
6 CROSSTALK The Journal of Defense Software Engineering October 1999

16 Critical Software Practices
for Performance-Based Management

Jane T. Lochner
U.S. Navy

The 16-Point PlanTM focuses on effective management and technical processes for improving the bottom-
line: detecting defects, managing complexity, reducing rework, eliminating excessive and unnecessary costs,
and increasing productivity. It addresses three primary areas of software management: project control, prod-
uct construction, and product integrity. The practices were forged in the crucible of real-world pressure to
succeed and represent the combined experience of successful program managers and industry leaders.
Recognizing that change is difficult, the 16-Point Plan recommends small but powerful steps that can be
introduced into an established program.

THIS ARTICLE DRAWS ON information in the Software
Program Managers Network’s (SPMN) new program
manager’s guide titled, 16 Critical Software Practices for

Performance-Based Management, which is due for initial release
in Fall 1999. The 16 Critical Software PracticesTM for
Performance-Based Management (the 16-Point Plan) are appli-
cable to all large-scale, software-intensive projects (i.e. projects
relying on the full-time efforts of 12 or more people). The prac-
tices that comprise it, however, are scaleable, all or in part, to
smaller projects and to different software project environments.
The 16-Point Plan was developed by SPMN with assistance
from members of the Airlie Software Council, about 20 of the
nation’s leading software experts convened to assist SPMN in
the identifying of industry best practices. The guiding principles
used in developing each of the practices were that each practice
be:

• applicable to all types of software and life cycle models
• flexible
• nonproprietary
• specific
• measurable
• realistic and attainable
• readily implementable

The practices identified satisfy these guidelines, making the 16-
Point Plan a firm foundation for project success. This plan
should be used according to the circumstances and environment
of a given project, including where it is in its life cycle when the
16-Point Plan is first adopted. All practices are generally appli-
cable to both government and industry projects and to nearly all
domains. The plan is focused on effective management and
technical processes, including techniques for finding defects as
they occur, managing complexity, reducing rework, eliminating
excessive and unnecessary costs, increasing productivity, and
other beneficial effects.

The practices that comprise the 16-Point Plan are termed
“critical” because software project managers and organizations,
whose bottom-line performance is consistently better than aver-
age, use these practices and consider them essential. The bot-
tom-line that the buyers of software development are interested
in consists of:

• end-user satisfaction
• development and maintenance cost
• time-to-market
• quality
• predictability of final cost and schedule

Each of these critical practices is supported by metrics from
past large-software-intensive system development and mainte-
nance projects. These practices have been forged in the crucible
of real-world pressure to succeed.

The 16-Point Plan is not presumed to be an exhaustive set
of practices. However, the plan represents the combined experi-
ence of successful program managers and industry leaders. It
will go a long way toward engendering success in any software
development or maintenance effort.

As illustrated in Figure 1, the 16-Point Plan addresses three
primary areas of software management:

• Project Control. It includes those practices that result in
the identification of basic project constraints, expectations,
and metrics. It also encompasses practices to plan and
implement a project environment to predictably satisfy
customer expectations and constraints.

• Product Construction. Includes those activities that specify
the basic product requirements; maintain traceability to
these basic requirements; and control content, change, and
use of the many artifacts and deliverable products that are
produced to satisfy user and customer requirements and
expectations.

• Product Integrity. This ensures that defects, which occur as
part of the software process, are identified and removed in a
timely fashion. Product integrity ensures that testing is
complete and effective and results in the right product
consistent with agreed-to requirements and actual
expectations.

While the practices that comprise the 16-Point Plan are
individually useful, their complementary nature provides a
strong synergistic effect when used as an integrated set. Using
them will not guarantee success, but they can help facilitate it.

Those familiar with process improvement models, such as
the Capability Maturity Model (CMM®), will quickly realize

October 1999 CROSSTALK The Journal of Defense Software Engineering 7

that these practices supply tactical solutions to the model’s
strategic orientation. The practices map to many of the model’s
key process areas and should assist organizations striving to
advance to the next CMM maturity level.

These practices are straightforward, readily implementable
techniques. Although some practices may require training in
basic skills, such as conducting structured meetings as a neces-
sary foundation for formal inspections, they can, for the most
part, be implemented without making investments in new
equipment, technologies, or staff. Cultural resistance to the dis-
cipline inherent in these practices and to the management visi-
bility that comes from several of the practices, is the biggest
obstacle to successfully implementing these practices. Another
stumbling block is that organizations inexperienced in some of
the practices in the plan may think they are unnecessary.
Because they do not use the practice at the present time, they
may not recognize the value and benefits to their organizations
that implementing these practices would bring.

The 16-Point Plan can be used with an established pro-
gram. It recognizes that change is difficult and recommends
small but powerful steps to initiate each of the 16 practices.
Although the 16 practices cannot make successful those pro-
grams that are inadequately funded, without proper staffing,
and faced with impossible schedule deadlines, implementing
these practices can minimize damage.

