
CROSSTALK The Journal of Defense Software Engineering 23May 1998

Testing applications for year
2000 (Y2K) compliance is the
equivalent of seeking a safe har-

bor for an anticipated storm. The meta-
phorical storm will be the organizational
and economic disruption that could
result from the failure of critical com-
puter systems to function correctly as a
result of the date change from 1999 to
2000. The safe harbor thus sought is to
ensure, in advance, that the computer
systems within the control of the organi-
zation will function correctly and will
therefore ensure the business against loss.

The complete version of this article
details the steps that must be taken to
enter that safe harbor or, if this is im-
practical or inadvisibly expensive to
reach, to arrive as close as possible with
available resources. However, the scope
of the complete article is limited to
testing internal application programs.
Application systems sited within the
organization, if found to be at fault, can
be repaired either with in-house or con-
tractor staff or with staff of the licensing
vendor. Application systems sited out-
side the organization that interface to
internal application systems must be
examined to ensure the data they send
and receive remain compatible and that
appropriate actions be taken with the
correspondent party if incompatibilities

are found and not fixed. Nonapplication
systems, if found to be at fault, can in
most cases only be replaced.

The primary issue of application
testing is that it is not mathematically
feasible to test all programs to a level of
100 percent certainty. It may be possible
to get close enough to 100 percent to
constitute no practical difference—or
the scale of the task, the elapsed time
required, or associated costs may be so
great that significantly less than 100
percent may be the best that can be
realistically achieved. Thus, there is the
preferred case of risk minimization,
which is close to 100 percent, vs. the
alternative case of risk optimization,
which tries to minimize the risk to the
business while accepting that some level
of risk will be unavoidable.

Ultimately, the problem can be
reduced to a risk vs. cost trade-off.
Widely quoted statistics put the cost of
testing for a Y2K project at 40 percent
to 60 percent of the total cost of the
project or roughly a 2-to-1 or 3-to-1
ratio over the cost of renovation. Low
accuracy requirement applications, such
as noncritical government service appli-
cations, may require less than a 1-to-1
ratio of cost of testing to cost of renova-
tion. Conversely, where extremely high
accuracy is required, as is frequently the
case in the financial industry, the cost
can exceed 80 percent of the total cost
or more than a 5-to-1 ratio of the cost
of renovation. The higher the accuracy
required and achieved, the lower the
resulting risk of business disruption but

the higher the cost. It has been fre-
quently observed that Y2K testing
projects lack sufficient resources for
testing to even a modest level of accu-
racy, and reaching the business case
level of accuracy may require substan-
tial increases in resources.

Testing is required to ensure that
Y2K compliance modifications made to
programs do not introduce new prob-
lems and to assure that the programs will
continue to operate correctly as the data
they process begins to include dates in
the 2000s as well as in the 1900s. How-
ever, what will be the consequence of
inadequate testing? For mainframe and
client-server systems, undetected residual
program faults will show up in one of
two ways:
• Outright program failure, forcing a

halt to at least some part of the
application processing until the
program can be repaired.

• Data corruption, which will force
the application completely off-line
until the program problem causing
the corruption is traced, repaired,
and tested and the data errors are
repaired.
It is important to keep in mind that

any significant data processing installa-
tion has some level of faults, as any user
of desktop software is reminded daily.
However, most faults are too trivial to
worry about. Provided there is sufficient
staff to cope with nontrivial problems
and there is contingency backup for rare
crisis situations, it is a containable level
of faults.

Year 2000 Automated Testing
A Summary

DDDDDon Esteson Esteson Esteson Esteson Estes
2000 2000 2000 2000 2000 TTTTTechnologies Corporechnologies Corporechnologies Corporechnologies Corporechnologies Corporationationationationation

© 2000 Technologies Corporation 1997. Permis-
sion is granted for reproduction and distribution of
this document provided it is complete, unmodified,
and retains all identification including this state-
ment, and provided that notification of recipient is
sent to the above E-mail address. All other repro-
duction and distribution is expressly forbidden.

For many organizations, it is neither practically nor financially feasible to test all year
2000 program fixes to a level of accuracy that approaches 100 percent. However, there
are guidelines to determine whether a system, when it is fielded, is likely to have a
containable level of faults. Several automated testing techniques can help attain this
level of assurance while helping work within time and financial constraints. This is a
summary of a much longer working paper that can be found in the May 1998 Internet
version of CROSSTALK at http://www.stsc.hill.af.mil/CrossTalk/crostalk.html.



24 CROSSTALK The Journal of Defense Software Engineering May 1998

The difference in a Y2K applica-
tion failure situation is a matter of
degree, not of kind. The level of daily
faults will reach a point that will over-
whelm the support staff; the contin-
gency backup support, which is de-
signed for isolated crises, will also be
overwhelmed by simultaneous crisis
calls from too many sites. The faults
will come in waves as critical dates are
reached for each application, and the
faults will build to a peak around the
end of 1999 and the beginning of
2000. Faults will start to recede after
March 1, 2000, although new failures
will continue for some time. We are
already seeing a few cases of significant
Y2K faults, although so far none have
been overwhelming.

