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From the Publisher

As government technical
teams downsize and
budgets shrink in tan-
dem with an increasing
demand for more com-
plex systems, there is a
rising interest in leverag-

ing the use of commercial-off-the-shelf
(COTS) products. In many cases, the use
of COTS is mandated. Is it possible to
over-emphasize the use of COTS prod-
ucts? For example, what checks would
you expect prior to flying on a new air-
craft with a software system composed of
integrated COTS? Far from the promised
panacea, the use of COTS components
introduces new trade-offs and issues,
especially with risk management, compo-
nent integration, system reliability, and
cost of sustainment.

Is there a limit to what can be de-
fined as COTS? Can all future deliver-
ables of a developed product be consid-
ered COTS? If so, what is the
implication for Department of Defense
(DoD) acquisitions? The new DoD
Directive 8000.1 for the Management of
DoD Information and Information
Technology (IT) (http://www.cio.hq.
af.mil/dodctext.htm) sharpens the blades
of COTS and outsourcing policies by

providing the mechanism for DoD
compliance with the Cohen-Clinger Act
(also known as the IT Management
Reform Act of 1996 (see CROSSTALK,
September 1997). It applies to all DoD
IT, even IT in national security systems
(to include embedded, crypto, intelli-
gence, and command and control sys-
tems). In other words, the law and the
new DoD directive provide an all-en-
compassing definition of information
and IT. DoD Directive 8000.1 requires
an assessment of where the IT function
could be performed most effectively:
within DoD, by another government
source, or in the private sector. It also
advocates the principal of fee-for-service
in governing the provisioning of infor-
mation services and IT capabilities.
Considering the law and the new DoD
directive, how far can the use of COTS
be applied (and pressure applied by
external sources)? Consider space-based
capabilities that have been delivered
before, especially since they are now
covered by the IT umbrella. Why
couldn’t DoD simply be expected to
request an on-orbit COTS (or COTS-
based) system with a specified capability,
capacity, and availability in a particular
orbit by a specified date? Based on the
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law and the DoD IT directive, this must
be considered a viable alternative.

COTS software offers the ability to
quickly adapt to evolving mission and
business environments with lower up-
front costs; however, many projects are
finding that the promise of COTS com-
ponents does not quite match expecta-
tions. The May 1997 issue of CROSSTALK

offered several articles that tackled the
relevant question, “Is COTS worthy of
worship?” “The Commandments of
COTS: Still in Search of the Promised
Land” is worth reviewing and should be
provided to senior leaders who believe
COTS is the ultimate answer to all their
software challenges.

In this issue, “The Opportunities and
Complexities of Applying Commercial-
Off-the-Shelf Components” (page 4)
provides managers with a better under-
standing of COTS. The COTS mandate
challenges system developers to integrate
COTS components into systems without
compromising the strict reliability and
availability required in mission-critical
systems. Most COTS components are
essentially “black boxes” with no war-
ranty. Systems must maintain their exist-
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No. 228-M
MEMORANDUM FOR CORRESPONDENTS December 16, 1997

The Office of the Under Secretary of Defense for Acquisition and Technology (OUSD(A&T)) recently recom-
mended that Capability Maturity Model (CMM) Integration (CMMI) be the number one Software Engi-
neering Institute’s (SEI) priority in its process management work. The Software Engineering Institute is located
at Carnegie Mellon University in Pittsburgh, Pa. The department has recommended that SEI construct tailored
CMMs from both common building blocks and discipline-specific elements. This approach will ensure consis-
tency among all tailored CMMs and will eliminate the need to apply a variety of CMMs to a single organization.

“The Department of Defense vision is that existing and future CMMs will be integrated into one framework
which addresses Acquisition Reform, process improvement from an integrated product and process develop-
ment perspective and contain sound principles of systems development,” said Mark Schaeffer, deputy director
for systems test, systems engineering and evaluation, OUSD(A&T).

The new approach for CMM integration is different from that of the SEI’s first release of the Common CMM
Framework. The SEI is pursuing this new strategic approach to meet its sponsor’s and customers’ needs for
integrated CMMs that range from single domain to enterprise-wide within the same framework. The SEI
developed the Software Capability Maturity Model (SW-CMM), which has been widely adopted and used
throughout both the government and corporate worlds. The SEI’s sponsor requested the SEI to delay the re-
lease of SW-CMM, Version 2.0 for several months until the CMMI Framework can be defined and approved.
This is also intended to reduce confusion among customers as a process improvement framework for multiple
disciplines is developed.

Meanwhile, the SEI continues to support SW-CMM, Version 1.1 and its associated products. The information
contained in Draft C of SW-CMM, Version 2.0, which is currently available on the SEI Web site, will provide
industry partners advanced notice of the changes to Levels IV and V processes, and allow comments to be fed
back for incorporation into CMMI. The Department of Defense (DoD) and the SEI encourage all involved in
software process improvement to review and provide feedback on Draft C of the SW-CMM, Version 2.0 pub-
lication, which is on the SEI Web site at the URL: http://www.sei.cmu.edu/technology/cmm/cg.html.

For further information concerning CMMI, please contact Terrence McGillen, Software Engineering Institute,
Carnegie Mellon University, 412-268-7394. The DoD Public Affairs point of contact is Lt. Col. Bob Potter,
703-697-3189.

Policy and Management

ing level of performance even when
upgraded components are introduced.

A software fault-tolerant architecture
is needed to help developers modify
existing applications with upgraded
COTS software components. The Soft-
ware Engineering Institute has developed
a framework called the “Simplex Archi-
tecture” that addresses the challenges of
using COTS in high-reliability systems
(page 7). The framework integrates high-
assurance application-kernel technology,
address-space protection mechanisms,
real-time scheduling algorithms, and

methods for dynamic communication
among modules.

Although COTS products offer chal-
lenges, COTS software is a viable means
to cost-effectively satisfy mission require-
ments. To minimize the need to develop
unique systems, I continue to advise
project teams to consider COTS when
defining operational requirements and
business processes. Some people advo-
cate disregarding existing products and
services when defining requirements and
processes so they will not be bound by
existing technology, but this can lead to
reinventing the wheel. Projects need to
have people who are knowledgeable of
the plethora of existing COTS products

and services so they can recommend
tailoring opportunities when defining
requirements and processes. If you do
not have at least one COTS-knowledge-
able person on your team who can ar-
ticulate the project realities of using
COTS products, you should seek that
support.

I suggest you read the new DoD
Directive 8000.1 to understand how it
applies to your projects. In light of
COTS and outsourcing mandates and
the new DoD IT directive, project man-
agers need to understand what lawmak-
ers, audit agencies, and senior DoD
leaders might be considering in review-
ing their programs.  u

COTS, from page 2
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Government acquisition policies
for software-intensive systems
now emphasize the use of exist-

ing commercial products. Requests for
Proposals often require the use of spe-
cific COTS products and sometimes
specify the amounts to be used. As
systems are reengineered, many include
the use of COTS products. And as
government budgets shrink and the
desire for increasingly complex systems
continues, there is rising interest in
leveraging the use of commercially
available products when possible.

Although on the surface “the COTS
solution” appears straightforward and
compelling, projects that apply COTS
find its use less than straightforward.
Rather, they encounter significant new
trade-offs and issues. Applying COTS
products is not merely a technical mat-
ter for system integrators. It has a pro-
found impact on business, acquisition,
and management practices, and organi-
zational structures. Compounding the
problem is the limited experience and
guidance currently available on how to
effectively approach system develop-
ment with commercial components.

The Software Engineering Institute
(SEI), along with other key organiza-
tions associated with the government
and civil agencies, is creating and assem-
bling best practice guidance for acquisi-
tion and program managers, integrators,
and testers through case studies, hands-
on support, and analysis. This article is
one of several venues the SEI is leverag-
ing to provide acquisition managers and
policy makers with an understanding of
what is different in the development of

systems with COTS products and why
and what new capabilities are being
identified. Due to the brevity of this
article, the discussion is limited to a few
essential aspects of the differences and
capabilities of COTS products.

What Is Different with COTS-
Based Systems?
COTS products can be applied to a
spectrum of systems. At one end of the
spectrum are nearly packaged software
solutions, such as Microsoft Office or
Common Desktop Environment, that
require no integration with other com-
ponents. These systems map well to the
needs and operations of the government.

Further along the spectrum are
COTS products that support the infor-
mation management domain, such as
Oracle or Sybase. These systems typically
consist of both COTS products and
custom components, with COTS prod-
ucts making up the majority of the sys-
tem. Depending on how well the COTS
products and custom components fit
together, a small to moderate amount of
customization is usually required to
enable them to work cooperatively.

At the other end of the spectrum,
there are systems composed of a com-
plex mix of commercial and noncom-
mercial products that provide large-
scale functionality that is otherwise not
available. Such systems typically require
large amounts of “glue” code to inte-
grate the set of components. These
systems are typically in the embedded,
real-time, or safety-critical domains.

Using COTS products for applica-
tions at the packaged software solutions

end of the spectrum is relatively
straightforward; however, using them
for complex systems further along the
spectrum is not. This article focuses on
the issues and complications that arise
when constructing complex systems
with COTS products.

