbs added that the subsystem IPTs were provided with
processor development stations early in their software develop-
ment cycle, followed by partial CIPs, and full CIPs when need-
ed. This allowed the IPTs to check out their software on the
host system before sending it to the Avionics Integration
Laboratory (AIL).

“Interface control has also been a challenge,” Dubbs said.
Due to the complexity and interaction of the avionics subsys-
tems, establishing and controlling interfaces is very important.
The F-22 program has developed and is using automated tools
to track interfaces. Without automated tools, the management
of interfaces for 108 computer software configuration items
(CSCIs) with more than 2 million source lines of code would be
overwhelming.

Asked how they tied testing to requirements, Dubbs replied
that all F-22 functional requirements and test requirements from
the weapons system specification down to lower-level component
specifications are documented and tracked in an automated tool
called Requirements and Traceability Management (RTM). Using
RTM, it is possible to select a requirement and trace its associated
links up and down the requirements tree. Links between require-
ments and test are also maintained in the RTM database.

Dubbs identified an extensive array of testing facilities that
have been absolutely critical to the program success thus far.
The primary facilities include the Vehicle Management System

CROSSTALK spoke with Ronald D. Dubbs, F-22 Weapon System Chief Engineer at Wright-Patterson Air Force
Base, Ohio. He has technical responsibility for overseeing the development and production of the F-22 Advanced
Tactical Fighter. He led the F-22 Avionics team for two years during Engineering and Manufacturing
Development before assuming his current position. The following article is based on an interview with Dubbs
and the draft of the Independent Technical Assessment of the F-22 Avionics written in October 1999.

A View from Wright-Patterson Air Force Base

10 CrossTalk The Journal of Defense Software Engineering May 2000

Integration Facility (VIF), the Vehicle System Simulator (VSS),
and the Tactical Aircraft System Integration Laboratory, all of
which are located in Fort Worth, Texas. Also included are the
AIL and the Boeing 757 flying test bed in Seattle and the
Avionics Pole Model located at the Rome Air Development
Center in upstate New York.

“We have the ability to test in open-air environments . . .
[which is] a more dynamic form of test,” Dubbs said. (See
images below.) The Block Ø operational flight program (OFP)
is successfully flying on aircraft 4001, 4002 and, most recently,
on aircraft 4003 (delivered March 6, 2000). Integration, test
and certification were performed in the VIF and the VSS. For
the remaining software blocks (Blocks 1, 2/3S, and 3), the OFP
will be certified at the Boeing AIL in Seattle and flown on F-22
test aircraft 4004 through 4009.

Dubbs noted Block Ø has been very successful to date and
that Block 1 avionics testing on the F-22 will commence this
summer at Edwards AFB, Calif.7 (See Figure 2.) As noted by
the ITA Team, the widespread use of modeling and simulation
in the F-22 program is commendable. Modeling and simulation
tools used for testing and analyzing mission software, in particu-
lar sensor track fusion, have been very effective.8 The flying test
bed provides a means to conduct real-time dynamic flight envi-
ronment testing using real F-22 avionics sensors and laboratory
instrumentation to evaluate integrated system performance,
which helps reduce impact on F-22 flight schedules.

Reflecting on what they would do differently, Dubbs said,
“We probably should have planned on more assets to keep those
laboratories going. Adequate assets is a key thing.”

If program funding allows, laboratory assets should remain
in the lab and not be planned for transition to flight test aircraft.
This type of situation creates an asset shortfall when particular
laboratory efforts are extended due to schedule pressure. Another
lessons learned is the common target processor and software run-
time tools should be commercially available and mature by the
time the application software is ready for integration.

“We should have gone more to common products and
toolsets,” Dubbs said.

The System Program Office/contractor team identified best
practices that were agreed to and validated by the ITA Team.
These included the use of a common S/SEE and common pro-
cedures across IPTs, the widespread use of modeling and simu-
lation, and IPT implementation.

The ITA team noted that the S/SEE components are out-
dated and there is a growing risk that vendors will no longer
support the common tools. The ITA Team was also concerned
about the lack of validation of the simulations. Due to budget
constraints those validations will not occur.

The ITA Team also thought that there is a risk to the con-
tinued success of the IPTs as some parts of the program wind
down and experienced people move to other programs. This,
however, is a normal occurrence in major development pro-
grams and program management must plan for personnel
changes as the program moves to a maintenance mode. Minimal
staffing for maintenance is the norm. Budget constraints that
limit travel and face-to-face meetings may also adversely impact
some IPTs. Additionally, the ITA Team recommended involving
all stakeholders in any future revisions to F-22 Team Joint
Procedures. The ITA Team expressed concern that management
is focusing on budgetary issues and tracking known problems
rather than using a set of techniques for identifying risks and
implementing a mitigation strategy.

The F-22 Team and the SEI ITA Team identified the same
best practices and agreed to a large degree on software risk
reduction processes, while at the same time sharing many of the
same concerns for life cycle risks.

The first avionics Raptor (4004) is scheduled for its first
flight in the skies over Marietta, Ga. in early summer. Following
several check out flights, aircraft 4004 will ferry to Edwards
AFB to begin avionics flight testing. The flight-certified version
of the Block 1 operational flight program was to deliver to the
airplane in April 2000. The first flight of Raptor 04 will be
another major milestone for the F-22 program.

Notes
1. See page 14 for more on the Independent Technical Assessment.
2. See pages 4 and 5 for Bolton's comments on the IPT as a best

practice. See page 8 for Brandt's comments.
3. See page 6 for Brandt's comments on the S/SEE.
4 See pages 13 and 14 for comments by Beverly Moody of

Wright-Patterson AFB on the CIP.
5. See page 7 for Brandt's comments on diminishing manufactur-

ing resources.
6. See pages 7 and 8 for Brandt's comments on software engi-

neer turnover.
7. See page 4 for Bolton's comments on the block approach.
8. See page 6 for Brandt's comments on modeling and simulation.

The F-22

Fort Worth Avionics Pole Model Seattle

May 2000 www.stsc.hill.af.mil 11

SDL

Raytheon
Orbital...

CIP/DTE

AvionicsUtilities & Subsystems Engines VMS

VMS Integration Facility/
Vehicle Subsystem Simulator

(VIF/VSS)
LMTAS

Vehicle System
Simulator

LMTAS

Avionics Integration Lab

Boeing

IMIS SDL
LMTAS

VCC
(to A/C)

BCS Lab

Allied
Signal

BCS

VMS SDL

LMTAS

FLCS
VKS
FDR

Air Data
IIDS

SAIL

TRW

CNI

SDL

LMTAS

SMS

 Tier I/II
System Acceptance Test

Tier III Integration

Tier IV Development

Prelim
OFP Build

SDL
KE,GEC
L San...
Displays

OFP Process

IDL

LMTAS

GM
HYD
EPS
FMS

&
IVSC

Eng Lab

P&W

FADEC
 - Claw
- IOC
CEDU
Boot

CAIL

LMAS

PVI
ASM
ADM

DTE/MM
UFD/MIT

SMFD
PMFD
HUD
AVTR

SDL

Boeing

ADSS
MSW

ECS Lab

AS-Can

VCC
ECS

NG Lab

Northrup
Grumman

RADAR

EW Lab

JVT

EW

TASIL

LMTAS

CNI
SMS

SDL

Litton

IRS

Avionics Integration Lab
(AIL)

Boeing

SMS to VSS
Displays

to VIF/VSS

PMA
&

DTC
System I

B L O C K
3S and on

VMS Integration
Facility
LMTAS

SDL

Boeing

APGS
AMAD
ATSS
FPS
AGS

Aircraft #4-9
OFP Build Configuration Set

AIL - Boeing

LAM - 8/9/99

IRS to VIF

VCC

Figure 2. F-22 Block 1-and-On Integrated Systems Product Flow

Figure 1. F-22 Team-Wide Software Development Processes

Verification and Validation
•Internal Independent
Verification & Validation
(IIV&V)

•Perform on:
–Safety Critical CSCIs

–Safety Significant and Mission
Critical CSCIs

•Software Walkthroughs

Software Development Tools

•System/Software Engineering
Environment (S/SEE)

•Interleaf

•PCMS

•RTM

•IDT

•Teamwork

Team Communication
•Meetings

•Documents/Correspondence

•F-22 S/SEE

•F-22 Wide Area Network

•Video Teleconference Facilities

SW Development
Management

•Integrated Product Team
Membership

–Systems Engineers

–Software Engineers

–Test & Evaluation Engineers

–Software Configuration
Management

–Material/Subcontract Management
(as applicable)

–Software Quality Assurance

–Data Management

–Program Control

–System Safety

–System Security

–Computer Resources

–Others (as applicable)

Operational Flight Program
(OFP) Build Process

•OFP Build Concept of
Operations (5PD90325D)

•OFP Build Technical
Reference Manual (5PD90326)

•OFP Software Procedures
(5DP00811)

•OFP Build System (OBS)

Contractor Facilities
•SW Development Laboratories

•Subsystems Integration and Test Facilities

•System Integration and Test Facilities

12 CrossTalk The Journal of Defense Software Engineering May 2000

It was almost 20 years ago when the Air Force identified the
need to replace the aging F-15C air superiority fighter. In 1986,
two teams received the ATF Demonstration/Validation (Dem/Val)
contract: Northrop Grumman and the eventual winning team
composed of Lockheed, Boeing, and General Dynamics. During
the Dem/Val phase, areas of risk were identified and plans to mit-
igate those risks were implemented. Not surprisingly, software
development risk mitigation was near the top of the list, since the
ATF was to be the most software-intensive airplane built for the
Air Force. The ATF Team planned to develop approximately 1.5
million source lines of code, across more than 20 software devel-
opment companies located throughout the U.S., Canada, and
Europe. The main focus for software risk reduction during Dem/
Val was the need for a common development environment and
team networks to enable rapid reliable communication across the
various sites. This article focuses on software risk reduction prac-
tices in three risk areas associated with F-22 software development:

1. Development schedule.
2. Complexity of the development team.
3. Leading-edge technology challenges.

F-22 Development Schedule
The Engineering and Manufacturing Development (EMD)

contract was awarded to the Lockheed/Boeing/General Dynamics
Team in August 1991. The F-22 Raptor’s first flight was six years
later in September 1997. Initial flight of the first avionics airplane
is scheduled for late this spring, and Raptors will enter the opera-
tional environment in 2005. The time span from identified need
to operational capability is almost 25 years.

The technological advances in the areas of computer hard-
ware, software, and software development processes have been,
and are expected to be, phenomenal. Keeping pace with these
rapid advances over a protracted development schedule has been
a continuing challenge. Major changes in the acquisition
process, particularly the move from the DoD-mandated military
standards to reliance on commercial standards and industry best
practices, generally facilitated, but at times exacerbated, risk
mitigation as contractor and government define their new roles.

Software Development Environment
Based on experience and lessons learned from earlier pro-

grams, the Lockheed-led team wrote specifications for the tools
that it thought needed to be included in the software develop-
ment environment. Digital Equipment Corporation (DEC) was
selected as the provider of the host environment that was VAX/
VMS based. DEC was tasked to identify a set of tools that would

meet the F-22 team’s specifications, and to present the entire
environment as a turnkey package to the team for approval.

Requirements for an interface definition and control tool
were included in the specification. These were the only require-
ments provided to DEC for which DEC could not find a com-
mercially available tool, so DEC committed itself to developing
the Interface Definition Tool (IDT).

DEC selected Interleaf as the document publication tool,
Teamwork for requirements analysis, Requirements and Trace-
ability Manager (RTM) for requirements traceability, and Product
Configuration Management System (PCMS) for configuration
control of software, documents, and software development files.
The common systems/software engineering environment (S/SEE)
for all F-22 software development was identified and installed at
multiple contractor/government sites by early 1992.1

In 1991, VAX/VMS was the only environment which met
the team's technical requirements as well as the F-22 program
security requirements for wide area networked computer systems.