The 16-Point Plan
The 16-Point Plan takes a two-dimensional approach to the
critical practices. First, it takes a vertical approach, explaining
the details of each practice. Each element is examined, identify-
ing “practice fundamentals.” These are key principles that out-
line the essence of the practice. Implementation guidelines also

are identified. These are practical steps that can help implement
the practice in a given program. A set of “quick look” questions
is provided to help the program manager make a crude assess-
ment of whether his/her program has a potential problem in
each area and a list of “alarms,” which relate to lessons learned
in each area. Each practice specifies associated metrics that the
project manager should monitor. Finally, each practice con-
cludes with a list of detailed questions that should be asked if a
project is unable to satisfactorily answer the “quick look” self-
assessment questions, following with the recommended correc-
tive actions.

Then it takes a horizontal perspective, describing how indi-
vidual practices might be sewn together into an effective pro-
gram. The 16-Point Plan associates the 16 critical practices by
program phase. Taken together, these two perspectives provide a
model that can be applied to any project and move it toward
success.

The following is an example of some of the practice details
contained in the 16-Point Plan.

Project Control
To be successful, the right project environment must be estab-
lished. This environment must be conducive to establishing a
stable team, identifying, organizing, and coordinating tasks, and
recognizing and mitigating risks that can impede success. Most
of all, this environment must make it as easy as possible for
team members to pull together toward success.

Project control brings together a series of six management
practices that can help establish a success-oriented environment.
These provide early indicators of potential problems, coordinate

16 Critical Software Practices for Performance-Based Management

• adopt continuous program

risk management

• estimate cost and schedule

empirically

• use metrics to manage

• track earned value

• track defects against

quality targets

• treat people as the most

important resource

• adopt life cycle
configuration
management

• manage and trace
requirements

• use system-based
software design

• ensure data and
database interoperability

• define and control
interfaces

• design twice, code once
• assess reuse risks and

costs

• inspect requirements

and design

• manage testing as a

continuous process

• compile and smoke test

frequently

Product ConstructionProject Control Product Integrity

Figure 1. The 16-Point Plan.

The Capability Maturity Model and CMM are registered in the U.S. Patent
and Trademark Office.

Software Best Practices

8 CROSSTALK The Journal of Defense Software Engineering October 1999

the work and the communications of the development team,
and achieve a stable development team with the needed skills.
These practices are essential to delivering the complete product
on time, within budget, and with all documentation required to
maintain the product after delivery.

Achieving project control requires developing a detailed
activity network for all effort to at least the next delivery, an
estimate of the cost and schedule for this effort, and allocation
of the cost and schedule estimate. Planning is the basis of proj-
ect control, establishing a method for conducting business, a
management process, and a quantitative basis for monitoring
progress and risk. The goal of planning is to establish a working
project management environment, not the production of a plan
for the sake of meeting a requirement to produce a plan. “Use
Metrics to Manage” is one project control critical practice.
Examples of “quick look” self-assessment questions that might
be asked regarding metrics are:

• Have threshold values been established?
• When was the last time the metrics showed an anomaly

(were not what was expected)?

Alarms that indicate that the metrics program is not being
taken seriously include:

• A large price tag attached to request for metrics data.
• Rebaselining is frequently required.

Collecting metrics solely to collect metrics is not a best
practice. It is, in fact, counterproductive. Since the value from a
metrics program comes from the actions taken as a result of
metrics analysis, one should track the percentage of decisions
made based on metric data.

When the “quick look” self-assessment questions indicate a
lackadaisical metrics program, the program manager should
asked more probing questions such as:

• Are there threshold values for early problem indication
metrics that trigger reporting to higher levels of manage-
ment? If so, for each metric with such threshold values,
what are the threshold values and to what level of
management does each value trigger a report?

A worthwhile metrics program must measure the right met-
rics. The following steps can be used to identify the proper met-
rics:

• Define program issues/problems/risks
• Identify reporting obligations/needs
• Determine what indicators would show problem areas
• Sort indicators into metric categories
• Determine the delta from metrics currently collected and

metrics needed
• Identify additional reporting collection delta
• Identify ranges/metrics

Product Construction
Projects need a common means of doing business as well as a
common language process during construction to ensure com-
munication among suppliers/developers, users, programmers,

analysts, project leaders, program managers, and the program
executive officer.

Although projects are never the same, the process should be
consistent because projects require discipline and predictability.
Before planning how something will be accomplished, it is use-
ful to understand what has to be done. Techniques must be
defined before they can be integrated into a project; and while
innovative technology is often required to meet project goals,
their impact must be realistic and have broad project support.
Esoteric solutions and the use of leading edge technology not
tailored to project objectives are counterproductive.

Essential to construction are tools that sustain project
requirements, not vice versa. Automated tools, supported by
configuration management, solve project problems more effi-
ciently than manual techniques. However, automated aids are
useful only if they satisfy an identified need and are defined and
selected in a top-down sequence. All too often construction
starts with the tool, forcing the tool to fit the problem. Improper
tool selection and application result in data rework at the low
end and wasted work/scrap at the high end.