Fundamental Paradigm Change
Traditionally, organizations develop
systems from scratch with control over
all or most of the pieces. They
• collect and define requirements.
• identify an architecture to satisfy the

requirements.
• design in detail individual sub-

systems to fit within the architecture.
• code, test, and debug modules to

meet the specified requirements.
• integrate sets of modules and sub-

systems into the complete system.
With the use of COTS as compo-

nents for a system, a fundamental
change occurs: an organization now
composes the system from building blocks
that may or may not (generally do not)
work cooperatively directly out of the
box. The organization will require skilled
engineering expertise to determine how
to make a set of components work coop-
eratively—and at what cost.

This fundamental shift from devel-
opment to composition causes numer-
ous technical, organizational, manage-
ment, and business changes. Some of
these changes are obvious, whereas oth-
ers are quite subtle, but if not addressed,
either type of change can cause severe
problems for the project. Consequently,
organizations may have to modify their

The Opportunities and Complexities of Applying
Commercial-Off-the-Shelf  Components

Lisa Brownsword, David Carney, and Tricia Oberndorf
Software Engineering Institute

Government acquisition policies for software-intensive systems emphasize the use of commer-
cial-off-the-shelf (COTS) products. On the surface, “the COTS solution” appears straightfor-
ward. In actuality, many projects find its use less than straightforward. This article provides
acquisition managers and policy makers with a basic understanding of how developing systems
with COTS products is different and why and what new COTS capabilities are being identified.

COTS Software
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procedures and structures and, in some
cases, create entirely new procedures.

Impact on Typical Lifecycle
Activities
Regardless of which lifecycle model an
organization uses (waterfall, spiral, or
iterative), they perform requirements,
architecture, detailed design, code, test,
and system integration activities. The
use of COTS products has a pervasive
impact on all lifecycle activities. This is
illustrated by briefly examining the
impact to requirements, testing, and
maintenance activities.

Requirements describe the desired
system behavior and capability with a set
of specified conditions. For a COTS-
based system, the specified requirements
must be sufficiently flexible to accom-
modate a variety of available commercial
products and their associated fluctua-
tions over time. To write such require-
ments, the author must know enough
about the commercial marketplace to
describe functional features for which
commercial products exist.

There is a critical relationship
among technology and product selec-
tion, requirement specification, and
architecture definition. If you define
your architecture to fulfill your require-
ments and then select your COTS
products, you may have only a few or
no available products that fit within the
chosen architecture. Pragmatically,
three essential elements (requirements,
architecture, and product selection)
must be worked in parallel with con-
stant trade-offs among them.

As the testing of COTS-based sys-
tems is considered, you must determine
what levels of testing are possible or
needed. A COTS product is a “black
box” and therefore changes the nature of
testing. A system may use only a partial
set of features of a given COTS product.
Should you test only the features used in
the system? How do you test for failures
in used features that may have abnormal
behavior due to unknown dependencies
between the used and unused features of
a COTS product?

Maintenance also changes in funda-
mental ways—it is no longer solely con-
cerned with fixing existing behavior or

incorporating new mission needs. Ven-
dors update their COTS products on
their own schedules and at differing
intervals. Also, a vendor may elect to
eliminate, change, add, or combine
features for a release. Updates to one
COTS product, such as new file formats
or naming convention changes, can have
unforeseen consequences for other
COTS products in the system. To fur-
ther complicate maintenance, all COTS
products require continual attention to
license expirations and changes. All these
events routinely occur. All these activities
may (and typically do) start well before
an organization fields the system or
major upgrade. Pragmatically, the dis-
tinction between development and
maintenance all but disappears.

Emergence of Nontypical
Activities
We can view the commercial market-
place as a continuous “product con-
veyor belt”—the marketplace con-
stantly adds new products and
technology to the belt, existing prod-
ucts evolve through continuous up-
grades, and vendors remove products
from the marketplace. The government
has limited influence (and no direct
control) over the speed, content, or
variety of products on the product belt.

Consumers, such as the government,
must constantly keep abreast of the state
of the product belt. This requires new
activities (with associated resource re-
quirements) in the area of technology
and product evaluation. Consumers
must identify potential technologies and
products, qualify candidates for fit
within their system, and perform trade-
off analysis between competing tech-
nologies and products. An organization
must continuously perform the entire
process of monitoring, evaluating, quali-
fying, and analyzing the impact of tech-
nology and products given the constant
changes within the commercial market-
place. We should add that technology
and product awareness and evaluation
are not activities that the government
can merely relegate to its contractors.
The government must also have such a
capability if it is to specify and manage
its systems wisely.

Assembling COTS products also
presents new difficulties. Although soft-
ware COTS products are attempting to
simulate the “plug-and-play” capability
of the hardware world, in today’s reality,
software COTS products seldom plug
into anything easily. Most products
require some amount of adaptation to
work harmoniously with the other com-
mercial or custom components in the
system. The typical solution is to adapt
each software COTS product through
the use of “wrappers,” “bridges,” or
other “glueware.” It is important to note
that adaptation does not imply modifica-
tion of the COTS product. However,
adaptation can be a complex activity that
requires technical expertise at the de-
tailed system and specific COTS compo-
nent levels. Adaptation must take into
account the interactions among custom
components, COTS products, any non-
developmental item components, any
legacy code, and the architecture, includ-
ing infrastructure and middleware ele-
ments. This adaptation process has a
cost—a potentially high one.

What Should an Acquisition or
Program Manager Do to Get
Started Using COTS?
Applying a COTS solution requires the
government to create and maintain new
competencies. We have alluded to a
number of essential capabilities
throughout the article. The following
sections identify a number of actions to
establish an effective infrastructure for
the use of COTS products. These ac-
tions are not intended as a road map or
to be all-inclusive. Rather, they are a set
of practical actions to help organiza-
tions start to develop the necessary
knowledge and experience base. We
recommend that organizations begin
now—ideally before the first (or next)
COTS-based system development,
reengineering, or maintenance project.

Know the Regulations
There are various policies, regulations,
and directives relative to the general
use of commercial products. Policies
also exist concerning the use of specific
COTS products such as the Distrib-
uted Information Infrastructure Com-

The Opportunities and Complexities of Applying Commercial-Off-the-Shelf  Components
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mon Operating Environment. Under-
stand what policies and directives
apply and how they apply to your
particular systems. Situations or direc-
tives may change. Therefore, an orga-
nization should have a “regulations
guru” available whose ongoing work is
to remain informed of the various
government regulations and their im-
pact to the organization’s systems.

Know Your Marketplace
The COTS marketplace is huge and
continually changes. Determine which
subsets of the marketplace are relevant
to your systems. Develop dedicated
resources to become conversant with
the available and emerging COTS tech-
nologies and products, and determine
their impact for your applications.

Know How to Evaluate
Technologies and Products
Determining which products and tech-
nologies are most appropriate for a
given system requires more than a mar-
ket survey based on marketing literature
and vendor demonstrations. Know how
to develop evaluation criteria, conduct
a satisfactory evaluation, and select
viable technologies and products based
on your criteria. Determine the amount
of time to allocate for evaluation during
the acquisition. Leverage previous
projects to experiment with developing
the expertise required.

Know How to Develop Requirements
It is vital to understand how to specify
requirements; this strikes the optimum
balance between desired user function-
ality and the available COTS product.
Know how to make trade-offs between
COTS products, your architecture, and
your requirements. Again, leverage
previous projects to experiment with
developing the required expertise.

Know How to Manage System and
COTS Product Evolution
Learn how the development and main-
tenance of your systems will need to
change as a result of the continual re-
lease of COTS product updates. Some
sample areas to investigate include
scheduling of COTS product updates

into your baseline, impact analysis to
determine potential interactions and
changes to existing components, impact
analysis to the operations of the fielded
system, and identification and manage-
ment of licensing issues for your in-
tended COTS products.

Determine How to Build Your
Business Case
Although the motivation for the use of
COTS products for many organizations
is cost savings, an organization should
address the many business unknowns
prior to making that determination.
How are the costs of both the initial
and recurring adaptation throughout
maintenance determined? How should
a program manager make the business
case if the total lifecycle cost is higher?

Develop a Metrics Database to
Determine Your Business Case
Currently, there is little data on the
cost, schedule, or quality benefits of
COTS-based systems. Begin collecting
the data needed to develop a realistic
business case. Such data might include
cost, time distribution across lifecycle
activities, defects after the system is
fielded, or efficiencies gained or lost in
field operations.

Final Remarks
Even if an organization obtains some
parts from commercial sources, a
COTS-based system is still a system with
requirements. Only the people who pay
for, maintain, and use a COTS-based
system are concerned about the quality
of the system—vendors are not. Organi-
zations must still design, assemble, test,
manage, and maintain the system. There
is no magic. There is no COTS “silver
bullet.” The government’s responsibility
for its systems is not eliminated or re-
duced by a reliance on COTS products.