Even back in the early 1990s, when we were not operating
at Internet time, the team recognized that VAX/VMS days were
numbered, and that the F-22 would outlive this mainstay com-
puter system. For long-term risk reduction, the F-22 Team
worked with DEC to identify a migration path that would sus-
tain the S/SEE capability. This migration path led to a yet-to-be
built environment called Cohesion that was to be based on the
Alpha workstation with open VMS or UNIX. DEC never man-
aged to bring this together in an affordable and functional pack-
age for the F-22 Team. DEC no longer exists, and Compaq,
which bought them out, no longer takes orders for, or offers
long-term support for, VAX computer systems. The F-22 team
continues studying S/SEE migration for the near future, and
will have to continuously plan to mitigate the risk of changing
environments over the F-22 life cycle.

The common S/SEE and the associated networks have been
invaluable to F-22 software development. The networks link the
contractors, System Program Office, Air Combat Command, Air
Force Operational Test and Evaluation Center, and Edwards AFB
Combined Test Facility at the appropriate security levels. This
connectivity provides the SPO and other government offices with
nonintrusive insight as we can access common areas and desktops
for documents, briefings, metrics, and software schedules.

There will always be a need for some commonality among
the software teams for populating and disseminating informa-
tion from the air vehicle-wide databases such as IDT and RTM.
The IDT database is an integral part of building the operational

F-22 Software Risk Reduction
by Beverly L. Moody

F-22 Avionics Software Block Lead

In the early phases of the Advanced Tactical Fighter (ATF) program, the Software Program Office (SPO)/Contractor Teams
realized that serious efforts would need to be applied to mitigate the risk associated with developing well over a million source
lines of code (SLOC) across many development sites throughout the United States, Canada, and Europe. The ATF software
development team was composed of the three prime contractors, four major suppliers, and more than a dozen smaller suppliers,
all of whom had to have a common goal of developing an operational flight program (OFP) for the ATF. Immediately after
the contract was awarded in 1991, the Computer Resource Working Group (CRWG) and the Systems/Software Engineering
Environment (S/SEE) Integrated Product Team (IPT) set out to build the framework in which the F-22 OFP would be built.

May 2000 www.stsc.hill.af.mil 13

flight program as it supports the trusted computing base on the
Raptor. Commonality at the software code development level
may not be as critical today as it was 10 years ago due to the
intercommunication between computer systems, which is a lot
easier than it used to be.

Out-of-Production Processors
The old way of doing business—freeze the processor, tools,

and compiler at some point, and stick with it, is no longer practi-
cal in today's high-paced developments. Processors are becoming
obsolete at a rapid pace, and frequently new compilers and tool
sets are not developed for old systems. Because compilers and tool
sets for the new processors, which are replacing out-of-production
processors, are not available in the VAX/VMS environment, the
F-22 team is already using other host environments for some
code development. Military developments will have to migrate
processors and environments at the commercial pace or lose some
of the benefits of commercial off-the-shelf products.

Commercial Tools and Security Issues
One other lesson learned from dealing with commercial tools

is that commercial tools do not inherently deal well with classified
information. For example, rolling up paragraph markings to the
correct markings at the top and bottom of each page is not easily
done by most commercial tools. Adding a new paragraph to a
baselined document may take some major editing. Coordinating/
contracting with tool developers to provide some program specific
features dealing with classified markings may be necessary for
future programs as well as the F-22.

MIL-STD-2167A Mandate
At the time of F-22 contract award, software development

fell under the Ada mandate and MIL-STD-2167A. MIL-STD-
2167A was a standard to provide a structured process for develop-
ing software, testing the software, and documenting same. Under
DoD Acquisition Reform policy, most standards were deleted and
the Ada mandate was eliminated. The F-22 program deleted most
of the contract data requirements list in 1996, however, most of
the F-22 team software developers continue to produce the MIL-
STD-2167A documentation and have it available on the S/SEE.
The commercial standards that replace MIL-STD-498 and MIL-
STD-2167A are based on the military standards for software
development, since those standards were the best available.

Ada Mandate
Ada 83 will continue to be the primary language used on the

F-22 (80-85 percent) for the foreseeable future since much of the
code is already complete. Some teams are looking at migrating
their Ada 83 code to Ada 95 since most of the new compilers are
based on Ada 95. To date, needed source code changes have been
trivial and the migrations fairly straightforward. The promise of
the portability of Ada has been validated by several programs.

Complexity of the Software Development Team
The completed F-22 Air Vehicle OFP will contain more than

2.2 million SLOCs. There has been some growth as well as added
functionality, which have added to the original estimate of 1.5
million SLOCs. Our software developers include the three primes,
several major suppliers, as well as smaller single function-type de-
velopers. Some companies are developing less than 5000 SLOCs;

one major supplier is developing more than 500,000 SLOCs.

Teammates and Competitors
Some of the F-22 teammates compete against each other for

other program contracts. In a highly integrated weapons system
development, regular communication and coordination between
designers and developers is essential. This was a new and unusual
environment for most team members. The F-22 team has over-
come these obstacles, which is a tribute to the various corporate
management teams that have allowed their software developers to
work directly with competitors in a major cooperative effort.

Ways of doing business within a company, the corporate
culture, are frequently very different, and compromise has
become a way of life for the F-22 team. For example, each com-
pany had its own change notice forms. Some companies used
interface revision notices; others used interface change requests.
Terminology and forms for a highly integrated development
required F-22 specific terms and forms to aid in communication.

Building the F-22 Team
Some of the risk-reduction efforts undertaken to bring this

diverse and geographically separated team together to perform a
major highly integrated software development are listed here.
Lockheed /Boeing/General Dynamics selected the Software
Productivity Consortium's Ada-based Design Approach for Real-
Time Systems as the team software design methodology. The
S/SEE Help Desk located at Lockheed in Marietta, Ga. had to
support multiple time zones from Rochester, England to the U.S.
West Coast. As the teams started to use the S/SEE with all the
associated development tools, there were many cries for help.

Working groups were established with representatives from
the primes and major suppliers to determine the processes and
procedures for using the various tools to ensure a common
approach was used across all the developing sites. Training in
the use of the S/SEE tools was provided at various locations
throughout the team.

The F-22 Team
One outcome of all these efforts is that the team comes

together (via meetings, telecons, video teleconferences, etc.)
speaking a common language. Some team members share Ada
package specs for interface definitions. Developers of applica-
tions that run in the Common Integrated Processor (CIP) come
together in a weekly telecon with the CIP Help Desk to work
through issues, problems with CIP tools such as debuggers,
share workarounds, compiler experiences, and to ask for advice
from other users to resolve problems or concerns.2

Team-Wide Problem Reporting System
Delivering a product with a known problem at the develop-

ing site but not passing the data along to the receiving site, can
lead to a lot of wasted time as the problem is rediscovered. With
many developing sites, accurate and complete problem report
tracking is essential. The Team's Common Problem Reporting
System (CPRS) was implemented to ensure complete tracking of
all air vehicle problems. Problem reports on delivered products
are maintained in a single master database at Lockheed. Problems
are categorized by severity, and move through various states until
the initiator verifies them as closed. CPR Boards meet via telecon

F-22 Software Risk Reduction

14 CrossTalk The Journal of Defense Software Engineering May 2000

or VTC on a regular basis to disposition problems, determine
when the fix is required, and assign the fix to a block and a par-
ticular build. Developers, labs, manufacturing, and the test pilots
have access to the database, the opportunity to participate in the
Boards, and have an input to the dispositioning of problem
reports. Problem report closure is one of the critical metrics used
to determine the readiness of a new build.

F-22 Leading Edge Technology Challenges
Integrated Avionics

The most challenging technical requirement for the F-22
avionics software is to successfully achieve sensor fusion. Sensor
fusion combines multiple sensor target attribute data into one tar-
get track file for presentation to the pilot. Shortcomings of any
one sensor will be overcome by fusion of all sensor data. Fusion
has not been done to this scale on any other tactical military air-
craft platform. The mission software team uses simulations and
an Algorithm Prototyping and Analysis Tool to reduce this devel-
opment risk.

Lessons learned from other programs told the F-22 team that
it was quite common to use up the memory and throughput of
the mission computer with the first delivered OFP. The CIP
architecture was designed and sized for growth in functionality.
Two CIPs are included in the current design with growth for a
third for a minimum 300 percent long-term growth with tech-
nology insertion. There are 66 slots available in each CIP. CIP 1
has 19 slots open and available, and CIP 2 has 22 slots open and
available. If necessary, but not in the current plan, more proces-
sors could be added during the EMD timeframe if the reserve
required in each processor gets used up. Memory and throughput
are monitored at the subsystem level on a regular basis.

Incremental Integration
Raptor 01 OFP integration occurred in integration labs at

Lockheed, Fort Worth. OFP integration included flight controls,
utilities and subsystems, displays, inertial reference system, and
stores management system. This OFP included more than 700K
SLOCs, is flying at Edwards AFB on Raptors 01 and 02, and has
nearly 600 hours of flight test. Raptor 03 had its first flight in
March 2000.

Integration risk is mitigated by incremental levels of integra-
tion. Subsystem (radar, electronic warfare, communication, navi-
gation and identification, etc.) hardware and software integration
is initially accomplished at the subsystem level by the developing
Integrated Product Team (IPT).3 Software is sent to an interme-
diate lab or to the Avionics Integration Laboratory (AIL) at
Boeing.1 Partial blocks of software are sent to the Flying Test Bed
(FTB), a modified Boeing 757 with a wing and sensor edges in
addition to some of the avionics hardware, for further testing in
an airborne environment.4 The AIL has responsibility for the
integration and certification of the Air Vehicle OFP for Raptor
04 through Raptor 09, as well as the production representative
air vehicles and Lot 1 (Raptors 10 -27).

Summary
Metrics is one method used to measure success in our risk

mitigation efforts. Some of our earliest metrics tracked the num-
ber of calls to the S/SEE Help Desk by tool and severity (from
user inexperience to immediate change needed to the tool).

SLOCs were tracked, along with notes explaining any significant
jumps. Subsystem metrics were kept on code and unit test, com-
puter software component integration, and formal qualification
testing. Problem report metrics by subsystem as well as metrics on
AIL tasks, functions, and system acceptance test procedure com-
pletions are tracked on a weekly basis. Many metrics have
changed as we moved through various phases of the software
development cycle to meet the current need.

Team communication paths, whether on telecons, video tele-
conferencing, the S/SEE, or the PC, have played a major role in
F-22 software development. Problem areas are identified early and
given needed attention to reach resolution.

The Software Engineering Institute (SEI) was hired by Maj.
Gen. Claude Bolton, Air Force Program Executive Officer for
Fighters and Bombers, to perform an Independent Technical
Assessment (ITA).5 Their findings were very positive in the area
of software risk reduction efforts undertaken by the F-22 Team.
Out-of-production parts and diminishing manufacturing sources
were identified as one of our biggest risks.

The next few years will be exciting and challenging times for
the F-22 program. We will finish building the EMD planes, con-
tinue with flight test, move into Initial Operational Test and
Evaluation, start production, and prepare to go operational in
2005. The F-22 Team expects to find that software risk mitiga-
tion efforts pay off.

Notes
1. See page 6 for Thomas Brandt's comments on the S/SEE and

page 9 for Ron Dubbs' comments.
2. See page 9 for comments on the CIP by Ron Dubbs' of

Wright-Patterson.
3. See pages 4 and 5 for Maj. Gen. Calude M. Bolton's comments

on the IPT as a best practice See page 8 for comments by Maj.
Gen. (Ret.) Thomas Brandt. See page 9 for Dubbs' comments.

4. See page 4 for more on using the flying test bed in the F-22
program.

5. See page 9 for more on the Independent Technical Assessment.

About the Author
Beverly L. Moody is the Avionics Software Block
Lead for the F-22 Avionics Integrated Product Team,
F-22 System Program Office, Aeronautical Systems
Center, AFMC, Wright-Patterson Air Force Base.
Her responsibilities include managing incremental
software block deliveries to the Avionics EMD air-

craft, Raptor 04 through 09. Moody began her Air Force career in
1982 at the Language Control Facility working with JOVIAL and
Ada standards and compiler validations. She worked for SEAFAC
performing MIL-STD-1750A computer validations and Ada train-
ing. She was then assigned to the tri-service Mark XV System
Program Office as the computer resource lead working on a planned
replacement to the Mark XII Identification Friend from Foe system
prior to her current assignment to the F-22 SPO in 1991.