The discipline of configuration management (CM) is vital to
the success of any software development effort. Two questions
which give a CM “quick look” are:

• Can you access the earliest/most recent version of a soft-
ware system?

• Can you produce the change documentation for the
approved last change to the current system?

A CM process is probably not effective if any of the follow-
ing alarms occur:

• The Configuration Control Board (CCB) merely rubber
stamps requests; requests are submitted “after the fact.”
There is not a mixture of accepted, rejected, and held for
further investigation actions.

• The CM process is considered level-of-effort and not tied
to specific tasks/products.

Some metrics which measure the effectiveness of CM are:
• number of days since last change to library documents
• turn-around time for CM products

When uncertainty arises concerning the CM process, one
should ask detailed questions such as:

• Have several people described the CM approach and
process? Are these descriptions consistent? Do they match
the documented process?

• When under heavy schedule pressure, are changes made to
code without going through a controlled change process
managed by CM?

• Are CCBs fully assessing the impacts of each proposed
change or the risk and cost of making the proposed
change prior to authorizing that change? Are all impacted
configuration items identified?

For CM to be effective it must be empowered. Corrective
actions to empower the CM team include:

October 1999 CROSSTALK The Journal of Defense Software Engineering 9

• Charter the CM organization. Give it a clear mission,
responsibilities, and authority.

• Staff it adequately with experienced developers.
• Train the team thoroughly in the tools that are to be used.

Product Integrity
Software development is a continuum of events, one building
on the next. If one is done poorly, subsequent activities that
build on the work suffer. Project success and acceptability crite-
ria depend on managing the project to ensure quality. Generally,
there will never be time to clean it up. When problems occur,
options are limited. It is better to manage quality from the
beginning.

“Compile and smoke-test frequently” helps ensure that the
product is growing in a controlled manner. These questions pro-
vide a “quick look” assessment of how well an organization is
following this practice.

• Is the build of the current system baseline more than five
days old?

• Can the CM group build the current system baseline unaided?

Management needs to scrutinize the compile and smoke-
test process if any of the following alarms occur:

• gradual increases in the number of changes included in
builds or in the time between builds

• use of binary patches

Management can use the following measures to monitor
the compile and smoke-test practice.

• days since last build
• number of problems identified during smoke-tests

When the compile and smoke-test practice needs redirec-
tion, detailed questions, such as the following, can help pin-
point problem areas.

• Can the customer explain the regression and smoke-test
philosophy to an outside organization?

• Do the regression and smoke-test suites address all
capabilities in the current configuration?

Implementing an effective smoke-test strategy requires:
• building systems and executing tests at least twice a week.
• smoke-testing systems built only from the central CM

library. Test files, stubs, drivers, or other components not
held by the CM system must not be used.

• smoke-tests based on a pre-approved, traceable procedure

run by an independent organization — not the engineers
who produced the change package.

Conclusion

The 16-Point Plan integrates the critical software practices into
a road map that can help program managers navigate around
the hazards and obstacles that often block the path to success. It
is a set of high-leverage practices that distill the experience of
successful program managers into an executable strategy that
can be applied to virtually any development effort. It is a start-
ing point for structuring and deploying an effective process for
managing large-scale software development and maintenance,
but must be tailored to the particular culture, environment, and
phases of a program.

The 16-Point Plan incorporates proven commercial best
practices and focuses on the essential details of each practice
necessary to achieve high return on investment, bottom-line
improvements. Together the practices constitute a powerful set
of technical and management disciplines that can be put in
place quickly to achieve rapid bottom-line results. Successful
implementation of these essential details should ensure big sav-
ings. Of course, these practices cannot save “death march” pro-
grams that are expected to deliver under impossible schedule
deadlines with inadequate funding and without the required
skilled staff. ◆

About the Author
Jane T. Lochner is a 1984 U.S. Naval Academy graduate. She
served aboard USS Norton Sound (AVM-1) and USS Cape Cod
(AD-43). She was selected to the Engineering Duty community in
1988. She has extensive experience with developing and fielding
complex, real-time combat systems on aircraft carriers and large-
deck amphibious ships. Currently, she is assigned to the Office of
the Assistant Secretary of the Navy for Research, Development, and
Acquisition working command, control, communications, comput-
ers, intelligence, surveillance, and reconnaissance and interoperabil-
ity issues. She holds a bachelor’s degree in marine engineering, mas-
ter’s degrees in logistics, applied physics, and computer science, and
is a graduate of the Defense Systems Management College Program
Manager’s course.

U.S. Navy
1000 Navy Pentagon
Washington, D.C. 20350-1000
Voice: 703-602-6887
Fax: 703-601-0346
E-mail: lochner.jane@hq.navy.mil

16 Critical Software Practices for Performance-Based Management