COTS systems require acquisition
and program managers, policy makers,
systems integrators, and system designers
to become smart consumers by under-
standing the business, management,
organizational, and technical implica-
tions of applying COTS products to
system development or reengineering.
The worst thing you can do is treat the

shift toward the use of COTS products
as merely a change in technology. u
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The Challenges
To cut costs and gain leverage from
technical advances in the commercial
sector, the Department of Defense
(DoD) has actively encouraged the
more frequent use of commercial-off-
the-shelf (COTS) components in its
software systems. This DoD mandate
challenges systems developers to inte-
grate COTS components into systems
without compromising the strict reli-
ability and availability requirements of
DoD applications. What is more, there
are significant strategic and tactical
advantages afforded by the ability to
adapt quickly to changing situations.
These potential advantages challenge
developers of DoD systems to find ways
to modify and upgrade system compo-
nents more quickly while reducing the
possibility of error.

In hardware, problems inherent in
the use of COTS components in
harsher environments—such as those in
which DoD systems operate—can often
be solved by packaging. System-level
hardware reliability can also be im-
proved by the use of standard fault-
tolerance technologies. For example,
COTS hardware components can be
replicated (replication) and a vote can
be taken on their outputs (majority
voting). These methods can provide
significant protection from hardware
faults.

To ensure the reliability of software
is far more difficult. Statistics from the
field indicate that software faults cause
system failures about 10 times more
often than hardware faults [1]. Al-
though a high-assurance software devel-
opment process can significantly reduce
the number of software faults, such
processes are typically used only for
custom-made software—software de-
signed to one customer’s specifications.
Most COTS software components,
however, are sold as “black boxes” with
no warranty and are not typically sub-
ject to rigid development, verification,
or testing processes. It often is possible
to obtain the source code of a COTS
software component by paying a large
sum of money to the vendor. With the
source code, the customer can then
subject the COTS components to a
high-assurance inspection and testing
process and make any modifications
that are needed. But once a COTS
software component has been modified,
it is no longer COTS software, and
because the modified COTS software is
no longer compatible with the vendor’s
future releases, most if not all of the
benefits of the COTS approach are lost.
Therefore, this approach—making
proprietary modifications to COTS
components—is inconsistent with the
original motivation for their use.

Existing architectures cannot tolerate
software faults, including faults caused
by COTS components or by component
changes. This makes the DoD mandate
to increase the use of COTS compo-

nents a challenge to implement. Systems
must maintain their existing level of
performance even when upgraded com-
ponents are introduced and do not work
under all circumstances. For COTS
components to be used safely and effec-
tively, a software fault-tolerant architec-
ture—one that allows developers to
modify existing applications and to try
out new or upgraded COTS software
components easily, affordably, and reli-
ably—is essential.

Simplex Architecture: Meeting the Challenges of
Using COTS in High-Reliability Systems

Lui Sha, John B. Goodenough, and Bill Pollak
Software Engineering Institute

Since the end of the Cold War and the downsizing of military budgets, it has been more important
than ever that mission-critical systems be reliable, affordable, and capable of evolving to prevent
obsolescence. Furthermore, as operational software systems play a more critical role in both military
and nonmilitary applications, the need for dependability in all software systems is increasing. In
this article, we review a new combination of existing technologies that can meet these challenges.

Figure 1. Analytically redundant module: a
hardware example.

The SEI’s work is supported by the Department of
Defense. An earlier version of this article appeared
in Bridge (August 1997), a publication of the Soft-
ware Engineering Institute.

Mechanical Steering

Power Steering

Performance

When the power steering device is in use, an increased
level of performance results to the system overall.

Mechanical Steering

Power Steering

Reliability

When the power steering device fails, the mechanical
steering device still works, resulting in a working system
with limited performance.
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The Simplex Architecture Solution
Replication and majority voting are effective tools for dealing
with random hardware faults. The probability that the major-
ity of replicated hardware components will have the same
random fault is extremely small. Unfortunately, replication
and majority voting are ineffective against software faults.
Given the same inputs, replicated software components will
produce the same results, right or wrong.

N-version programming is an approach that is intended
to randomize software errors and thus make majority voting
work for software faults. In this technique, different pro-
grammers build different versions of the same software (or
critical parts of a software system) with the idea that different
designers and implementers will produce different errors.
Therefore, when one system fails under a given set of circum-
stances, the other probably will not fail. A pragmatic way to
use N-version programming is to use different vendors’
COTS components with the same interface. For example, in
the Boeing 777, three different vendors’ Ada run-times and
compilers are used [2]. However, because some studies have
indicated that some errors will still be shared among the
independently developed systems [3], the FAA DO 178B
certification process requires that each of the run-times be
certified together with the applications. As pointed out by
FAA DO 178B, N-version programming may provide some
reliability improvement, but the improvement cannot be
quantified, and the results cannot be relied on.

Software faults are the result of product complexity that is
beyond the developers’ capabilities in specification, design,
verification, and testing. A well-established engineering ap-
proach to guard against the failures of a complex system is to
provide a simpler back-up system with assured reliability. For
example, the power-assisted steering system in cars is built on
and backed up with a simpler mechanical steering system.
The two steering systems are not different designs that meet a
common specification; the requirements for them are differ-
ent. One set of requirements emphasizes performance (ease
of steering) while the other emphasizes reliability: safe opera-
tion even in the presence of engine or hydraulic-system fail-
ure. The mechanical steering system is said to be analytically
redundant with the power-assisted steering system in the
sense that it provides just enough of the power steering
system’s performance to assure safety (see Figure 1). Power-
assisted brakes follow the same principle.

Analytic redundancy can be and has been applied to soft-
ware systems. Using analytic redundancy, a system is parti-
tioned into a high-assurance portion and a high-performance
portion. The high-assurance application kernel is designed to
ensure simplicity and reliability. Because of the need to apply
costly high-assurance processes to the kernel, the system must
be designed such that the rate of changes to the high-assur-
ance kernel is much slower than the rate of changes to the
high-performance subsystem. Therefore, COTS components
with uncertain reliability are not used in the high-assurance
kernel. On the other hand, COTS components can be used
extensively in the high-performance subsystem. This model is

applied in the Boeing 777: a high-assurance backup software
controller, known as the secondary digital controller, imple-
ments the tried-and-true 747 control laws, whereas a high-
performance 777 software controller serves as the normal
digital controller [2].

To do the right control job, the high-performance sub-
system receives information from a wider variety of sensors
compared to the information that the high-assurance kernel
receives. The kernel monitors the system state. If the sub-
system is driving the system toward a state that the kernel
cannot control, the kernel dynamically takes over, meaning
that the kernel’s outputs are used instead of those of the high-
performance subsystem. The kernel can reset and restart the
subsystem if and when certain constraints are violated. After
the kernel has successfully brought the system back to a new
and stable system state, the kernel switches control back to
the high-performance subsystem (Figure 2). Since residual
software errors are activated only infrequently in certain
system states, the subsystem will behave correctly most of the
time. This approach works well for systems that have states
that can be monitored, such as feedback control and com-
mand-and-control applications.

When combined with technologies for real-time comput-
ing and component swapping, this approach can also be used
to implement upgrades to the high-performance subsystem
while the system is on-line. The upgrade need not be per-
fectly reliable. Failures in upgrades of the high-performance
subsystem are no different from the activation of residual
errors in the subsystem: The kernel will take over if the new
subsystem misbehaves. In addition, the kernel can dynami-
cally return control back to the old version of a component
when the upgrade fails, as shown in Figure 3.

Software engineers at the Software Engineering Institute
(SEI) have integrated well-established technologies—high-
assurance application-kernel technology, address-space pro-
tection mechanisms, real-time scheduling algorithms, and

Figure 2. Run-time replaceable analytically redundant unit.

�  Enhanced Features
and Functions

�  Performance Monitoring
and Data Logging Unit

�  Safety Controller
�  Safety Switching Rules

High-Performance Subsystem

High-Assurance Kernel

Input

Input

Output

COTS Software



CROSSTALK The Journal of Defense Software Engineering 9April 1998

methods for dynamic communication
among modules—to create a frame-
work for the reliable evolution of soft-
ware systems. This framework is called
the Simplex architecture [4]. Although
most of the technologies upon which
the Simplex architecture is based have
existed for some time, the increased
adoption of these technologies is mak-
ing the Simplex architecture increas-
ingly viable.

Under the Simplex architecture,
each major system function is imple-
mented as an analytically redundant
module consisting of a high-assurance
application kernel and a high-perfor-
mance subsystem, the components of
which can be swapped in real time.
Like power-assisted steering and power-
assisted brakes in a car, analytically
redundant software modules can be put
together to form an application just as
any modules can, except that the com-
ponents in an analytically redundant
module can be replaced easily, reliably,
and with no adverse effect on the rest of
the system. Should the high-perfor-
mance portion prove through deploy-
ment to be sufficiently reliable, the
Simplex architecture also permits users
to replace an analytically redundant
module with a nonredundant software
module consisting only of the high-
performance portion. In this way, users
can dynamically balance the sometimes
conflicting concerns of reliability and
efficiency.