ASC/YFAAT
2130 Fifth Street
Wright-Patterson AFB, Ohio 45433-6503
Voice: 937-255-7503, Ext. 2457
Fax: 937-255-1144
E-mail: Beverly.Moody@ASC-YF.WPAFB.AF.MIL

The F-22

May 2000 www.stsc.hill.af.mil 15

May 22-23
6th Annual Montgomery Golf Outing and
Information Technology Partnership Day

http://web1.ssg.gunter.af.mil/partnership

May 30-June 2
13th International Software Quality and Internet Quality Week

(QW 2000)
www.soft.com/QualWeek/QW2K/index.html

June 4-11
22nd International Conference on Software Engineering

www.ul.ie/~icse2000

June 4-7
9th Biennial IEEE

http://cefc2k.aln.fiu.edu

June 5-7
2000 IEEE International Interconnect Technology Conference

www.his.com/~iitc

June 10-14
ISCA2000: 27th International Symposium on

Computer Architecture
www.cs.rochester.edu/meetings/ICSA2K

June 18-22
ICC 2000—IEEE International Conference on Communications

www.icc00.org/

July 11-13
5th Annual Conference on Innovations and Technology

in Computer Science Education
www.cs.helsinki.fi/events/iticse

July 16-18
7th IEEE Workshop on Computers in Power Electronics

www.conted.vt.edu/compel.htm

July 16-19
Congress on Evolutionary Computation

http://pcgipseca.cee.hw.ac.uk/cec2000

August 6-11
6th Annual Conference on Mobile Computing and Networking

www.research.telcordia.com/mobicom2000

August 7-8
IEEE Workshop on Memory Technology Design and Testing

http://pcgipseca.cee.hw.ac.uk/cec2000

August 17-19
Designing Interactive Systems (DIS) 2000

September 10-12
Collaborative Virtual Environments (CVE) 2000

September 10-14
Very Large Databases 2000

Visit www.acm.org/events for information on this, DIS, & CVE.

April 29-May 3, 2001
STC 2001: The Premiere DoD Software Technology Conference

www.stc-online.org

Coming EventsLetter to the Editor
Dear CROSSTALK:

Keep up the excellent quality—by far the best magazine of its
kind for quick and accurate information, and the latest in soft-
ware development info.

Thank you,

Jim Syrris
McKessonHBOC

Need Assistance with

Software Process Improvement?

Call the SPI Hotline
801-777-7214 DSN 777-7214

or
E-mail: spi@stsc1.hill.af.mil

We can answer questions about various software
process improvement (SPI) issues, including
• How to get started on SPI.
• CMM key process areas.
• Available SPI training.
• SPI best practices.
• Assessments.
• SPI return on investment.

That's right—one free consultant. If you are a manager, a
practitioner, or a software engineering process group
member who is committed to improving your software
processes, we can help you.

Software Technology Support Center (STSC) software
process improvement (SPI) veterans are on call to answer
questions and research your problems for up to one hour
without charge to Department of Defense organizations.
We can provide you with policy, process, and procedure
templates from our STSC library.

We can also answer questions about starting SPI, key
process areas, training, best practices, return on invest-
ment, and assessments. And if our veterans cannot pro-
duce an immediate solution, we will find an answer or
get you headed in the right direction.

Offer good for Department of Defense inquires only.

ONE FREE HOUR OF
CONSULTING

WITH COUPON

✐

18 CrossTalk The Journal of Defense Software Engineering May 2000

1. When was the F-22 first flown?

__January 3, 1998
__July 25, 1997
__September 7, 1997
__October 7, 1997

2. Who is the maker of the F-22’s landing gear?

__Menasco
__Arcat
__Boeing support
__Lytic Engineering

3. The F-22 has what type of thrust direction?

__3-D thrust vectoring
__2-D thrust vectoring
__No vectoring
__High direction thrust

4. What type of power plant does the F-22 use?

__Lockheed Martin Inc.
__Pratt & Whitney
__Grummen
__Lucent Technologies

5. How many rounds of ammunition can the F-22 accommodate?

__745
__156
__250
__480

6. How wide is the F-22 wing span?

__66 feet 10 inches
__30 feet 2 inches
__44 feet 6 inches
__65 feet 4 inches

7. The F-22’s radar is:

__Open Element
__Circular Element
__Active Element
__Big honkin’ radar

Answers to Quiz

F-22 Quiz by John Higgins

F-22 Raptor Stealth Fighter
www.f-22raptor.com/

This is a Boeing site that includes informa-
tion on how the F-22 program was saved, news
from Capitol Hill related to that program, and
allows visitors to download the F-22 Raptor
screensaver. It also links to the Lockheed Martin
corporate Web site (Lockheed is the maker of the
real F-22); Boeing corporate Web site (Boeing co-
developed the current F-22 Stealth Fighter); and
the Pratt & Whitney corporate Web site (they
made the F-22 turbine engine).

YF-22 Lightning/F-22 Raptor
http://members.tripod.com/~F22FighterJet/

This links to pictures of the F-22 Raptor,
the YF-22 Lightning 2, and specifications.

Raptor Rapture
www.pratt-whitney.com/features/raptor.html

This is an overview of the Raptor, including
a description of Pratt & Whitney’s F119 engine.

About the F-22 Raptor
www.geocities.com/TimesSquare/Ring/2960
/about/f-22.html

This site gives some background on the
F-22 (reduced observables, supersonic persist-
ence, air-to-surface capability, etc.)

F-22: Creativity and Innovation
http://eagle.westnet.gr/~access/newpage6.htm

More information, with photos and a link
to Boeing.

Fort Worth: F-22 Fighter Programs
www.lmtas.com/FighterPrograms/index.html

Lockheed Martin site includes links to press
releases, photos, and mission briefs.

Stealth Fighters Web Site
www.geocities.com/CapeCanaveral/Lab/
8004/index.html

Compare the F-22 to other stealth fighters.

Pictures and Technical Diagrams
www.aw.fl.net.au/ef2000/pictures.html

Great source for images of the F-22 Raptor
and Eurofighter 2000.

F-22 Web Sites

Are you stumped?
Tempted to peek at the answers?
All of the information you need to
ace this quiz may be found at
http://johnsf22.cjb.net

May 2000 www.stsc.hill.af.mil 19

Software Engineering Technology

Rules, Tools, and People
Software-intensive systems develop-

ment still persists as an extremely people-
intensive effort that is highly subject to
productivity variances. Software program-
mer productivity differences have been
reported as high as 100-to-1 [1], and more
recently as 22-to-1 [2]. Even worse, on a
software project with 10 people, you can
expect to have up to three developers who
are “net negative producing programmers”
[3]. These are people whose high rate of
defect insertion more than negates their
rate of code production. In effect, overall
productivity on the project accelerates
when such people do not show up for
work. Clearly, enhancing programming
productivity is essential for ensuring soft-
ware project success. However, since an
average of 84 percent of all software proj-
ects fail [4], it is also clear that we are not
adequately addressing the problem of
reducing software project productivity risk.

Three key components to reducing
software project productivity risk are rules,
tools, and people. Initially, projects often
strive to make individuals more produc-
tive. This can be a mistake. Ultimately,
what you need to achieve is to make the
project, as a whole, more productive. This
is accomplished first by thinking of the
project personnel as a cohesive team, and
second by providing this team with pro-
ductivity-enhancing tools and rules.

The notion of productivity-enhancing
tools is self-evident. However, what are
productivity-enhancing rules? Simply stat-
ed, these rules are the processes in use on
your project. Their purpose is to help
ensure the project achieves operational or
business objectives. Ironically, in striving
to improve the processes, a misunderstand-
ing of the differences between rules and

tools can easily lead to bloated processes
that reduce overall project productivity. If
this is accompanied by the far too com-
mon tendency to staff a software project
with the wrong types of people, then low
productivity and high project failure rates
are hardly a surprise.

This paper discusses how to improve
overall software project productivity by
avoiding bloated process descriptions, by
leveraging simple tools, and by recogniz-
ing the team-member skills that best
ensure the overall success of your project.

Leveraging Rules
Most process quality frameworks,

such as the Software Capability Maturity
Model (CMM®) [5] and the ISO 9000
set of standards [6], require the use of
defined processes. The premise is that
well-defined and institutionalized process-
es are a key component in ensuring the
performance of efficient, effective, and
repeatable activities. These high-quality
activities, in turn, help ensure the produc-
tion of high-quality products.

However, numerous projects and
organizations have suffered through the
agony of attempting to implement
processes that were voluminous and hard
to interpret. In particular, when a project
manager is handed a 100-plus page
process description, how does he or she
distinguish between actual process require-
ments and the associated guidance, sug-
gestions, or supporting material? Where is
the project manager allowed to exercise
discretion and judgement? As organiza-
tions encounter these problems, and strive
to answer these questions, they often
resort to attempting to develop process-
tailoring guidelines. Occasionally, this
effort can result in a set of process descrip-

tions that are far more complicated, and
correspondingly more difficult to use.

For example, if you have a notion of
four types of projects (e.g., database-
intensive, object-intensive, web-intensive,
hardware-intensive) and four sizes of
projects (e.g., small, medium, large, very
large) you now have up to 16 different
process variations to define and maintain.
Add another dimension, such as customer
type (e.g., Department of Defense, other
government, industry, mass market), and
you may be looking at up to 64 process
variations.

Potentially the greatest factor con-
tributing to these problems, and to the
corresponding reduction in project pro-
ductivity, is the difficulty process users
have in discerning between those parts of
the process descriptions that must be fol-
lowed (the rules) and those that simply
help with understanding and following the
rules (the tools). A simple solution to this
problem is to stop thinking about process
in the abstract, and instead distill it to the
component parts of either rules or tools.
This will contribute to far smaller process
descriptions that document only the essen-
tial elements, or rules, that must be fol-
lowed. All other material is relocated to
the tool side of the process.

As with standard process descrip-
tions, there will typically be several layers
within a process rule description. For
example, at the highest level there may be
a rule similar to the following:
• Projects will manage software

configurations.
Subordinate to that rule, you might have
the following five rules:
• Projects will plan configuration

management activities.
• Configuration items will be uniquely

identified.

Reducing Software Project Productivity Risk
by Richard Bechtold

Abridge Technology

Software project results continue to be highly subject to the skills of the individuals involved in the development life
cycle. Although improved processes and tools can help increase overall productivity, it remains true that the project
team is one of the greatest variables that impact project productivity. To significantly reduce software project produc-
tivity risk, it is important to simultaneously evaluate the processes, tools, and skills that characterize the project and its
personnel. This article presents three approaches to reducing software project productivity risk by minimizing process
rules, by maximizing simple tools, and by de-emphasizing the importance of technical skills in favor of basic abilities.

20 CrossTalk The Journal of Defense Software Engineering May 2000

• Changes to configuration items will be
controlled.

• Configurations will be audited.
• Configuration status will be reported.

Each of these rules may have its own
set of subordinate rules, and so on.
Taking this approach can dramatically
reduce the size of a process description by
reducing it to its essential requirements.
This results in a process representation
that clearly communicates what has to
occur on the project.

This does not eliminate the need for
tailoring the rules to specific project char-
acteristics and circumstances. However,
there is far less material to tailor, and
consequently the tailoring is far easier.
For example, tailoring might simply con-
sist of waiver criteria that define when a
project is exempt from a particular rule.
Implicitly, being waived from a higher-
level rule results in a waiver from all its
subordinate rules.

Additionally, the principle of moving
all extraneous material out of the process
descriptions provides the opportunity to
apply a litmus test that anyone can use
when developing, reviewing, evaluating,
implementing, or discussing the contents
of process descriptions. The test is to ask
whether or not the item under examina-
tion is absolutely a requirement for the
project. If not, then it does not belong
with the process rules. It belongs with the
tools.

Leveraging Tools
When we think of software project

tools that enhance overall project produc-
tivity, we usually think in terms of auto-
mated tools that assist with project plan-
ning, project tracking, configuration man-
agement, action-item tracking, require-
ments management, systems design,
regression test support, quality tracking,
etc. However, as implied by the preceding
discussion on process rules, anything that
is not a rule but helps us interpret or
comply with the rules can be considered a
process tool. A few common, simple
examples of such nonautomated tools
include:
• Checklists
• Guidelines
• Templates
• Outlines

• Examples
• Training material

By putting as much process-related
information and content into the above
and other types of simple process tools,
you reallocate your process information
more closely to the ratio project person-
nel generally prefer. Most people prefer as
few rules as possible. Conversely, they
also prefer having a large assortment of
tools available such as templates, exam-
ples, and checklists.