If a testing project fails to complete
full testing, it does not necessarily fol-
low that the renovated application will
fail in production. In some cases, the
level of undetected faults will be con-
tainable in practice. In other cases,
undetected faults will not be contain-
able, and damage to the business will
result. The business purpose behind

significant testing projects is to take
chance out of the equation and to
provide an insurance policy against
damage. In this sense, the cost of the
testing project can be considered the
premium on an insurance policy.

The complete version of this article
details what is required to achieve risk
minimization using conventional test-
ing methods, how to proceed in a risk
and cost optimization testing project
using conventional testing, and a dis-
cussion of some innovative technical
approaches to introduce economies of
scale by automating the process of
testing. Where applicable, automated
testing can allow a testing project to
move significantly closer to the risk
minimization model within the limits
of what is practical and affordable. ◆

About the Author
DDDDDon Esteson Esteson Esteson Esteson Estes is chief technology officer for
2000 Technologies Corporation, for
whom he has designed and implemented
both a data encapsulation and an auto-
mated testing system. He also works
closely with vendors of limited window-

ing, program encapsu-
lation, and object code
remediation systems.
He has been involved
with COBOL and
database applications
for 25 years and data-
base and mainframe

performance tuning for 10 years. For the
last seven years, he has helped design and
execute projects for the mass modifica-
tion of large bodies of source code, pri-
marily for platform migration, using
state-of-the-art automated source lan-
guage transformation technologies and
automated testing methods. He is a regu-
lar contributor to Peter de Jager’s Year
2000 mail list, where he is known for his
contributions relating to Y2K rapid com-
pliance strategies and automated testing.
Estes is a graduate of Massachusetts Insti-
tute of Technology in physics, with a
postgraduate degree from the University
of Texas in educational psychology.

2000 Technologies Corporation
114 Waltham Street, Suite 19
Lexington, MA 02173
Voice: 781-860-5277, 800-756-8046
E-mail: info@2000technologies.com

inspections unless they start seeing value for the dollars spent.
They need to see the business payback in quantitative terms.
The business value analysis should compare the cost (hours per
major defect) for defects found in inspections with the cost for
each test activity. If you have not been collecting this data for
the test activities, you may need to have developers and testers
estimate the number of hours they believe it takes to find de-
fects during each test activity. ◆

About the Author
JJJJJohn ohn ohn ohn ohn TTTTT. H. H. H. H. Hararararardingdingdingdingding is one of the founding partners of Software
Technology Transition, which provides training and implemen-
tation in the Software Engineering Institute (SEI) Capability
Maturity Model (CMM) and CMM-Based Appraisal for Inter-
nal Process Improvement method and in software inspections,
metrics, and project management. Other work includes the
International Organization for Standardization (ISO) gap analy-
sis, helping organizations develop business and software base-
lines, and action planning for software process improvement.
He was a visiting scientist at the SEI, was the metrics mission
manager for Groupe Bull, and held various technical and mana-
gerial positions in software development with IBM and the
Bank of Boston. He has a master’s degree in business adminis-
tration from Boston University and a bachelor’s degree from
Rensselaer Polytechnic Institute (RPI) and is a member of the

Association for Computing Machinery and the Institute of
Electrical and Electronics Engineers.

Software Technology Transition
60 Elm Street
Andover, MA 01810
Voice and fax: 978-475-5432
E-mail: johntharding@compuserve.com

Recommended Reading
1. Ebenau, R.G. and S.H. Strauss, Software Inspection Process,

McGraw-Hill, New York, 1994.
2. Gilb, T. and Dorothy Graham, Software Inspections, Addison-

Wesley, Reading, Mass., 1993.
3. Weller, E.F., “Lessons From Three Years of Inspection Data,”

IEEE Software, September 1993, pp. 38-45.
4. Weller, E.F., “Using Metrics to Manage Software Projects,” IEEE

Computer, September 1994, pp. 27-33.
5. Grady, Robert B. and Deborah L. Caswell, Software Metrics:

Establishing a Company-Wide Program, Prentice-Hall, Englewood
Cliffs, N.J., 1987.

6. Grady, Robert B., Practical Software Metrics for Project Manage-
ment and Process Improvement, Prentice-Hall, Englewood Cliffs,
N.J., 1992.

7. Ishikawa, Kaoru, Guide to Quality Control, Asian Productivity
Organization, Tokyo, 1976.

8. Burr, Adrian and Mal Owen, Statistical Methods for Software
Quality, International Thomson Computer Press, London, 1996.

HARDING, from page 22

Software Engineering Technology