In addition to the maintenance of
system reliability when COTS software
is used, Simplex has proven to be useful
for other dependable-system applica-
tions. The SEI has participated in sev-
eral pilot studies that have tested the
concepts described in this article in
prototypes of real-world applications.
These include
• The INSERT (INcremental Soft-

ware Evolution for Real-Time appli-
cations) project: The objective of
this project is to generalize and scale
up the technologies of the Simplex
architecture for dependable evolu-
tion of on-board avionics systems.
The problem of upgrading mission-
control software for the F-16 air-
craft is being used as a demonstra-
tion vehicle. The sponsors are the
Defense Advanced Research Projects
Agency Evolutionary Design of
Complex Software Programs and
the Air Force Research Laboratory
(AFRL). The participants are AFRL,
Lockheed Martin, Carnegie Mellon
University, and the SEI.

• New Attack Submarine Program
fault-tolerant submarine control:
The objective of this project is to
develop, demonstrate, and transi-
tion a COTS-based fault-tolerant
control system that can be upgraded
inexpensively and dependably. The
sponsors are the Office of Naval
Research (ONR) and Naval Systems
Engineering Activity PMS-450. The

participants are Naval Surface War-
fare Center, Carderock Division,
ONR, Electric Boat Corporation,
and the SEI.

• CMU’s Real-Time Multivariable
Control of Plasma-Enhanced
Chemical Vapor Deposition project
[5]: The objective of this silicon
wafer manufacturing project is to
demonstrate the use of the Simplex
architecture as a basis for the con-
trol architecture in manufacturing
process-control software. The
project is based on a suggestion by
engineers from SEMATECH
(SEmiconductor MAnufacturing
TECHnology). The participants are
Carnegie Mellon University and the
SEI.
The SEI has also developed demon-

stration prototypes of the Simplex ar-
chitecture. The simplest of these dem-
onstration prototypes can be viewed as
a QuickTime movie on the SEI Web
site (http://www.sei.cmu.edu/technol-
ogy/simplex/SIMPLEX.MOV). In this
demonstration, a feedback-control-loop
device controls the positioning of an
inverted pendulum. The purpose of the
control software is to balance the pen-
dulum in an upright position and keep
it as close to the center position as
possible. The demonstration shows a
safe on-line upgrade from a legacy C
program to an Ada 95 program that
implements an improved control algo-
rithm. The Ada program visibly im-

Figure 3. Analytically redundant module: reliability and performance.
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proves the control performance. When
a bug is introduced into the Ada code
and the flawed Ada program is swapped
back into the system, the system detects
the fault and transfers control back to
the C program. The pendulum remains
in balance throughout the transfer to
the high-performance Ada program, the
transfer to the flawed Ada program, and
the reversion to the C program. Live
interactive demonstrations of more
advanced applications such as distrib-
uted fault-tolerant controls are available
at the SEI for those who wish to pursue
this subject further.

For more information about Sim-
plex architecture, visit the SEI Web site
at http://www.sei.cmu.edu/technol-
ogy/dynamic_systems/simplex/intro-
duction/simplex01.shtml.

Summary
It is more important than ever that
mission-critical systems be reliable,
affordable, and capable of evolving to
prevent obsolescence. In this article, we
have reviewed a set of existing tech-
nologies upon which we can develop an
application architecture that is designed
to meet these challenges.

The early success of analytically
redundant software modules in high-
reliability applications provides grounds
for optimism that the DoD can achieve
the goal of reliable, affordable, evolu-
tionary acquisition of mission-critical
systems that exploit the advantages of
COTS components. u
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Modern software developers
are guided by a variety of
formal and informal processes

that help to organize and control devel-
opment activities across large groups of
developers or multiple organizations.
These processes supply the discipline
and order lacking in many early devel-
opment efforts. The currently available
inventory of documented process meth-
ods has a limitation: most assume the
system being built will be coded largely
from scratch. As a result, the processes
do not address many of the challenges
associated with building systems that
contain large amounts of commercial-
off-the-shelf (COTS) software.

The Infrastructure Incremental De-
velopment Approach (IIDA) is a combi-
nation of the classical development
model and the spiral process model to
accommodate the needs of COTS-based
technical infrastructure development.
Each stage of the development cycle is
augmented with a series of structured
prototypes for COTS product evalua-
tion and integration. This close coupling
of prototyping and development stages
characterizes the IIDA. The critical
success factors for this method are the
early establishment of an integrated
development environment in which to
install the COTS products and early
planning for the prototype integration
and testing environment, including
simulated applications and other test
software.

Application of IIDA
The following describes experiences
using the IIDA method from 1994 to
1997 to develop the initial versions of
an infrastructure to support business
applications developers for a large,
enterprise-wide heterogenous system.
The types of COTS products that were
integrated included
• Operating systems provided by four

different vendors.
• End-user interface COTS software

to provide a common graphical user
interface.

• Middleware COTS products to
provide a uniform transaction pro-
cessing capability.

• Combinations of COTS software
and glue code for specialized ser-
vices such as security and fail-over
recovery.

• Relational database management
systems.

• COTS applications for systems man-
agement, e.g., software distribution
and remote database administration.

Conventional and Unconventional
Wisdom
Assumptions at the beginning of the
development cycle were that the use of
infrastructure COTS products would
provide the following benefits.
• Using COTS products would re-

duce development costs and overall
schedule.

• As a corollary, the development
cycle would be accelerated.

• Feasibility demonstrations could be
put together quickly.

• End-product quality would be
higher as measured by a richer fea-
ture set and increased system ro-

bustness (assuming the selected
COTS product is mature) [1].

• COTS vendors would provide main-
tenance for their COTS products.
The experience of integrating infra-

structure COTS products and devel-
oped code refocused attention and
revealed an additional set of assump-
tions for future developments.
• Accelerated development catapults

you immediately into an integration
and test activity.

• Hands-on evaluation requires early
simulated applications in an inte-
grated environment; these simulated
applications and other test software
can represent significant develop-
ment costs.

• Maintenance on identified problems
is provided by the COTS software
vendor, but problem investigation
and identification by the integrator
are the most costly parts of COTS
software maintenance.

• Maintenance turnaround time by the
vendors can be a significant problem.

Lifecycle Implications
The development method must be
specifically tailored to accommodate
COTS product integration. This entails
a set of assumptions and constraints
quite different from custom-built devel-
opment. Some of the more important
of these follow. For a description of the
referenced development stages (defini-
tion and analysis, functional design,
physical design, and construction and
test), see Part I of this article.

The front-end processes in the defi-
nition and analysis stage must support
concurrent requirements and COTS
product analysis. The analysis prototype

A Software Development Process for COTS-Based
Information System Infrastructure
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Greg Fox and Steven Marcom, TRW

Karen W. Lantner, EDS

Part I of this article (CROSSTALK, March 1998) described the Infrastructure Incremen-
tal Development Approach process model. Part II describes a particular application of
that model and examines the practical lessons learned and pitfalls encountered.
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in the functional design stage must
provide for iteration and a flexible link-
age between the COTS product evalua-
tions and the feedback loop to require-
ments analysis.

During the construction stage, the
development processes acquire a dual
nature when COTS product integration
is introduced. One process path is valid
for COTS product integration, and
another process path is valid for develop-
ing the glue code and custom-built com-
ponents. These two process paths are
equivalent but consist of different activi-
ties and products. In addition, all COTS
products, glue code, and custom-built
components must be integrated together
to complete development.

During the construction stage, the
development of glue code that inte-
grates COTS products and fills in miss-
ing functionality is similar to the devel-
opment of traditional software; the
traditional process of coding, unit test-
ing, and integration is applicable.

For COTS products, the construc-
tion stage is when COTS products un-
dergo detailed tuning and configuration
and when the interfaces and threads
between components are exercised in a
multi-COTS product environment.
COTS product tuning, configuration,
and integration have an analog to code
and unit-test activities. Unit test with
COTS products is “black-box” (vs.
“white-box”) testing, and the focus is on
interfaces and COTS product behavior.
For example, unit testing of the transac-
tion processing monitor consisted of
exercising all the application program-
ming interface (API) calls supported by
the product as configured within the
target environment.

Traditional software maintenance
activities must be expanded in scope and
extended to provide continuing COTS
product support. This support starts
early in the lifecycle. Application devel-
opers must have early deliveries and
training for partially completed infra-
structure functionality to keep their
development lifecycle within reasonable
time frames. Developers also require on-
site, hands-on direct support from infra-
structure developers and integrators to

ensure acceptance and proper use of the
infrastructure products.

Configuration control must be
organized and in place early to accom-
modate multiple versions of the COTS
products and configuration files. Sepa-
rate environments for development and
integration must be well-defined and
structured to accept the delivered
COTS products. Early support for
multiple baselines must be in place as
the combinations of COTS products
become complex.