Another advantage to minimizing
rules, and maximizing these types of sim-
ple tools, is the flexibility you have to
regularly and rapidly revise, upgrade, aug-
ment, or otherwise improve the informa-
tion, material, and workflow sequences
associated with the set of tools that sup-
ports the project. Typically, if you want to
change the process rules, your proposed
changes will require a sequence of
reviews, revisions, and approvals before
they are authorized for use on the project.
Conversely, in most organizations author-
ity to change the miscellaneous material
used to support the project is delegated to
lower levels, and might even be within
the authority of individual projects.

In addition to the simple, nonauto-
mated tools presented above, you can cer-
tainly increase productivity through the
careful use of automated tools. However,
be cautious that the tools you deploy on
the project result in an increase in the
ability of the project personnel to per-
form their work. For example, you will
usually want to avoid any automated
tools that have long, steep, learning
curves. Likewise, avoid tools that encour-
age excessively complicated approaches or
solutions, since it is highly likely you will
end up with precisely that. Conversely,
tools that are easy to learn and use, and
that encourage simple solutions to com-
plex problems, can help significantly
improve overall project productivity.

It is very important to clearly com-
municate to all project personnel that the
overall objective of tool usage is primarily
to improve project productivity. When a
tool seems to interfere with productivity,
its value must be carefully re-evaluated.
Certain tools, such as a checklist that
helps developers determine if their code is
compliant with software coding standards,

may initially seem to reduce productivity.
It will take additional time for program-
mers to complete the checklist as they
review their code for compliance to the
standard. However, this is a good example
of how something that might not seem
productive for an individual in the short-
term can be productive for the project
over the long term. In this case, the
checklist can result in higher levels of
standards compliance, which can lead to
increased readability, maintainability, and
reusability of the software components.
Each of these benefits can directly and sig-
nificantly contribute to an overall increase
in project productivity.

Although rules and tools are vitally
important to software project success,
their importance is dwarfed by the need
to have the right type of team, consisting
of people with the right types of skills. No
combination of tools, nor cleverly crafted
rules, can save a project that is chronically
staffed with the wrong people.

Leveraging People
As described in the introduction, two

software developers with similar educa-
tion, skills, and salary can have a produc-
tivity difference of 22-to-1, or even
greater. Put differently, Mary can get the
job done in two weeks, but John will take
nearly a year to accomplish the same
result. Rules and tools cannot eliminate
this extreme productivity variance.
Further reduction of the risks associated
with software project productivity clearly
requires identifying and staffing the proj-
ect with a highly productive team. But
what traits allow a software team to be
productive while pushing toward a com-
mon goal? Most organizations talk about
finding the best people. But what do we
look for when looking for the best?

Although it can be difficult to detail
who the best people are, it is very easy to
describe who the best people are not. Pick
up the Sunday classified ads from your
newspaper. Read the job descriptions for
the information- and technology-related
jobs. There you have it. A perfect prescrip-
tion for how to identify the worst people.
Using the Washington Post Web site [7],
most technical, software project related
job postings are looking for things like
those shown in Figure 1.

Software Engineering Technology

May 2000 www.stsc.hill.af.mil 21

Desperate ads look for six months of
tool-specific experience. Choosy ads pre-
fer two years. Occasionally, someone
wants applicants to have a college degree.
It is rare that an ad requires someone to
be flexible, multitalented, or a team play-
er. This is in spite of the fact that these
three skills can be crucial to the success of
a software project.

The following list provides examples
of three levels of skills that can apply to
any given software development project.
The various skill areas are divided into
the following levels: essential, important,
and useful.1

Essential
• Able to learn quickly
• Willing to learn quickly
• Team player
• Generalist, or multiarea specialist
• Strong on fundamentals
• Very flexible
• Able to teach efficiently/effectively

Important
• Insightful
• Adept with abstractions
• Organized
• Disciplined
• Self-motivated
• Good negotiator
• Good problem-solver

Useful
• Strong understanding of the

solution engineering techniques
• Strong understanding of the

solution engineering tools
• Moderate familiarity with the

underlying environment
• Moderate understanding of the

problem domain (including under
standing the customer/market)

• Familiarity with primary applicable
standards

• Good estimation skills
• Good reporting skills
• Good leadership skills

The relative importance of various
skills from the preceding list runs almost
completely at odds with the typical
approach most people use for staffing a
software project. Typically, the selection
criteria for staffing a project is based upon
someone having a few years of experience
in a particular tool. The above approach
demotes tool-experience to the least
important skill category. Instead, team
skills, fundamental skills, interpersonal
skills, and the ability to learn and change
rapidly are given much higher value.

The rationale for reducing the impor-
tance of tool-specific technical skills and
increasing the importance of fundamental
abilities and character traits is that if soft-
ware projects are characterized by any-
thing, most are characterized by rapid
changes in requirements, technologies,
competing products, and opportunities.
Given this environment, software develop-
ment projects need to be staffed by people
who are extremely agile and quick to learn.

Another key factor for determining
how to assign relative importance to vari-
ous skills is the general ease with which
the lack of that skill can be fixed by the
software project manager. For example,
consider the useful skills. Typically, if a
new developer does not know your cus-
tomer, that is fairly easy to fix. Likewise,
if the developer does not understand one
or more of the tools you use as part of
building the product, this, too, can usual-
ly be fixed rather easily. This is especially
true if, as discussed earlier, the tools you
use on the project are easy to learn,
understand, apply, and yield simple and
elegant solutions.

Similarly, consider the essential skills.
It is very hard to teach someone to be a
team player. They either naturally are, or
naturally are not. Likewise, it is nearly
impossible to change someone from being
an inflexible person to a flexible person.
Additionally, teaching someone everything
they need to know to be strong on com-
puter science and software engineering
fundamentals is similar to trying to teach
them the equivalent of a software technol-
ogy-intensive bachelor’s degree. While not
impossible, this type of comprehensive and
fundamental education is likely best left to
academic institutions.

Skills at using the latest language,
tools, and libraries are certainly important,

but these sometimes are the most volatile
and short-lived skills needed on a project.
The rapid and sometimes extreme rate of
change in tool capability, requirements,
and opportunities may require you to
reconsider the tools you are using on your
current project, or cause you to prefer
other tools for your next project. Having a
flexible team with the ability to rapidly
learn new tools seems preferable to trying
to build a new team.

From a different perspective, the years
of experience you seek from a job candi-
date may not equate to years of applicable
experience for your project. For example,
you may be better off with someone who
has four months of direct experience on
your project—even as a trainee—than
someone who has a year of experience
acquired somewhere else. Even the person
with a year’s experience might require a
month or two to come up to speed in
your environment. From this perspective,
it can be better to quickly find and hire
someone who only lacks your specific tool
experience, than to let the position go
unfilled even for a month.

In the contracting environment,
much of the focus on specific tool experi-
ence is the result of standard, if dated,
government procurement habits. Most
procurements force a bidder to, for exam-
ple, provide someone with two years of
Common Business-Oriented Language
experience. These are typically “must
comply” requirements and leave the bid-
der with virtually no choice in identifying
and providing the best overall team for a
particular contract.

Without question, software develop-
ment teams need to have at least some
people who are adept at the various tools
the project will use. No project can afford
to be entirely a learning experience.
Nevertheless, if most team members
exhibit the essential and important skills
described in this paper, and at least some
team members exhibit the useful skills,
then you have an excellent pool of avail-
able skills regardless of the circumstances
the project eventually encounters.

Summary
It is hoped that this article has illus-

trated the potential value of minimizing
the number of rules your defined process
employs, and maximizing the number of

C++

Java
Access
Oracle

Visual Basic

3946

1539
2193
2083

892

Keyword # of Listings
Figure 1. Breakdown of IT-related job postings

Reducing Software Project Productivity Risk

22 CrossTalk The Journal of Defense Software Engineering May 2000

simple tools that support process rules.
But when it comes to further reduc-

ing software project productivity risk for
a specific project by deliberately seeking
personnel with certain skills, assessing the
relative value of those skills remains a
challenging task. The varying contribu-
tion that different skills make toward
reducing project productivity risk truly
does depend on your project’s context,
constraints and circumstances.

Nevertheless, here is a test scenario to
consider:

You have been tasked to manage a com-
plex software development project that spans
several years, has uncertain requirements,
and might involve uncertain technologies. A
similar project recently finished—two years
late—and it was built using power–wizzy–
gui–whatever 1.5.

You must select a software development
team from the two teams that are available.

One team has considerable experience
using power–wizzy–gui–whatever 1.5, but
it must comply with a 300-page process
description. The team has few routine tools
available; it is inflexible, untrainable, dis-
organized, undisciplined, and cannot func-
tion as a team.

The other team clearly understands and
applies its 30-page outline of process rules,
and it has a comprehensive repository of effi-
cient and effective process tools. However, at
the moment the team is weak on the details
regarding the use of power–wizzy–gui–what-
ever 1.5. This team is very quick to learn,
reliably operates as a cohesive team, is adept

with abstractions, is well-grounded in funda-
mentals of software architectures and data
management, is highly flexible, self-motivat-
ed, and contains clever problem solvers.

You decide.

References
1. Shneiderman, Ben. Software Psychology:

Human Factors in Computer and
Information Systems. Little, Brown.
Boston. 1980.

2. Curtis, Bill. Managing the Real Leverage
in Software Productivity and Quality.
American Programmer, Vol. 3, July-
August 1990.

3. Schulmeyer, Gordon. The Net Negative
Producing Programmer. American
Programmer, Vol. 5, June 1992.

4. Chaos. The Standish Group. Dennis,
Mass., 1995. Also at http://www.standish
group.com/chaos.html

5. Paulk, M. et. al., Capability Maturity
Model for Software, Software
Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pa. 1993.

6. Radice, R., ISO 9001 Interpreted for
Software Organizations, Paradoxicon
Publishing, 1995.

7. Washington Post classified ad website.
10/01/99, www.washingtonpost.com/wp-
adv/classifieds/careerpost/front.htm

Note
1. If you have a preference for mathematics,

you can assign values to each of the listed
skill areas as follows: Essential–8 points,
Important–4 points, and Useful–2 points.
These values sum to 100 points.

About the Author
Dr. Richard Bechtold is a
principal consultant who
supports industry and gov-
ernment in the analysis,
design, development and
deployment of improved

software management, engineering, acqui-
sition, and risk-reduction processes. He
assists clients in process analysis, model-
ing, definition, training, and deployment.
Bechtold also assists government acquisi-
tion agencies in the systematic evaluation
of contractor software process capability.
He has more than two decades of experi-
ence in the software industry.

He is an adjunct professor for George
Mason University, where he teaches soft-
ware project management and software
process improvement to masters and doc-
torate students. He has written more than
two dozen publications relating to software
project management, software process
improvement, risk management, acquisi-
tions, logistics, and related topics. His latest
book, Essentials of Software Project Manage-
ment was published in August 1999.

Bechtold received his doctorate degree
from George Mason University.

Dr. Richard Bechtold
Abridge Technology
42786 Oatyer Cr.
Ashburn, Va. 20148-5000
Voice: 703-729-6085
Fax: 703.729.3953
E-mail: rbechtold@rbechtold.com
Internet: www.rbechtold.com

Software Engineering Technology

If your experience or research has produced information that
could be useful to others, CROSSTALK will get the word out. We
welcome articles on all software-related topics, but are especially
interested in several high-interest areas. Drawing from reader
survey data, we will highlight your most requested article topics
as themes for future issues. In future issues of CROSSTALK, we
will place a special, yet nonexclusive, focus on:

Network Security
October 2000

Submission deadline: June 1

Software Acquisition
November 2000

Submission deadline: July 1

Project Management
December 2000

Submission deadline: August 1

Modeling and Simulation
January 2001

Submission deadline: September 1

Configuration Management
February 2001

Submission deadline: October 2

We accept article submissions on all software-related topics at
any time; issues will not focus exclusively on the featured theme.

Please follow the Guidelines for CROSSTALK Authors, available
on the Internet at www.stsc.hill.af.mil.