Throughout the lifecycle, feedback
loops allow ongoing re-evaluation of
the COTS products. Analysis proto-
types (functional design stage) deter-
mine feasibility of a COTS-based solu-
tion and provide feedback to the
requirements definition (definition and
analysis stage). Design prototypes
(physical design stage) provide hands-
on experience with potential COTS
products and feedback to the COTS
product selection process (functional
design stage). Detailed design proto-
types (physical design stage) exercise
functionality of selected COTS prod-
ucts, verify adherence and consistency
with design expectations, reveal detailed
behavior and performance characteris-
tics, and give insight into the invoca-
tion parameters. The demonstration
prototype (construction and test stages)
is used to unit test the COTS products
using black-box testing to simulate
application behavior or environment.
Each stage is a potential source of feed-
back to previous stages.

Practical Considerations
The following practical considerations
were encountered during two years of
experience using the IIDA.
• The COTS product integrator does

not develop the COTS product but
still must internally know it. The
integrator must understand the
complete set of capabilities provided
by the COTS product to select the
appropriate subset of capabilities
based on application developer
needs for a given release of infra-
structure. The integrator must un-
derstand the limitations and nu-
ances of the COTS product to

exercise it. For example, does it run
on all of the required platforms?
Does it operate the way it is in-
tended? Does it have a heritage from
a different paradigm (PC vs. UNIX
workstation)?

• The system administrators and
configuration management staff
need to know how to configure the
COTS products. Few complex
COTS products work straight out
of the box. To support early proto-
types and evaluations, not only do
the designers and developers need to
understand the products, the devel-
opment system administrators need
to understand how to install and
manage the product configuration.
In addition, configuration manage-
ment needs to understand how to
configure the product versions.

• “COTS castles are often built on the
sand of configuration files.” Configu-
ration files and data can be as com-
plex as code. They must be under-
stood. For example, a transaction
processing monitor configuration file
is inherently complex; training is
required to know how to use it. Con-
figuration files can be site-specific
and require a strategy to manage files
for different sites including site-
specific parameters, implementation
requests, and file distribution.

• When installing infrastructure com-
ponents in new sites, the following
documents that are not part of nor-
mal lifecycles are critical for the
configuration of COTS products.

• Release notes (installation
guidelines, operational param-
eters, tuning guidelines, etc.)

• Site configuration guidelines
(guidelines to help site designers
choose appropriate hardware and
software suites and rules for
scaling and resource allocation).

• Version compatibility between
COTS products, the operating sys-
tem, and glue code is critical. This
also applies to different sites includ-
ing the external integration and test
function. Software problems and
nuances of use discovered during
integration are not necessarily em-
bedded in selected COTS products

COTS Software
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but often derive from specific char-
acteristics of operating system ver-
sions or communications protocols.
If application developers, infrastruc-
ture developers, and test sites are
allowed to independently manage
their computing platform configura-
tions (including operating system
and database management system),
trouble-shooting infrastructure
anomalies is extremely difficult.

• Licensing adds a dimension of com-
plexity and needs to be worked with
early. Issues include the number and
types of licenses required for the
environment. Short-term COTS
evaluation licenses need to be man-
aged, and transition needs to be
planned from evaluation to product
license. Procurement of production
licenses within government agencies
can require a long lead time and
needs to start early with the Bill of
Materials (BOM).

Technical Management
Considerations
The following considerations can be
easily overlooked during the planning
cycle.
• The development facility including

hardware, development tools, and
configuration management must be
ready to go before the first COTS
product arrives for prototyping.
Facility readiness fuels the acceler-
ated development that using COTS
products can provide but moves the
requirement for a fully implemented
development facility to early in the
effort. Determining COTS suitabil-
ity requires a realistic target configu-
ration with a strong system adminis-
tration team in place from the start.

• The BOM represents the contract
for COTS products and versions. It
is required early for field develop-
ment sites and is essential for suc-
cessful deployment.

• Technology infusion occurs by vir-
tue of COTS product upgrades
whether it is planned or not. Prod-
uct upgrades can occur during any
phase of the lifecycle. Allowing for
technology infusion can exploit new
potential products on the market.

• The investment in training is a
significant but often overlooked cost
of using COTS products. Manage-
ment needs to plan for the expertise
of individuals to be shared across
organizations. In particular, field
sites need training, especially in
system administration.

Conclusion
Integration with COTS software prod-
ucts requires adjustment and accommo-
dations to the development approach
vs. traditional software development.
Preparations must be made to start
prototyping activities and integration
activities immediately to exploit COTS
product advantages and accelerate de-
velopment. Additional resources must
be allocated for late in the development
cycle to provide maintenance and sup-
port to the user community, i.e., the
application developers. u
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Building a Supportive Team
Environment: The Team
Software Process
The Team Software Process (TSP) ex-
tends and refines the CMM and PSP
methods to guide engineers in their
work on development and maintenance
teams. It shows them how to build a
self-directed team and how to perform
as an effective team member. It also
shows management how to guide and
support these teams and how to main-
tain an environment that fosters high
team performance. The TSP has five
objectives:
• Build self-directed teams that plan

and track their work, establish goals,
and own their processes and plans.
These can be pure software teams or
integrated product teams (IPT) of
three to about 20 engineers.

• Show managers how to coach and
motivate their teams and how to help
them sustain peak performance.

• Accelerate software process improve-
ment by making CMM Level 5
behavior normal and expected.

• Provide improvement guidance to
high-maturity organizations.

• Facilitate university teaching of
industrial-grade team skills.

The principal benefit of the TSP is
that it shows engineers how to produce
quality products for planned costs and
on aggressive schedules. It does this by
showing engineers how to manage their
work and by making them owners of
their plans and processes.

Team-Building Strategies Are Not
Obvious
Generally, when a group of engineers
starts a project, they get little or no guid-
ance on how to proceed. If they are
lucky, their manager or one or two of the
experienced engineers will have worked
on well-run teams and have some ideas
on how to proceed. In most cases, how-
ever, the teams have to muddle through
a host of issues on their own. Following
are some of the questions every software
team must address.

• What are our goals?
• What are the team roles and who

will fill them?
• What are the responsibilities of

these roles?
• How will the team make decisions

and settle issues?
• What standards and procedures

does the team need and how do we
establish them?

• What are our quality objectives?
• How will we track quality perfor-

mance, and what should we do if it
falls short?

• What processes should we use to
develop the product?

• What should be our development
strategy?

• How should we produce the design?
• How should we integrate and test

the product?
• How do we produce our develop-

ment plan?

Three Dimensions of Process Improvement
Part III: The Team Process

Watts S. Humphrey
Software Engineering Institute

Part I of this article (CROSSTALK, February 1998) described the Capability Maturity Model (CMM)®,
and Part II (CROSSTALK, March 1998) addressed the Personal Software Process (PSP)SM. The CMM
provides an overall framework that has helped many organizations improve their performance
and the PSP shows engineers how to use process principles in doing their personal work. Part III
describes the Team Software Process, which shows integrated product teams how to use these pro-
cesses to consistently produce quality products on aggressive schedules and for their planned costs.

Figure 2. Defects per thousand lines of code
(KLOC) removed by phase.

The SEI’s work is supported by the Department of
Defense. Capability Maturity Model and CMM
are registered with the U.S. Patent and Trademark
Office. Personal Software Process, PSP, Team Soft-
ware Process, and TSP are service marks of Car-
negie Mellon University.

Figure 1. TSP structure.
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• How can we minimize the develop-
ment schedule?

• What do we do if our plan does not
meet management’s objectives?

• How do we assess, track, and man-
age project risks?

• How can we determine project
status?

• How do we report status to manage-
ment and the customer?
Most teams waste a great deal of

time and creative energy struggling
with these questions. This is unfortu-
nate, since none of these questions is
new and there are known and proven
answers for every one.

The TSP Process
The TSP provides team projects with
explicit guidance on how to accomplish
their objectives. As shown in Figure 1,
the TSP guides teams through the four
typical phases of a project. These
projects may start or end on any phase,
or they can run from beginning to end.
Before each phase, the team goes
through a complete launch or relaunch,
where they plan and organize their
work. Generally, once team members
are PSP trained, a three-day launch
workshop provides enough guidance for
the team to complete a full project
phase. Teams then need a two-day re-
launch workshop to kick off each of the
second and each of the subsequent
phases. These launches are not training;
they are part of the project.

The current TSP version uses 23
scripts, 14 forms, and three standards.
The TSP scripts define 173 launch and
development steps. None of the steps is
complex, but each is defined in enough

Figure 4. Component 9 quality profile.

Figure 3. Component 7 quality profile.

detail so the engineers can see how to
do what they have to do. These scripts
guide the teams through the steps of
launching and running their projects.

The TSP Launch Process
To start a TSP project, the launch pro-
cess script leads teams through the
following steps.
• Review project objectives with man-

agement and agree on and docu-
ment team goals.

• Establish team roles.
• Define the team’s development

process.
• Make a quality plan and set quality

targets.
• Plan for the needed support facili-

ties.
• Produce an overall development

strategy.
• Make a development plan for the

entire project.
• Make detailed plans for each engi-

neer for the next phase.
• Merge the individual plans into a

team plan.
• Rebalance team workload to achieve

a minimum overall schedule.
• Assess project risks and assign track-

ing responsibility for each key risk.
In the final launch step, the team

reviews their plans and the project’s key
risks with management. Once the
project starts, the team conducts weekly
team meetings and periodically reports
their status to management and to the
customer.