Ogden ALC/TISE
ATTN: Heather Winward
7278 Fourth Street
Hill AFB, Utah 84056-5205

You may e-mail articles to features@stsc1.hill.af.mil.
or call 801-775-5555 DSN 775-5555.

Call for Articles

May 2000 www.stsc.hill.af.mil 23

The most common approach for process improvement we
have seen during the last 10 years is to document all processes.
We do not know exactly why people do this, but they do.

This approach is amplified when an organization rushes to
adopt a sweeping solution such as ISO9001 or the Software
Engineering Institute’s (SEI) Capability Maturity Model
(CMM®). In the light of a goal stating, "Be SEI CMM Level 3
by December," the approach of documenting all processes is
reinforced, and might even appear natural.

A process-centric approach can work, but it has a high risk
of failure. To be successful, it must involve individuals who can
internalize how the process documents will be used before they
are completed. This is a rare skill.

The goal-problem approach starts with a business goal and

works backward to determine what improvement actions are
necessary to achieve that goal. Here is an example.

During a client visit to help plan a process improvement
program, we learned that the group was about to establish six
teams to work on the six Key Process Areas (KPAs) of the CMM
Level 2. We suggested that the developers and managers tem-
porarily forget about Level 2 and state all of their major prob-
lems. Then they were asked to state the goals they were trying to
achieve over the next six to 18 months. After one hour of discus-
sion, they created a list (Figure 1).

The next step was to have the group compare the list of
problems and goals with the topics of the CMM. In Figure 1 we
have listed the related KPA names and activities in parentheses
after each item. If the client had been using ISO9001 or The

Goal-Problem Approach for Scoping an Improvement Program
by Mary Sakry and Neil Potter

The Process Group

In this paper, we will explain an approach to scoping an improvement program based on problems and
goals of the organization. By adopting this approach, organizations are able to make significant progress
on real issues, and make progress on the process improvement model or standard they are trying to achieve.

Problems
1. Get better requirements. Requirements tracking not in place;

changes to requirements are not tracked; code does not
match spec. at test time. [Level 2: RM - activities 1, 2, 3]

2. Management direction unclear for product version 2.3. Goals
change often. [Level 2: RM - activities 1, 3, verification 1]

3. Hard to revise project plan—items drop off, new things get
added, plan is out of date. [Level 2: SPTO - activity 2, 8, 9]

4. Wrong files (e.g., DLLs) get put on CD—don't know what the
right ones should be. [Level 2: SCM - activities 4, 7, 8, 9, 10]

5. Defect repairs break essential product features. [Level 2: SCM
- activities 5, 7, 6, 9, 10, abilities 1, 2, 4, 5, verification 3, 4]

6. Customers are unhappy. There are approximately 300 outstand-
ing defects that have not been addressed. [Level 2: SCM -

verification 1, RM - activity 3; Level 3: IC - activity 1]

7. Difficult to find time to do critical activities (product development)
versus crisis activities. [Level 2: SPP - activities 4, 10, 12]

8. Lack of resources and skills allocated to software design.
[Level 2: SPP - activity 10]

9. Quality department—need team training (product and
test skills). [Level 2: SQA - abilities 2, 3, 4]

10. Changes to specifications and documentation are not commu-
nicated effectively to documentation and test groups. [Level 2:

RM - activities 1, 2, 3, SCM activities 7, 5, 6, 9, ability 1]

11. Unreliable project schedule estimates.
[Level 2: SPP - activities 9, 10, 12, 5, 13, 14, ability 4]

12. Unclear status of software changes.
[Level 2: SCM activities 8, 9]

13. Testing does not necessarily comprehend things that matter
to the customer. [Level 3: SPE activities 5, 6, 7]

Goals
1. Orderly Plans for Development.

[Level 2: SPP - activities 2, 5, 6, 7, 8, 13, 14]

2. Understand what our capacity is—develop one list of all the
work we have to do. [Level 2: SPP - activity 7, ability 1]

3. Improve schedule tracking and communication of changes to
impacted groups. [Level 2: SPTO - activities 3, 4]

4. Successfully deliver Serial Number Tracking product.
[Level 2: RM - activities 1, 2, 3, SPP - activities 10, 6, 13]

5. Improve performance of mainline software product.
[Level 2: SPP - activity 11, SPTO - activity 7].

6. Identify needed skills for new designers and hire/promote and
train accordingly. [Level 3: SPE activity 3, ability 2]

7. Identify tools to support software developers.
[Level 2: SPP - activity 14; Level 3: SPE - activity1]

8. Keep making a profit. Keep customers happy. [Level 2: RM -
activities 1, 2, SPP - activities 10, 12, 13, SPTO - activities 4,
6, 8, 10, SQA - activity 5, Level 3: SPE - activities 2, 7, IC -
activity 1, PR - goal 2]

9. Identify tools to support software testers.
[Level 2: SPP - activity 14; Level 3: SPE - activity1]

10. Empower Quality Department to have final say on product
shipment. [Level 2: SQA - activities 6, 7]

Figure 1. Problems and goals list

This article is reprinted courtesty of The Process Group Post Newsletter. It first appeared in that publication’s September 1999 issue, Vol. 6, No. 2.

Definitions of SEI Level 2 Acronyms
RM= Requirements Management
SPP= Software Project Planning
SPTO= Software Project Tracking and Oversight
SQA= Software Quality Assurance

24 CrossTalk The Journal of Defense Software Engineering May 2000

Malcolm Baldrige Award, we would have mapped the problems
and goals to those documents.

What was the Improvement Program’s Scope?
The scope was to address the problems and the goals of the

organization. As you can see, 21 out of the 23 items (91 percent)
map to Level 2. When all the problems and goals have been
addressed, 46 percent of the Level 2 activities will have been
addressed.

The key difference between this approach and addressing
the six KPAs in parallel is that the problems and goals tell you
which pieces of each KPA to address first. Regardless of the
model or standard used, the problem-goal approach tells how to
scope and sequence your improvement program.

Items Not Matching Improvement Model or Standard
In Figure 1, not all of the problems in the list closely match

the areas of CMM Level 2. For example, there is not much in the
CMM to specifically address goal No. 5. In this situation, you
have to determine which areas are most important for the organi-
zation to fix now. Serious problems should be worked on first.

What is Learned from this Approach?
There are five significant lessons to be learned from adopt-

ing the goal-problem approach:
1. All process improvement can be meaningful.
2. The problems and goals help the organization identify

which pieces of a model or standard to work on first. A
model or standard should no longer be seen as providing an
all-or-nothing approach, because this often leads people to
do everything at once, regardless of whether it is appropri-
ate. A model or standard can be treated as a large toolbox of
little actions, ideas, and solutions useful at different times.

3. Any process document that is developed to solve a prob-
lem will be meaningful and useful. The process improve
ment team will be less tempted to gold-plate the process,
since its scope will be defined by a problem.

4. The group’s motivation to work on improvement issues
will increase. The improvements will be directed toward
improving the group's ability to produce software. Barriers
to success will be solved systematically.

5. An organization will be focused on solutions rather than
process documents. Some of these solutions will involve
processes; some will involve tools or behavior changes.

Using the Approach at a Project Level
Below is an example from a project at a different client. We

asked the project manager for a significant project goal. From
this goal we derived areas that needed improvement by asking
two specific questions. These resulting problems formed the
scope of the improvement program for this project.

What is your goal?

• Reduce release cycle to six to nine months.

What problems are preventing you from achieving the goal?

•Changing requirements.
• Loss of resources—difficult to replace people with specialized

skills who leave the project.
• Too many features to put into a six- to nine-month develop-

ment cycle.
• Poor quality of incoming code from other groups.
• Inadequate availability of test equipment.

What other problems do you have related to this goal?

• Lack of visibility within any life cycle phase—it is difficult to
know whether we are ahead or behind schedule.

• Do not always have the resources available to complete the
planned work.

• Difficult to find defects early.
We stepped through each of the answers and made a note of

the KPA activity that could significantly help address the prob-
lem area. We recommended some of the more advanced Level 3
KPA components since this group was almost Level 2.

In this example, five out of the eight problems, or 63 per-
cent, mapped to SEI Level 2, and 100 percent mapped to SEI
Level 3. The scope of the improvement program should be the
problems and goal. By addressing these, the project manager will
make significant progress toward completing Level 2 and starting
Level 3.

What questions helped you scope your improvement effort?

To scope the improvement effort, we asked the following
questions:

1. State one goal for which you will be accountable over the
next six to 18 months.

2. What prevents you from achieving this goal?
3. What other problems do you have related to this goal?
4. If you use a process improvement model or standard, which

items help each of the problems listed? (Choose individual
items at the detailed level, not large blocks of items.)

Problems
Changing requirements.
Loss of resources - difficult to replace people that leave the
project due to specialized skills.
Too many features to put into six to nine month development cycle.
Poor quality of incoming code from other groups.
Access to equipment to test code.
Lack of visibility within any life cycle phase—it is difficult
to know how much we are ahead or behind schedule.
Do not always have the resources available to complete the
planned work.
Difficult to find defects early.

KPA component that would help this problem
Level 2: RM - activity 3, SCM - activity 5. Level 3: SPE - activity 2.
Level 2: SPTO - activities 2, 8.
Level 3: TP - activities 1, 2, SPE - ability 2.
Level 2: SPP - activities 4,12,13. Level 3: SPE - activity 2.
Level 3: IC - activities 2, 5, 6, PR - activity 2.
Level 2: SPP - activities 13, 14.Level 3: SPE - activities 6, 7.
Level 3: ISM - activities 7, 4, 11, verification 2.
(ISM stands for Integrated Software Management.)
Level 2: SPP - activities 4,12, 13.
Level 3: ISM - activities 3, 5, 10, 11.
Level 3: PR - activities 1, 2, ability 1.

Software Engineering Technology

Figure 2.1 Goal: Reduce release cycle to six to nine months

May 2000 www.stsc.hill.af.mil 25

Goal-Problem Approach for Scoping an Improvement Program

Addressing all Items in Model or Standard Used
One primary concern with this approach is that an organi-

zation will not address all of the items in the model or standard
used, since there might not be goals or problems related to all
items.

When the first set of problems and goals have been worked,
the next step is to repeat the cycle and determine the next set of
problems and goals. This new set can be compared to the
remaining items in the improvement model or standard. Over a
one- to three-year period, each section of the model or standard
will be matched up with a problem or goal.

For example, in the beginning of SEI Level 2, there may be
little benefit to working on the process audit activity within
Software Quality Assurance, since few processes are being fol-
lowed. However, the need to audit a process becomes apparent
once it has been defined, used, and proven effective.

One client highlighted this with its software release man-
agement process. Performing an audit on the related Software
Configuration Management (SCM) activities would have been
futile before the release management had been improved. When
SCM and release management were in place, one employee by-
passed the process and incorrectly released a software patch to a
customer by e-mail. The software did not work and the cus-
tomer was furious. The need for SCM auditing became appar-
ent. After the audits, the developers and managers realized that
they had a mechanism to verify execution of the defined release
management activities.

There will be situations where some items of the model or

standard are not used when solving a problem or achieving a
goal. These items should be left until the end of the improve-
ment cycle. At that time, one of three scenarios usually occurs:

1. Outstanding items will be put to good use.
2. Items will be declared not applicable.
3. Items will be performed academically to meet the letter of

the law. The focus should, of course, be on the first scenario.

Conclusion
Scoping an improvement program can be difficult and frus-

trating. The task becomes daunting when a process model or stan-
dard is adopted wholesale. However, a simple, immediately avail-
able solution exists. The goals and problems of an organization
can provide a timeless and effective scope for any improvement
program. An improvement model or standard can then be used as
a source of ideas, solutions and actions to achieve this scope.

The resulting improvement program is compelling, practical,
and focused on the goals and problems of an organization. Using
this approach, it is easy to implement process improvement in a
phased manner, which provides people with timely solutions
aimed at their specific needs.

Note
1. Definitions of SEI Level 3 Acronyms:

TP = Training Program
SPE = Software Product Engineering
PR = Peer Reviews
IC = Intergroup Coordination
ISM = Integrated Software Management.