In the three-day launch workshop,
TSP teams produce
• Written team goals.
• Defined team roles.
• A process development plan.
• The team quality plan.
• The project’s support plan.
• An overall development plan and

schedule.
• Detailed next-phase plans for each

engineer.
• A project risk assessment.
• A project status report.

Early TSP Results
While the TSP is still in development
and has only been used with 10 indus-
trial and three student teams, the early

results are encouraging. One team at
Embry Riddle Aeronautical University
(ERAU) removed over 99 percent of
development defects before system test
entry. Their defect-removal profile is
shown in Figure 2.

TSP teams also gather the data they
need to analyze component quality
before integration and system testing.
This is done with the aid of the compo-
nent quality profile, which shows five
quality parameters in a bullseye format.
With a profile that nearly fills the entire
bullseye, as in Figure 3, quality is
judged to be good. A profile like that in
Figure 4, however, indicates likely prob-
lems. The five profile dimensions are
shown in Table 1 and explained below.

The data for Figures 3 and 4 came
from two of the ERAU team’s compo-
nents. Component 7 had no integration
or system test defects, and Component
9 had one integration defect. As can be
seen from Figure 4, the development
work for Component 9 had inadequate
design time, no design review time, and
high compile defects. The only surprise
is that this component had only one
defect in integration test and none in
system test.

The component quality profile is
based on the following criteria.
• Design time is greater than 50 per-

cent of coding time.
• Design review time is greater than

50 percent of design time.
• Code review time is greater than 50

percent of coding time.
• Compile defects are less than 10 per

KLOC.
• Unit test defects are under five per

KLOC.

Three Dimensions of Process Improvement – Part III: The Team Process
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When a factor meets or exceeds these criteria, that profile
dimension is at one or on the edge of the bullseye. When the
criteria are not met, say 25 percent design review time in-
stead of 50 percent, that dimension value would be one-half
or halfway to the center of the bullseye. Once teams gather
enough of their own data, they should establish the profile
criteria that work best for them.

With TSP data, engineers can determine which compo-
nents are most likely to have defects before they start integra-
tion and system testing. By reworking these defect-prone
components before test entry, they can save a substantial
amount of test time and produce higher-quality products.

How the TSP Helps Teams Behave Professionally
Perhaps the most powerful consequence of the TSP is the
way it helps teams manage their working environment. The
most common problem product teams face is unreasonable
schedule pressure. Although this is normal, it can also be
destructive. When teams are forced to work to unreasonable
schedules, they are unable to make useful plans. Every plan
they produce misses the edicted schedule and is therefore
unacceptable. As a result, they must work without the guid-
ance of an orderly plan and will generally take much longer
to complete the project than they otherwise would.

The TSP team’s responsibility is to plan and produce a
quality product as rapidly and effectively as they can. Con-
versely, it is management’s responsibility to start projects in
time to finish when needed. When similar projects have
taken 18 months and management demands a nine-month
schedule, this is clearly unrealistic. Where was management
nine months ago when the project should have started? Al-
though the business need may be real, the team’s schedule is
only part of the problem. Under these conditions, it is essen-
tial that management and the team work together to ration-
ally determine the most effective course of action. This will
often involve added resources, periodic replanning, or early
attention to high-risk components.

While TSP teams must consider every rational means for
accelerating their work, in the last analysis, they must defend
their plan and resist edicts that they cannot devise a plan to
meet. If management wants to change job scope, add re-
sources, or suggest alternate approaches, the team will gladly
develop a new plan. In the end, however, if the team cannot
produce a plan to meet the desired schedule, they must not
agree to the date. So far, most TSP teams have been able to
do this. Teams have found that the TSP provides them con-

Table 2. PSP and TSP coverage of CMM key process areas.

vincing data to demonstrate that their plans are aggressive
but achievable.

The TSP Manager-Coach
Perhaps the most serious problem with complex and chal-
lenging work is maintaining the discipline to consistently
perform at your best. In sports and the performing arts, for
example, we have long recognized the need for skilled train-
ers, conductors, and directors. Their job is to motivate and
guide the performers and also to insist that everyone meet
high personal standards. Although skilled players are essen-
tial, it is the coaches who consistently produce winning
teams. There are many differences between software and
athletic or artistic groups, but they all share a common need
for sustained high performance. This requires coaching and
support.

Software managers have not traditionally acted as coaches,
but this is their role in the TSP. The manager’s job is to provide
the resources, interface to higher management, and resolve
issues. But most important, the manager must motivate the
team and maintain a relentless focus on quality and excellence.
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ytilauQssecorP
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denifeD3 gnireenignE
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X
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Dimension Meaning
Design/Code Time The ratio of detailed design time to coding time.
Code Review Time The ratio of code review time to coding time.
Compile Defects/KLOC The defects per KLOC found in compile.
Unit Test Defects/KLOC The defects per KLOC found in unit test.
Design Review Time The ratio of detailed design review time to

detailed design time.

Table 1. Component quality profile dimensions.
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This requires daily interaction with the
team and an absolute requirement that
the process be followed, the data gath-
ered, and the results analyzed. With
these data, the manager and the team
meet regularly to review their perfor-
mance and to ensure their work meets
their standards of excellence.

Conclusion
The CMM, PSP, and TSP provide an
integrated three-dimensional frame-
work for process improvement. As
shown in Table 2, the CMM has 18 key
process areas, and the PSP and TSP
guide engineers in addressing almost all
of them. These methods not only help
engineers be more effective but also
provide the in-depth understanding
needed to accelerate organizational
process improvement.

The CMM was originally developed
to help the Department of Defense
(DoD) identify competent software
contractors. It has provided a useful
framework for organizational assess-
ment and a powerful stimulus for pro-
cess improvement even beyond the
DoD. The experiences of many organi-
zations show that the CMM is effective
in helping software organizations im-
prove their performance.

Once groups have started process
improvement and are on their way
toward CMM Level 2, the PSP shows
engineers how to address their tasks in a
professional way. Although relatively
new, the PSP has already shown its
potential to improve engineers’ ability
to plan and track their work and to
produce quality products.

Once engineering teams are PSP
trained, they generally need help in
applying advanced process methods to
their projects. The TSP guides these
teams in launching their projects and in
planning and managing their work.
Perhaps most important, the TSP shows
managers how to guide and coach their
software teams to consistently perform
at their best. u
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including wireless networks, training and simulation sys-
tems, and message handling systems. Telos headquarters
are in northern Virginia’s Netplex area.
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Many software professionals
believe that the key practices
of the Software Engineering

Institute (SEI) CMM are inappropriate
and not scalable for small software
projects (three to four months with five
or fewer staff members). These practi-
tioners are convinced that the costs
outweigh the benefits unless the com-
plexity that typically comes with project
size justifies the investment.

Some professionals also believe that
customer satisfaction is their most im-
portant measure of performance, mean-
ing that to accept one more require-
ment is almost always “the right thing
to do,” no matter how close the pro-
duction or release date might be. They
are convinced that in the “real world,”
requirements cannot be frozen or “base-
lined” because there are too many le-
gitimate reasons for requirements to
change, and new ones must be added to
the current version of the software.

Many developers frequently do not
see the benefits of managing require-
ments, nor do they feel the need to take
time for project planning, tracking, and
oversight, as advocated by the CMM.
They do not understand the payback
from a software quality assurance func-
tion or configuration management. I
recently worked with several managers
and practitioners who held these views.

No Defined Requirements But a
Set End Date — An Example
The project was to develop a software
system that provides a consistent esti-

mation approach and addresses soft-
ware size, effort, and assumptions for
planning. The system’s goal was to
improve the client organization’s soft-
ware estimation process. The
organization’s overall strategy was to use
the SEI CMM Repeatable level (Level
2) key practices to move toward a more
disciplined software development envi-
ronment. When I started, no require-
ments had been defined for this estima-
tion system but an end date had been
set—the system had to be operational
in two months.

The client was an information sys-
tems business unit in a large company.
A formal CMM-based software process
assessment conducted a month prior to
my arrival found that this organization’s
estimation process for software change
requests was ad hoc and inconsistent.
This estimation process frequently
produced understated effort estimates,
perhaps due to institutional pressure to
get things done faster or a desire to
minimize what is involved. In turn,
these understated estimates often led to
budget overruns, crisis management,
eleventh-hour firefighting, low em-
ployee morale, and high rates of post-
release defects.

My immediate clients, all informa-
tion systems professionals, had been
working on improving their software
management practices for over 18
months. Their corporate direction was
to use the CMM to guide their process
improvement. Some of them had been
promoting the CMM for close to two

years. The sponsor of our software
project was the head of the Software
Engineering Process Group. The
project team consisted mostly of client
personnel to the project part time, and
three full-time outside consultants: a
junior analyst, a Visual Basic program-
mer, and me.