About the Authors
Mary Sakry is co-founder of The Process Group,
a company that consults in software engineering
process improvement. She has 23 years of experi-
ence in software development, project manage-
ment and software process improvement. For 15
years, she was a project manager and software
engineer within Texas Instruments (TI) in Austin,

Texas. In 1989, she worked on the TI Corporate Software
Engineering Process Group TI to lead worldwide software process
assessments. The last two years of TI were spent consulting and
educating software developers and managers on software project
planning, risk management, estimation, SEI CMM®, inspection
and subcontract management. Sakry was the first SEI-authorized
lead assessor for CBA-IPI process assessments. She has an master’s
degree in business administration from St. Edwards University, and
a bachelor’s in computer science from the University of Minnesota.

Neil Potter is co-founder of The Process Group.
He has 14 years of experience in software design,
engineering and process management. For six
years, Neil was a software design engineer for
Texas Instruments in Dallas, developing Electro-
nic Design Automation software. The last two
years at TI he was a Software Engineering Process

Group manager consulting in the United States, England and India
in the areas of software project planning, risk management, estima-
tion, SEI CMM® and inspection. Potter is an SEI-authorized lead
assessor for CBA-IPI process assessments. He has a bachelor’s degree
in computer science from the University of Essex in England.

The Process Group
Voice: 972-418-9541
Fax: 972-618-6283
E-mail: help@processgroup.com
Internet: www.processgroup.com

6 t h A n n u a l J A W S S 3 i s s c h e d u l e d f o r J u n e 2 5 - 3 0 i n S a n A n t o n i o , T e x a s

Over the years, the Joint Aerospace Weapon Systems Support, Sensors, and Simulation Symposium and Exhibition
(JAWS S3) has addressed target acquisition, the dirty battlefield, the electromagnetic spectrum and its impact on smart
and brilliant weapons, and a host of other relevant topics.

JAWS S3 will focus on the connectivity of various levels of modeling and simulation and their connectivity in support
of this mission. JAWS S3 2000 will feature senior-level decision-makers, who are in a position to impact the directions
on these important defense issues, sharing their insights.

— Jim O'Bryon, Deputy Director, Operational Test and Evaluation/Live Fire Testing, Office of the Secretary of Defense

— E-mail: varmaa@navair.navy.mil for more information.

26 CrossTalk The Journal of Defense Software Engineering May 2000

Software projects are hard to do cor-
rectly; many of us have started process
improvement projects to make our proj-
ects work better. Process improvement
projects are not particularly easy either. I
recently saw the following ad on the Web:

There is a bright future ahead on the
right road to process improvement. We
know the right road and all the steps in
it to achieve process improvement suc-
cess. Our experts will guide you, making
sure every step is aligned with your com-
pany’s goals and everyone in the organi-
zation is headed in the same direction.

If only it were that simple. We could
call in the experts, hand off our process
improvement projects, and live happily
ever after. Unfortunately, every process
improvement project is different, because
each organization has its own culture and
problems.

I apply the following standard project
questions to discover the motivation
behind my process improvement project:
• What outcomes do you expect?
• What are the desired process

improvement results?
• What do you need to do to know

about those results?
• What are the process improvement

requirements?
• How will you know you have achieved

those results?
• What techniques will you use to

review, test, and measure your
process improvement project?

Use Results to Generate

Requirements
Process improvement projects are

supposed to create new capabilities in an
organization—to affect how you perform
the other projects in your company.
What drives your process improvement
project? What capabilities are you trying
to change? Those new capabilities are
your results.

Management does not always clearly

state its desired results. Your managers
may think their directives are the desired
results. Look beyond the directives to
find the real business results. I use con-
text-free questions [1] to get at the
results. Context-free questions might be:

Who are the clients of the process
improvement project?
What does a highly successful solution
look like?
What is that solution worth to you?
Why are these results desirable?
Following is an excerpt of a conversa-

tion I had with a senior manager (SM):

SM:We want to reduce cycle time.

JR: Why?

SM:We want to get our products to
market faster, so we can improve
our return on our product devel-
opment investment.

JR: What return are you getting now,
and what return do you want?

We discussed the total costs of devel-
opment and support from some previous
releases and came up with a specific
desired business result:

Reduce cycle time in order to double the return
on investment (ROI) from major releases.

This is very optimistic, but at least
we understood the context of the changes
we would have to consider.

If you receive directives for process
improvement, discuss reasons behind the
directives. Work with management to
discover the business requirements, true
desired results, and the context of your
process improvement. Create specific and
measurable requirements that make sense
to everyone involved—management, the
product development staff, and the
process improvement project team.

All too often, directives for process
improvement produce sneers and cynicism
from the technical staff. They are cynical
because they may not believe the managers
are interested in process improvement.
Sometimes technical staff perceive process
improvement as a fad-of-the-month.
Sometimes the technical staff is sure this is
some other thing management has decided
would be good for workers to accomplish
instead of the product development work.
When you define specific and measurable
business results, you can avoid or mini-
mize much of that cynicism.

Table 1 gives examples of how to con-
vert mandates/directives to business results.

Four Rs of Software Process Improvement
by Johanna Rothman

Rothman Consulting Group Inc.

Process improvement projects can be difficult to start, keep on track, and assess results. We can use the
same requirements gathering and specification techniques that we use on product projects on our
process improvement projects. This paper discusses how to define requirements for process improvement
projects and how to use reviews and retrospectives to assess the results of process improvement efforts.

Directive Cynical reaction Possible business reasons for process
improvement and specific results

Be at Level Pass an audit. I wonder if Introduce and maintain new project management
x by y those guys are from the IRS. capabilities. Be able to proactively manage proj-

ects, anticipate risks. These new project capabili-
ties would increase our ability to ship product on
time, and decrease customer support costs by half.

Reduce They think we are wasting time, Our customers want us to ship more features
cycle time probably surfing the Web. faster. If we can get each release out faster, we

They just want to make us can sell more products and increase our market
work harder. share by 30 % in two years.

Ship more They want us to put the kitchen Our customers want more features, but it is diffi-
features sink into every release. They cult to work on multiple releases in parallel. If we

think with process, they can could define appropriate life cycles and develop-
make us put more features ment techniques to release more features per year,
into each release. we could increase revenue by 40 % annually.

Reduce costs Uh-oh. We know what costs We spend too much time on rework during each
they want to reduce—us! project and after the project ships. If we knew

different ways to work, we could avoid generating
patches and fixes, and work on new products. We
could reduce maintenance costs by at least 50%,
and put the money toward new product
development.

Table 1: From Directives to Results

May 2000 www.stsc.hill.af.mil 27

Define Your Process

Improvement Requirements
Once you have specific, measurable

business results—the context of your
process improvement project—you can
determine the rest of the process improve-
ment project’s requirements.

If your organization fails to define
and manage requirements, your process
improvement effort will sputter and prob-
ably fail. To succeed, you must identify
your requirements, verify them against
your results, manage them through the
project, and test the new process against
the requirements. It is not simple, but it is
the right way to improve.

Identify Your Process
Improvement Requirements

After asking context-free questions,
define the users, attributes, and functions
[2] to identify the process improvement
project’s requirements.

Users

Who are the favored and disfavored
users?1 Are there primary or secondary
users? Users might be the sponsoring
management, potential assessors, the
technical product development staff, and
the product development management.
You might decide that customers are not
direct users of the process improvement
project. You may decide to prioritize the
needs of the primary and the other users.
Identify the disfavored users, especially
when you rank user needs. If you do not
know who your disfavored users are and
address their needs, your process
improvement effort will fail.

One organization identified its technical
staff as its primary users. The potential
customer assessors are secondary users.
They are creating a process that serves the
technical staff first, and serves their asses-
sors second. This organization does not
appear to have disfavored users. They do
not have coding cowboys, royalty, or
busybodies who interfere [3] with the
way work is done now.

Attributes

Do you want to be able to better pre-
dict how long your projects will take? Is
project performance an attribute, such as
being able to support a quarterly release?
Is cost to market an attribute of your
projects? How testable, visible, auditable,

maintainable, controllable do your proj-
ects need to be?

Another organization decided that time
to market, in the form of a quarterly
release, was a crucial attribute for their
products. When it planned its process
improvement project, the organization
knew it could not complete the effort in
one quarter. It wanted quarterly deliver-
ables from its process improvement proj-
ect, in the same way it wanted quarterly
deliverables from its product projects.
Part of the organization's process
improvement was culture change across
the organization and across every project,
including its process improvement project
from long release cycles to repeatedly
delivering small chunks of functionality
on a quarterly basis.

Functions

What activities does your process
improvement project need to perform?
Many of those activities will be the same
for your product projects as your process
improvement projects: meet, communi-
cate, negotiate, design, implement, exam-
ine, review, test, etc. Will it be a perma-
nent ongoing project, or will it have an
end? Should you bring in the functional
groups across the organization, or only
across product development?

One organization working on a concur-
rent engineering life cycle decided that it
wanted its process to make certain the
right people participated at the right
time on the projects. It chose to have a
specific design phase in the organization's
process improvement project so it could
discuss and test how to make design hap-
pen concurrently in its product projects.

Another organization made a business
decision that it would not have any dedi-
cated process people—the technical man-
agers are responsible for defining and
improving its product development process-
es. One attribute of the organization's
process improvement activities is that it
chooses to take one area for improvement
and work on it for a year. That attribute
affects some of the organization's function-
ality, project retrospectives. Each year, it
holds a project retrospective where it
reassesses its activities and results and
decides on the next area of improvement.
(I am not advocating this approach, but it
appears to work for this organization.)

After identifying process improve-
ment requirements, you can verify them.

Verify Process Improvement
Requirements

If you do not verify your require-
ments, you will not get the business results
you want. Verifying the requirements helps
define issues and find defects in them.

Your business requirements define
the context of your problem. The user/
attribute/function description defines the
whole customer or stakeholder problem.
Review the process improvement context
and problem together. If they align, you
are set. If they do not, go back and talk
to management and the rest of the people
you have worked with so far.

Once you have reviewed the require-
ments within the process improvement
project team, hold a technical require-
ments review with your management
sponsor(s) and your process improvement
team. Review the requirements with the
technical staff, too, as a way to make the
project more real to them, and to dispel
any cynicism. Use your process improve-
ment project to show the rest of the
organization how early and how often
review can improve the entire product.

Manage the Process
Improvement Requirements

Process improvement projects are sub-
ject to the same kinds of pressures as prod-
uct projects are. They are frequently under
time or resource pressure, particularly if
the staff is not dedicated to process
improvement. Someone, somewhere, will
want to change the requirements. Manage
the process improvement project’s require-
ments as you would manage other project
change requests. The questions you ask for
product projects apply here also:
• What implications does this request have

on the users, attributes, and functions?
• What are the schedule implications?
• Will the request change our ability to

meet the desired business results?

Test the Process
Improvement Requirements

Every time you define or change the
process improvement requirements, test
them. I prefer to test process improve-
ment requirements in a variety of ways:
• Verify that requirements meet all per-

sonnel levels of process improvement

Four Rs of Software Process Improvement

28 CrossTalk The Journal of Defense Software Engineering May 2000

and function [4] as in Table 2. I apply
use cases to do this as part of the user-
attribute-function matrix development
and testing.

• Verify that requirements meet desired
business results with technical reviews
or walkthroughs with technical staff.

• Inspect the requirements for defects.
Choose the appropriate verification

technique for your work products.

Role of Reviews

in Process Improvement
All successful process improvement

initiatives incorporate reviews. Process
improvement is about changing the cul-
ture of your organization to achieve cer-
tain business results. Reviews reflect the
culture of your process improvement
project. When you perform walkthroughs,
reviews, and inspections, you show the
rest of the organization that you are
willing to examine your work products.
Reviews in your process improvement
project will change the culture from
where you are now, to one that is closer
to an egoless programming culture [5].

Use your requirements verification
activities to show how walkthroughs,
reviews, and inspections can help product
projects, as well as process improvement
projects. Gain consensus on the require-
ments with technical reviews. Inspection
is an appropriate technique to discover
defects in your requirements, or in any of
the other work products. Walkthroughs
are excellent for training purposes.

One powerful approach to perform-
ing technical reviews on requirements is
to ask what is missing and why. When
you ask these questions, you send specific
messages to the organization:
• You want to know what is not working

so you can avoid it in the future.
• You are willing to question your work.
• You want to know problems and differ-

ences between the desired state and
current state of product development.

• You are open to changing the culture
of the organization.

You show you are willing to review
your process improvement activities and
process improvement project, and that you
are open to change (you are not trying to
be the process police). As process improve-
ment staff, if you show that not only are
you open to change, but that change is
expected and desired, the rest of your
organization may have less resistance [6].
Changes in results are the reasons for start-
ing a process improvement project.

Results: How Do You Know

You Achieved Them?
You have defined and verified your

desired results. How do you know when
you have achieved them? Are you meeting
your users’ needs? Are you meeting your
defined attributes? Does your process
improvement look successful?

Retrospectives
Process improvement projects can

benefit from mini retrospectives as you
proceed, and from major retrospectives as
you achieve major milestones. What can
you learn from your progress to date? Are
you keeping your business results in mind
as you difine your requirements? Are you
testing the process with the technical
staff, to verify it meets your requirements
and their requirements. Are you working
in ways you want to continue, or is there
a better way to do your work? What are
you haveing trouble changing and why?
Is there something you have missed?

Retrospectives model the behavior
you are looking for as part of the process
improvement results: to look at what you
have done, and improve on the past as you
move forward. If you are not afraid to look
back at your work and learn from it, the

rest of the organization will be more likely
to do so also.

Measurement
Aside from in-project and post-proj-

ect reviews, you can measure results. If
you are not sure how or what to measure,
consider the goal-question-metric para-
digm [7] to define your measures. The
goals here are your business results that
you derived from the context-free ques-
tions. From your results, ask questions
that help you figure out when you have
met the goal. Measure the answers to
those questions. (See Table 3.)

Changing your process via process
improvement is supposed to produce the
desired results. Use measurements to track
your changes and results, and keep your
process improvement project on track.

Summary
Process improvement is all about

changing the results our organizations
currently have. These results will change
our culture, so we have numerous stake-
holders for process improvement projects.

Use your requirements elicitation and
definition skills to derive desired results
and the requirements that drive them. Use
reviews as a testing mechanism for require-
ments and results, then ensure that all
your stakeholders’ interests intersect with
your process improvement results [7].

Where appropriate, use your process
improvement project to model product-
project behaviors. Test pieces of your
process on your project (sometimes called
“eating your own dog food”). When you
test the pieces, focus on the desired results.

Model the behavior you want your
software projects to exhibit, especially the
behaviors of requirements identification
and management, and reviews. That will
help you meet your desired results.

You will find that your right road to
process improvement with requirements,
reviews, retrospectives, and results.

Top Management Does top management enable the process you are creating?
Can it change what it does to make this new process work?

Middle Management Does this process address how to do the work?
Can the work be managed this way?

Technical Leads, First Line Can they follow this process to make it work?
Managers, and Supervisors Can they create a project plan with the process embedded in it?

Goal Reduce cycle time to double ROI from major releases.

Questions For the last few major releases, what are current cycle times and the current
ROIs? What size were the releases, and what was the staffing level? How
much time did the staff work on these projects? Did the staff have to share
time between projects? Is there anything else that affects ROI?

Measures Track the last few releases of cycle time and ROI. For each release, staff
effort by week over the project. (Include other measures for any of the other
ROI related questions.)

Software Engineering Technology

Table 2. Process improvement levels and definition

Table 3. Example of results management

May 2000 www.stsc.hill.af.mil 29

During the past six years in the process improvement consulting world, we have
found one common factor in successful organizations. Not surprisingly, organizations
that have failed share the same factor, or rather the lack of it. This determining factor is
strong senior-level sponsorship. The Software Engineering Institute's Managing
Technological Change (MTC) course demonstrates the power of sponsorship during the
"roles" section. The course helps organizations identify key barriers to change efforts at
any level. The senior-level sponsor is the "authorizing sponsor." This is the one person
who can say "yes" to economic or strategic issues when everyone else says "no" and the
effort proceeds anyway. This is also the person who can say "no" when everyone else says
"yes" and the effort stops.

Throughout the many workshops, courses, and seminars we have given, sponsor-
ship always becomes the main issue. If an organization has strong sponsorship, the
chances for success increase exponentially. But a sponsor must do more than bless an
effort, give it some funding, and direct the improvement group to make the project
happen. A successful improvement effort needs a committed sponsor, not just an
involved sponsor. The best way to define the difference between committed and
involved is to make a comparison between a chicken and a pig in breakfast. The
chicken is involved by giving its eggs and the pig is committed by giving its life.
Senior-level sponsors need to exhibit committment.

Leadership is influence. A strong sponsor has to establish and foster a vision, define
the compelling need, establish a management team that turns the vision into reality, and
stick with it until the end. A sponsor needs to lead with vision, not manage by it.

Four initial building blocks are needed to start improving an organization: a mis-
sion, a vision, goals, and a strategic plan. Only the sponsor can move an organization
from the strategic plan to reality. Far too frequently, organizations minimize the impor-
tance of a mission, a vision, goals, and strategic planning. Senior-level managers find
these tasks to be unrewarding and to be in the way of doing their real work. But this is
their real work.

The following model demonstrates a method of bringing an organization from
the status quo, or an ad hoc environment, to an improved reality.

The first step in this process is the wish, or the original ideas and thoughts on
how an organization can improve. A wish does not become a dream until it is written
down. This is critical. Too often, sponsors think their organizations know what the
sponsors want. Organizations will never know what their sponsors want until the
sponsors tell them.

A dream becomes a goal when a date is given to it. Sponsors need to be leaders
who are willing to draw the line in the sand. The organization's goals, coupled with a
chosen vehicle, will yield the organization's strategic plan. This vehicle typically is

Wish Dream Goal Plan Reality

Written
Down

Date Vehicle Compelling
Need

The Determining Factor
by Doug Dynes
SBSI Consulting

Acknowledgements
I want to thank Brian Lawrence,

Elisabeth Hendrickson, Karl Wiegers, and
Jerry Weinberg for their valuable review
comments.

References
1. Gause, Donald C., and Gerald M.

Weinberg. Exploring Requirements,
Quality Before Design, Dorset House
Publishing, New York, 1989.

2. Lawrence, Brian. Requirements
Happens, American Programmer,
April 1997, Vol. 10, No. 4.

3. Rothman, Johanna. Retrain Your Code
Czar, IEEE Software, March/April 1999.

4. Weinberg, Gerald M. Quality Software
Management, Vol.4: Anticipating Change,
Dorset House Publishing, New York,
1997.

5. Weinberg, Gerald M. The Psychology of
Computer Programming, Silver
Anniversary Edition, Dorset House
Publishing, New York, 1999.

6. Wiegers, Karl. Creating a Software
Engineering Culture, Dorset House
Publishing, New York, 1996.

7. Wiegers, Karl. Software Requirements:
A Pragmatic Approach, Microsoft Press,
Redmond, Wash., 1999.

Note
1. Disfavored users work in a way that is

counter to the system. Hackers, coding
cowboys, and test gatekeepers are
examples of disfavored users.

About the Author
Johanna Rothman observes
and consults on managing
high technology product
development. She is the
founder and principal of
Rothman Consulting Group

Inc., and is a member of the clinical faculty
of The Gordon Institute at Tufts University,
a practical management degree program for
engineers. Rothman publishes Reflections, a
quarterly newsletter about managing prod-
uct development, and is the author of
Hiring Technical People: A Guide to Hiring
the Right People for the Job.

Rothman Consulting Group Inc.
38 Bonad Rd.
Arlington, Mass. 02476
Phone: 781-641-4046
Fax: 781-641-2764
Email: jr@jrothman.com
Internet: www.jrothman.com

Open Forum

30 CrossTalk The Journal of Defense Software Engineering May 2000

composed of a model used to measure
progress, a process improvement group
used to facilitate the change, and an
established management steering group
used to direct the organization's business.
The authorizing sponsor needs to chair
the management steering group.

The next step is moving the organi-
zation from the strategic plan to reality.
Only a compelling need will move an
organization forward, and only the spon-
sor can define the compelling need. This
phase contains the real work. The spon-
sor will spend most of his or her time
reinforcing the need for the change,
which amounts to teaching the plan.

Many organizations fall far short of
improved reality. Perhaps a strategic plan
was completed, but it ended up as shelf-
ware and now the organization has anoth-
er failure attached to its culture. The key
to avoiding this failure rests in the ability
of the management steering group. This
provides the leveling plane. If an authoriz-
ing sponsor is strong enough, he or she
can force the change to happen at the
expense of the organization's livelihood.
We have seen firsthand where a sponsor
forced the issue. The change occurred, but
caused workers' divorces, early retirements,
higher attrition, and severe medical prob-
lems. When the sponsor left, there was no
support structure to maintain the pace, the
improved reality evaporated, and the effort
became another statistical failure.

An established and functioning man-
agement steering group is composed of
the authorizing sponsor and his or her
direct reports. This group meets on a reg-

ular basis. In this forum, all management
decisions concerning any and all resources
need to be made. In this instance,
resources are defined as money, time, peo-
ple, and the product's functionality. This
meeting provides a forum where the direct
reports inform the boss of the good, the
bad, and the ugly. Counseling with the
sponsor about a situation before it
becomes a problem should always be wel-
comed. The easiest way to gain this
insight is to review and show the status of
all projects during the meeting.

The use of project status reviews in
management steering group meetings has
facilitated outstanding process improve-
ment results with our customers. We have
seen rapid changes for the better in gener-
al project management, quality assurance,
and performance measures. These areas
comprise most of the Key Process Areas
from the Capability Maturity Model
(CMM®). The most dramatic results are
found in the actual management steering
group members. They have found that
when the executive leadership manages
the organization proactively, they spend
more time in the decision-making process
and less time putting out fires.

The inspired change agent must
obtain sponsorship for the organization's
improvement effort. If the sponsor is
unsure, the change agent should begin by
educating the sponsor on the need for
this. We have seen this education process
take weeks. In other instances, it never
happens. If the sponsor sees the need and
is willing to act, you have won your
sponsor. The change agent must be ready

to provide a solid plan for implementing
change. If the sponsor fails to see the
need or is unwilling to act on the need,
the effort will fail.

In conclusion, the main thrust of this
article is about people, not technical
issues. We live in a society where our cul-
ture is good at getting new technology
into the market place, but is very poor at
getting our culture to adopt that new
technology as a way of doing business.
Technology is not and never will be the
problem. It is the people working with
the technology that cause the problems.
Solve your people problems and the tech-
nical problems will find a way of fixing
themselves.

The senior sponsor is supposed to
lead and direct people. If the sponsor
would do that, there would be no com-
pelling need for this article.

About the Author
Doug Dynes graduated
from the U.S. Merchant
Marine Academy with a
degree in engineering sys-
tems design. He is a
Lieutenant in the U.S. Naval

Reserve and has served in the U.S. Naval
Special Warfare program. Dynes has
worked for the STSC sinch 1993 as a con-
sultant and technology adoption coordina-
tor. Recently, he became the senior vice
president of SBSI Consulting. He is a certi-
fied Project Management Professional, SEI
instructor and visiting scientist, and holds a
U.S. Coast Guard Engineering license.

Voice: 801-775-5734
E-mail: Doug.Dynes@hill.af.mil

Lyles Assumes
Command of AFMC
WRIGHT-PATTERSON AFB, Ohio—

Gen. Lester L. Lyles assumed command in
April of the Air Force Materiel Command at
Wright-Patterson Air Force Base. He replaces
retired Gen. George T. Babbitt. Babbitt had
been AFMC commander since May 1997.

Lyles served as vice chief of staff of the Air
Force in Washington, D.C. since May 1999.
He began his career in 1968 as a distin-
guished Air Force ROTC graduate. He has
served in a variety of assignments, including
program element monitor of the Short-
Range Attack Missile, Headquarters U.S. Air
Force in 1974, and special assistant and aide-
de-camp to the commander of Air Force

Systems Command in 1978.
In 1981 he was assigned to Wright-

Patterson Air Force Base as Avionics
Division chief in the F-16 Systems Program
Office. He has served as director of tactical
aircraft systems at AFSC headquarters and as
director of the Medium-Launch Vehicles
Program and space-launch systems offices at
the Space and Missile Systems Center. He
became AFSC headquarters’ assistant deputy
chief of staff for requirements in 1989, and
deputy chief of staff for requirements in
1990. In 1992 he became vice commander
of Ogden Air Logistics Center, Hill AFB.