Getting Buy-In
A fellow team member and I began the
project by meeting with our sponsor
and key stakeholders to define the busi-
ness objectives, scope, and constraints
of the estimation system. After review-
ing existing relevant documentation, we
developed a high-level project plan. It
was an ideal opportunity to apply the
CMM key practices to our day-to-day
project work. In particular, I believed
the management and technical practices
from Levels 2 and 3 of the CMM were
appropriate. These included require-
ments management; project planning,
tracking, and oversight; quality assur-
ance (QA); configuration management
(CM); software product engineering;
and peer reviews. I recommended to
our clients that we apply scaled-down
CMM key practices to meet the needs
of our estimation system project.

 “The system must be finished in
two months. We need to start coding
right away!” was my sponsor and other
team members’ reply.

I pointed out that automating a
more disciplined software estimation
process with a structured and repeatable
approach would not only assist their

How Scalable Are CMM Key Practices?
Rita Hadden

Project Performance Corporation

Many software practitioners are convinced that cost outweighs benefit when the Software Engi-
neering Institute Capability Maturity Model’s (CMM) key practices are applied to small projects.
Practitioners believe that only the complexity that typically comes with project size justifies the
investment. This article is based on observations and experience with over 50 small projects. It
describes using a repeatable and disciplined approach for system development efforts in spite of
short durations. It illustrates the use of professional judgment to appropriately scale down and
apply CMM key practices to make a difference in the outcome of small software projects.



CROSSTALK The Journal of Defense Software Engineering 19April 1998

overall process improvement effort but
also would help the current project
meet its pressing deadline as well.

As far as I could tell, I had been
brought into this project for three rea-
sons. First, I had earned the trust and
respect of some of the key players in
this organization by contributing to a
previous process improvement project.
Second, I was a seasoned software engi-
neer and manager with over 70 software
projects from which to draw. Finally, I
was certified by the SEI as a lead soft-
ware process assessor.

My sponsor agreed to let me apply
some of the CMM key practices on the
grounds that they would legitimize the
product we were developing. I knew I
was going to have to make believers out
of these skeptics.

Turning Expectations into
Requirements
Our stakeholders were software project
managers, team leaders, functional
subject matter experts called “evalua-
tors,” software practitioners who per-
formed estimation called “estimators,”
and coordinators of the many software
change requests. These stakeholders
were accountable for the effectiveness
and efficiency of this organization’s
estimating process.

My team of one analyst, one devel-
oper, and two part-time client func-
tional experts had to first come to con-
sensus on “what is a requirement?” We
agreed that a requirement is a func-
tional or technical capability needed to
solve a problem or achieve an objective.
A good requirement is traceable to
business objectives and related system
lifecycle components. It is consistent
with the scope and constraints of the
product, incorporates stakeholder ex-
pectations, is measurable against accep-
tance criteria, and is maintainable over
the product’s lifecycle.

To expedite the requirements-
gathering phase, my team developed a
set of straw man functional expecta-
tions. These expectations were based on
our documentation review, our under-
standing of the organization’s estima-
tion process and user desires, our
knowledge of industry best practices,

and the objectives, scope, constraints,
and assumptions of the estimation
system.

Next, we used the straw man set of
expectations and Joint Application
Design techniques to elicit additional
input from our stakeholders. We held
focus groups and one-on-one inter-
views. We then analyzed all gathered
expectations and developed a manage-
able set of functional requirements.
Where necessary, we consolidated simi-
lar expectations and identified and
resolved conflicts between expectations.

Explicit vs. Implicit Requirements
My team then supplemented these
“explicit” requirements with “implicit”
technical requirements. Implicit re-
quirements include stakeholder expec-
tations that were not articulated but are
essential to develop a product that
achieves exceptional user satisfaction.
For example, we ensured that the
system’s response time and maximum
number of concurrent users were stated
as measurable requirements. We also
addressed usability, availability, security,
maintainability, and portability of the
estimation system.

We documented all requirements
and validated them with all stakehold-
ers. We requested that our key stake-
holders review and sign off on the
Statement of Requirements for the
estimation system, then baselined these
requirements. We obtained the sign-off
three weeks after the project start.

Building In Quality
Based on the system requirements, we
next developed a conceptual design that
we revalidated with our stakeholders in
small walk-through sessions where
feedback and ideas were solicited. This
conceptual design was informally docu-
mented in two days. Three concurrent
efforts followed: one to create a detailed
software development plan (SDP), a
second to design and prototype user
interface data entry screens and system
navigation using a Rapid Application
Development, and a third to design
database structures and define data
validation criteria. We involved our
stakeholders throughout the process.

Using Requirements to Drive the
Software Size Estimate
We now had what we needed to get a
relatively reliable estimate of the size of
the estimation system. We used func-
tion points and work breakdown struc-
tures to estimate size. The results from
these methods took less than two days
to produce and were remarkably close
(4.3 staff months for the construction
phase using work breakdown structures
vs. 4.7 using function points). We met
with senior management and presented
our estimates of size, effort, cost, sched-
ule, critical computer resources, and
what it would take to do the project
“right the first time.” Faced with the
detailed planning data, senior manage-
ment had to choose among cutting
scope, changing the schedule, or adding
more people to the project. They agreed
to allocate more resources and time:
one programmer for four weeks and
one additional elapsed month.

The SDP also contained a detailed
task plan, test plan, QA plan, CM plan,
measurement plan, and risk manage-
ment plan. Because this was a small
project (2,275 hours, [3.5 months]), we
scaled our SDP accordingly to 28
pages. To save time, we rewrote an
existing QA plan to meet our needs.

Involving Stakeholders and
Controlling Requirement Changes
Five weeks into the project, our designs
and prototype were ready for a walk-
through with our stakeholders. Many
issues and concerns surfaced at this
session that we had to address. In addi-
tion, many requirements changes were
proposed following the walk-through.
We listened to each rationale for change
and recorded the request. Where a
change improved usability and the
effort was negligible, we included it in
our revised design. Dealing with these
challenges upfront minimized rework
for us later.

We resisted the temptation to add a
new feature for every stakeholder con-
cern. We presented the total requested
change in scope and its associated im-
pact on schedule, resource, and cost to
the client senior management and Soft-
ware Configuration Control Board. It

How Scalable  Are CMM Key Practices?
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would have taken 31 additional staff
days to incorporate all the requested
changes.

The stakeholders decided to revisit
the change requests in a subsequent
release of the system. Our requirement
control approach helped us gain buy-
in and credibility from all project par-
ticipants.

Paving the Way for Culture
Change
Because senior management recognized
that this project would require many
people to fundamentally change the
way they perform software estimation,
we wanted to pave the way for this
culture change. To meet this objective,
we deployed a set of spreadsheets that
emulated the new estimation process six
weeks prior to piloting the new estima-
tion system. With these spreadsheets,
we trained future users of the estima-
tion process in the “whys” and “hows”
of the new procedures.

We left the detailed design of the
reporting requirements until last. Key
stakeholders were invited to sit by our
side as we designed the reports and
queries that contributed to their job
effectiveness. We also requested stake-
holder participation and feedback in
our system testing to fine-tune our
system. Meanwhile, we developed train-
ing materials and user documentation
that emphasize audience participation
and usability. Later, we provided mul-
tiple training sessions that gave partici-
pants hands-on system experience.

Tracing Test Cases to
Requirements
As soon as we received approval for our
design, we began to define test cases
and expected results for each of the
system functions. We had limited time
for testing, so we wanted to ensure each
test case was traceable back to one or
more requirements and that our prod-
uct met the stated requirements.

We then created a test database and
seeded it based on our test cases. As
each software module was completed,
we performed functional testing using
the test cases and seeded database. We
compared actual results against our

documented expected results for each
test case. At the end of each testing
session, we reviewed our test results
with the responsible software developer.
Hundreds of defects were uncovered
early enough to correct with minimum
effort. Some modules were particularly
problematic and had to undergo several
iterations of functional testing.

Keeping Our Project on Track
Our team met weekly to discuss status,
issues, and required actions. I worked
continuously to mitigate the risks to
project success. These risks included a
language barrier between the two pro-
grammers, since one spoke little En-
glish; insufficient face-to-face commu-
nication with users of the system, which
could result in misunderstanding of the
new estimation process; performance
and usability issues that could cause
stakeholders to not fully accept the
product; delays in functional testing
due to defects, which could jeopardize
the start of system test and overall
project schedule.

We also met periodically with the
client organization’s QA, CM, and
senior management. QA’s role was to
review and monitor our design and
development activities to verify compli-
ance with the organization’s standards
and procedures. CM’s function was to
maintain the integrity of our product
through configuration identification,
change control, status accounting, and
audit. CM also ensured that all re-
quested changes to the functionality of
the estimation system were reviewed by
senior management and the Software
Configuration Control Board.

All this oversight and coordination
set the stage for an extremely smooth
pilot. This pilot lasted a week and in-
volved a dozen users working hard to
exercise all aspects of the estimation
system. These users entered “real-
world” data from recent estimates they
had prepared. They also tested the
system’s user’s guide. Based on their
feedback, we enhanced the user’s guide
to include exception handling. No
rework was required on the system
software.