He served as commander of the Ogden
ALC from 1993 until 1994, then was
assigned to command the Space and Missile
Systems Center at Los Angeles Air Force
Base until 1996. He became director of the

Ballistic Missile Defense Organization in the
office of the Secretary of Defense in 1996.

Babbit was commissioned in 1965
through the Reserve Officer Training Corps
program at the University of Washington.
He trained as an aircraft maintenance officer
and served as officer in charge of fighter
flight lines in the United States, the Pacific
and Europe. He twice commanded aircraft
maintenance squadrons and was deputy
commander for maintenance of a European
F-15 wing. Prior to assuming command of
AFMC, the general was director of the
Defense Logistics Agency at Fort Belvoir, Va.

Other assignments included deputy chief
of staff for logistics, Headquarters U.S. Air
Force and director of logistics for both
Headquarters Air Training Command and
Headquarters U.S. Air Forces in Europe.

Open Forum

State of the Software Industry, part 2

May 2000 www.stsc.hill.af.mil 31

—Gary Petersen, Shim Enterprise Inc.

BACKTALK

Editor's Note: This is part two of an interview that taps the wit and wisdom
of George Washington, John Adams, Benjamin Franklin, Thomas Jefferson,
and Abraham Lincoln regarding the state of the software industry.

Q: Gentlemen, inspection technology has proven to provide high return on
investment, yet it receives far less publicity and use than other glamorous
technologies. Why is this?

Abe: A peer review [jury] too often has at least one member who is more ready to hang
the peers [panel] than the engineer [traitor].

Ben: Any engineer [fool] can criticize, condemn, and complain, and most engineers [fools] do.
Abe: You can fool all the people some of the time, and some of the people all the time,

but you cannot fool all the people all of the time.
Ben: Wise men do not need advice. Fools will not take it.

Q: Is process improvement here to stay or just another fad?

Thomas: A little rebellion now and then is a good thing, and as necessary in the software
[political] world as storms in the physical.

John: Process Improvement [America] is a great, unwieldy body. Its progress is [must be]
slow. Like a coach and six, the swiftest horses must be slackened and the slowest
quickened, that all may keep an even pace.

Ben: Each year, one bad habit rooted out, in time ought to make the worst project
[man] good.

Abe: My great concern is not whether you have failed, but whether you are content with
your failure.

Q: Why are many organizations struggling with process improvement?

Abe: At what point then is the approach of danger to be expected? I answer, if it ever reach
us, it must spring up amongst us. It cannot come from abroad. If destruction be our lot,
we must ourselves be its author and finisher.

John: The right of an organization [a nation] to kill a bad project [tyrant] in case
of necessity can no more be doubted than to hang a robber, or kill a flea.

Q: Are new technologies a panacea for the industry's ills?

Thomas: Nothing can stop the man with the right technology [mental attitude] from
achieving his goal; nothing on earth can help the man with the wrong technology
[mental attitude].

Abe: The best thing about the future is that it comes only one day at a time.
Ben: He is the best engineer [physician] that knows the worthlessness of most technologies

[medicines].

Q: What do you know about the working conditions of software engineers?

John: Engineers [I] inhabit a weak, frail, decayed tenement; battered by their [my]colleagues
[the winds] and broken in on by janitors [the storms], and, from all I can learn,
management [the landlord] does not intend to repair.

George: Few Software Engineers [men] have virtue to withstand the highest bidder.

Q: The industry is quick to jump on new technology bandwagons. Managers
in particular seem to treat testimony and hype as fact. Is this dangerous?

Abe: I believe it is an established maxim in morals that he who makes an assertion without
knowing whether it is true or false is guilty of falsehood, and the accidental truth of
the assertion does not justify or excuse him.

Thomas: It is as useless to argue with those who have renounced the use of facts [reason]
as to administer medication to the dead.

Q: Given the chance, would you like to lead a software development project?

Thomas: I have no ambition to manage [govern] software [men]. It is a painful and
thankless job [office].

Give Us Your Information,

Get a Free Subscription
Fill out and send this form to us

for a free subscription to CROSSTALK.

OO-ALC/TISE

7278 FOURTH STREET

HILL AFB, UTAH 84056

ATTN: HEATHER WINWARD

FAX: 801-777-8069 DSN: 777-8069

Or use our online subscription request form
at http://www.stsc.hill.af.mil/request.asp

NAME:___________________________________

RANK OR GRADE:_________________________

POSITION OR TITLE:_______________________

ORGANIZATION OR COMPANY:______________

ADDRESS:_______________________________

BASE OR CITY:______________ STATE:______

ZIP:____________

TELEPHONE: ______________________

DSN______________________

FAX: ______________________

DSN______________________

E-MAIL: ________________@________________

THESE BACK ISSUES ARE AVAILABLE:

(INDICATE THE MONTH(S) DESIRED.)

MARCH 1999____________________________

APRIL 1999_____________________________

MAY 1999______________________________

JUNE 1999______________________________

JULY 1999______________________________

AUGUST 1999___________________________

SEPTEMBER 1999________________________

OCTOBER 1999__________________________

NOVEMBER 1999________________________

DECEMBER 1999________________________

JANUARY 2000__________________________

FEBRUARY 2000_________________________

MARCH 2000____________________________

APRIL 2000_____________________________

CrossTalk
Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205

BBUULLKK RRAATTEE
UUSS PPOOSSTTAAGGEE PPAAIIDD

PPeerrmmiitt NNoo.. 448811
CCeeddaarrbbuurrgg,, WWII

PPuubblliisshheedd bbyy tthhee
SSooffttwwaarree TTeecchhnnoollooggyy

SSuuppppoorrtt CCeenntteerr

Sponsored by the
Computer Resources

Support Improvement
Program (CRSIP)

One of the most challenging milestones for the F-22 pro-
gram this year is to begin flight-testing the Block 3.0 avionics
system on the F-22 before the end of the year. We must meet
this milestone before the Defense Acquisition Board will
approve low-rate initial production—and we will.

Boeing, tasked with integrating the F-22's highly sophisti-
cated avionics, is working alongside our teammates to ensure
Block 3.0 is adequately tested in our Avionics Integration Lab
(AIL) and on our 757 Flying Test Bed (FTB) so testing aboard
the F-22 can begin on schedule.

We are confident we will meet this critical milestone. In
fact, every software delivery Boeing has made to date has been
on or ahead of schedule. Both supporters and critics have been
closely watching our avionics testing this past year, and we wel-
come their scrutiny. The F-22's avionics are being tested thor-
oughly, and have been through more rigorous testing than any
previous fighter at a similar stage in its development.

It is important to note that successfully flying the integrat-
ed avionics on the FTB more than one year prior to the actual
F-22 is unprecedented in military aircraft development pro-
grams.

By utilizing our AIL and FTB, we are helping reduce avion-
ics risks and contain development costs by enabling extensive
evaluation and troubleshooting before full avionics are ever
installed on the F-22. To date, the avionics have undergone
more than 15,000 hours of testing in the AIL and 427 hours on
the FTB.

The F-22 avionics test concept is progressive in nature,
beginning with component-level testing, continuing with sub-
systems integration and verification at teammate and supplier
sites, and finishing with verification of the full avionics system
installed in the F-22. Modeling tools and system-performance
simulations have been used for integration to maximize the effi-
ciency of other types of testing. These models are based on sys-
tem design and are being updated during integration to more
accurately reflect actual system performance.

Systems are integrated in the AIL, where performance is
initially tested. AIL testing includes functional and performance
testing of the integrated avionics suite, and includes integration
testing of the avionics operating with other on-board systems.
Testing in the AIL is accomplished in two types of configura-
tions. One has F-22 hardware and software, with tower-mount-
ed antennas for open-air stimulation. The other also has real
hardware and mission software, but also simulated sensors and
environment.

Boeing has invested in high-fidelity open-air dedicated tar-
gets (airborne and ground) to support this testing. Together
these configurations test the system to provide a high confi-
dence of success at the next integration level.

Avionics development transitions into the dynamic open-air
environment, first on the Boeing FTB and then on F-22 air-

craft. FTB testing takes place in Seattle-area locations, with
deployment to Edwards Air Force Base, Calif., operating areas
to take advantage of range assets such as simulated threat emit-
ters and military target aircraft.

The F-22 avionics suite is being developed in an incremen-
tal block-build fashion in order to break the avionics develop-
ment effort into manageable segments. This approach reduces
program risk by starting with basic functionality and progress-
ing to more complex functionality as the avionics system
matures through each successive software block release.

Complex capabilities and functions can be developed and
thoroughly tested in separate incremental builds without
impacting or being impacted by other functions. This approach
allows greater flexibility in the test program.

Boeing has been testing the software blocks in its labs since
early 1998. Block 1.1, which provides initial integrated avionics
capability, was delivered ahead of schedule to Lockheed Martin
in May 1999. Block 1.1 included 80 percent of the final F-22
hardware configuration and more than 900,000 lines of code.

The performance of the sensors and the closed-loop track-
ing function are crucial to the success of the integrated avionics
system. Blocks 2 and 3 will focus on these areas early in the test
program. They will also continue the build-up of overall avion-
ics functions.

Block 2, which adds basic missile and electronic warfare
functions, provides the initial capability of multi-sensor fusion.
Block 2 has been integrated and tested in the AIL and AIL and
has begun testing on the FTB. This provides additional early
testing on real hardware with real apertures.

Block 3 will add additional radar and electronic warfare
modes (more sensor fusion capability) in support of closed-loop
tracking. Block 3 is being integrated in the AIL and will be test-
ed aboard the FTB in September before delivery to Lockheed
Martin. Block 3.1 will be delivered in June of 2001 and add
additional weapons capability.

The F-22 team's low-risk avionics development approach
blended with state-of-the-art software development tools and
processes has proven successful. Boeing also is leveraging the
company's core competence in large-scale systems integration-
many of the integration tools and techniques that are being
used are the result of lessons learned on the B-2, AWACS, 777
and other large airframe programs.

Thanks to excellent designers and modern software engi-
neering techniques, considerably fewer anomalies have been
encountered compared to previous programs. Those anomalies
are more easily fixed due to the expertise of our system integra-
tors. Overall, the avionics software packages have been perform-
ing exceptionally well. We are confident that performance will
continue when we transition to the next stage of testing aboard
the F-22.

F-22 Avionics Integration On Track
by Robert Barnes

Boeing Vice President and F-22 Program Manager

About the Author
Robert Barnes was named Boeing vice president
and F-22 program manager in February 1997.
Based in Seattle, Barnes is responsible for Boeing
work on the F-22 air superiority fighter. Boeing
is teamed with Lockheed Martin to design and
build the F-22 for the U.S. Air Force. Since
joining Boeing in 1977, Barnes has held a vari-

ety of positions in engineering and operations management. Prior
to his current assignment, Barnes was F-22 airframe product man-
ager and operations director. In that role, Barnes managed all F-22
structures design and production requirements, including manu-
facturing, quality assurance, procurement and facilities. Before
joining the F-22 program in 1992, Barnes was deputy program
manager for the 777 Composite Empennage program beginning in
1989. From 1986 to 1989 he served as manufacturing services
manager for the Boeing Composites Fabrication Center in Seattle
and division manufacturing engineering manager. Other Boeing
assignments include operations manager for the Navy A-6 attack-
plane rewing program, manager of engineering and operations
computing for the B-2 bomber program, and engineering comput-
ing systems manager in the Boeing Commercial Airplane Group.
Barnes has extensive management background in composites, tool
engineering, N/C programming and production. Born May 27,
1941, he attended the Georgia Institute of Technology and
Washington University. His educational background is in mechani-
cal engineering and industrial management.

	Cover
	Index
	From the Publisher
	Up Close with Maj. Gen. Claude Bolton Jr.
	Up Close with Maj. Gen. (Ret.) Thomas C. Brandt
	F-22 Avionics Intefration On Track
	A View From Wright-Patterson Air Force Base
	F-22 Software Risk Reduction
	Letter to the Editor
	Coming Events
	F-22 Quiz
	F-22 Web Sites
	Reducing Software Project Productivity Risk
	Call for Articles
	Goal-Problem Approach for Scoping an Improvement Program
	JAWS S3 Conference Announcement
	Four Rs of Software Process Improvement
	The Determining Factor
	AFMC Command Change Notice
	BackTalk