The estimation system was accepted
with enthusiasm and went into full
production without delay. No signifi-
cant defects had been identified to date
six months following the rollout.

CMM Key Practices Are
Scalable!
We held a feedback session to develop
lessons learned with members of our
team when the project was over. To our
surprise, we heard that this was the first
time that a PC-based system developed
by this group had been delivered on
time, within budget, and with satisfied
stakeholders. Even the Visual Basic
programmers admitted that a managed
set of requirements, a documented
design, early and frequent user involve-
ment, and disciplined approach to
testing contributed to the success of the
project.

These practitioners’ beliefs that
design was “paperwork,” that there was
no time for walk-throughs, and that ad
hoc testing was sufficient were begin-
ning to change. Their conviction that
requirements could not be baselined
was also becoming less absolute. We
had given them an alternate way to
approach software development—we
had made the CMM come alive for
them!

Looking back, I feel tremendous
satisfaction for sticking to a repeatable
and disciplined approach for our system
development effort in spite of its short
duration. I can imagine the outcome of
this project had we given in to pressure
to start coding at the beginning of the
project.

Using professional judgment to
appropriately scale down and apply
CMM key practices instead of using
“code and load” did make a difference.
Managing requirements helped us con-
trol “scope creep” and keep our stake-
holders aware of the trade-offs, allowing
them to make informed decisions. Us-
ing a disciplined process helped us
discover defects prior to testing, mini-
mize rework, and reduce post-release
defects. We delivered a better product on

see CMM, page 23
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If you visit a doctor’s office, you
will often hear terms such as “inde-
pendent laboratory,” “second opin-

ion,” “additional tests,” or “colleague
consultation.” What these amount to is
a doctor getting another party or pro-
cess involved in a diagnosis or treat-
ment decision. Doctors use outside
authorities, in part, to reduce the risk of
malpractice. The more consensus built
with respect to a particular course of
action, the more due diligence has been
shown. And more parties are culpable if
something goes wrong. For instance, if
a medical laboratory returns a false
diagnosis that a tissue sample is cancer-
ous and the doctor begins treatments
that were not necessary, the doctor can
ascribe some or all of the liability for
this mistake to the laboratory. The
added costs from spreading liability
around in this manner are one reason
for the cost increases in health care.
Each extra opinion and extra test in-
crease patient costs, because each care
provider is a malpractice target.

A Demand for Independent
Certification
In the software world, a similar phe-
nomenon is being observed. Software
producers and consumers are more
frequently demanding that independent
agencies certify that programs meet
certain criteria. Vendors prefer to not
be responsible for guaranteeing their
software, and software consumers want
unbiased assessments that are not based
on a sales pitch. Incredible as it may
seem, vendors, who typically “cut all
corners” in costs, are willing to pay the

costs associated with placing this re-
sponsibility on someone else.

Because of the demands for SCL
services, business opportunities exist for
organizations that wish to act in this
capacity. By paying SCLs to grant soft-
ware certificates, independent software
vendors (ISVs) partially shift responsi-
bility onto the SCL for whether the
software is “good.” The question is
whether this method of liability transfer
will be as successful in software as it has
been in health care. As we will discuss,
if SCLs set themselves up right, they
can build more protection around
themselves than you might think, leav-
ing the ISV holding a “hot potato.”

There are several relatively obscure
SCLs in existence today, e.g., KeyLabs,
which handles applications for 100
percent pure Java. Other than these
small, specialized laboratories, the next
closest match to an SCL (conceptually
speaking) is Underwriter’s Laboratory
(UL). UL certifies electrical product
designs to ensure that safety concerns
are mitigated. Rumors are that UL is
interested in performing SCL services,
but to my knowledge, UL has not yet
become an SCL.

Commercial software vendors are
not the only organizations that see the
benefit of SCLs. NASA felt the need for
standardized, independent software
certification for the software they write
and purchase. NASA now has an
SCL—the Independent Verification and
Validation Facility in Fairmont, W. Va.
Intermetrics is the prime contractor at
the facility, and their job is to oversee
the certification process and provide the

necessary independence. This SCL pro-
vides NASA with a common software
assessment process over all software
projects (as opposed to each NASA
center performing assessments in differ-
ent ways). The NASA facility certifies
software developed both by NASA em-
ployees and NASA’s contractors.

The beauty of having SCLs is that
they provide a quasi-fair “playing field”
for all software vendors—each product
is supposed to be given equal treatment.
The issue is that when software fails in
the field, and an independent party
provided an assessment that suggested
that the software was good, does the
independent party bear any responsibil-
ity for the failure?

Who Is Liable When Software
Fails?
Who is liable when certified software
fails—the ISV, the SCL, both, or nei-
ther? More specifically, how is liability
divided between these groups? First, the
question of how much liability, if any,
can be placed onto the SCL will be
addressed. By figuring out the liability
incurred by an SCL for its professional
opinions, we can determine how much
liability is offloaded from the ISV.

Limiting Liability
SCLs stand as experts, rendering unbi-
ased professional opinions. This exposes
SCLs to possible malpractice suits.
Schemes to reduce an SCL’s liability
include insurance, disclaimers on valid-
ity of the test results, and SCLs employ-
ing accurate certification technologies
based on objective criteria. Of these,

Software Certification Laboratories
To Be or Not to Be Liable?

Jeffrey Voas
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Software certification laboratories (SCLs) will potentially change the manner in which software is graded and
sold. However, a main issue is who is liable when, during operation, certified software acts in a manner that
the SCL certified was not possible. Given software’s inherently unpredictable behaviors, can SCLs provide
precise-enough predictions about software quality to reduce their liability from misclassification to a rea-
sonable level? SCLs’ survival and effectiveness largely depend on solving the issues of certification liability.
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the best approach is to only certify
objective criteria, and avoid trying to
certify subjective criteria.

Subjective vs. Objective Criteria
Different software criteria can be tested
by SCLs, spanning the spectrum from
guaranteeing correctness to counting
lines of code. Subjective criteria are
imprecise and prone to error. Objective
criteria are precise and less prone to
error. For example, deciding whether
software is correct is subjective because
of the dependence on the precise defini-
tion of “correctness.” SCLs should avoid
rendering professional opinions for crite-
ria that are as contentious as this.

Instead, SCLs should assess objec-
tive software characteristics such as
exception handling calls and lines of
code. Testing for objective criteria is not
rocket science. Troubles will begin,
however, when an SCL tries to get into
the tricky business of estimating a sub-
jective criterion such as software reli-
ability. By only certifying objective
criteria, the chances of inadvertent
favoritism for one product over another
is reduced.

The ICSA Certification Approach
The International Security Computer
Association (ICSA) is a for-profit SCL
that has taken an interesting approach
to the liability issue. They use industry
consensus building. ICSA only certifies
that specific known problems are not
present in an applicant’s system. This is
an objective criterion. Their firewall
certification program is based on the
opinions of industry representatives
who periodically decide for which
known potential problems the software
should be checked. Over time, addi-
tional criteria are introduced into the
certification process. This adaptive
certification process serves two pur-
poses: it adds rigor to the firewall certi-
fication process and produces a steady
stream of business for the ICSA. To
further reduce liability, ICSA does not
claim that their firewall certificate
guarantees firewall security.

ISVs’ Liability Concerns
ISVs have a different liability concern,
particularly when their software fails in
the field. For example, suppose an SCL
says that an ISV’s software is “certified
to not cause problem X.” If the soft-
ware causes problem X and fails, and
the ISV faces legal problems, can the
ISV use their SCL certificate as evi-
dence of due diligence? Can the ISV
assign blame to the SCL? The answer to
the first question is “probably,” and the
answer to the second question depends
on what “certified to not cause problem
X” means. If the certification was based
on objective criteria and the process was
performed properly, the ISV probably
cannot blame the SCL. If the process
was improperly applied, the SCL may
be culpable. If subjective criteria were
applied, the answer is unclear.

If the SCL used consensus building
to develop their certification process,
the question that may someday be
tested in the courts is whether abiding
by an industry consensus on reasonable
criteria protects SCLs from punitive
damages. Generally speaking, as long as
a professional adheres to defined stan-
dards, punitive damages are not admin-
istered. Professions such as medicine,
engineering, aviation, and accounting
have defined standards for professional
conduct.

Lack of Professional Standards
Software engineering has never had
such standards, although several unsuc-
cessful attempts to do so have been
staged. Also, there are no state-of-the-
practice rules to determine if code
meets professional standards. For ex-
ample, the title “software engineer” is
legally invalid in 48 of 50 states. In
these states, the title “engineer” is re-
served for people who have passed
state-sanctioned certification examina-
tions to become professional engineers
[1]. Because the software engineering
field does not have professional stan-
dards, it could also be argued that the
actions of organizations such as the
ICSA are laudable.

Because software engineering has no
professional organization to accredit its
developers, the approach taken by the

ICSA could also be argued in a court of
law to be state of the practice. If argued
successfully, software developers whose
software passed the certification process
could expect to avoid punitive damages.
But if these state-of-the-practice stan-
dards are deliberately weak, even
though consensual, satisfaction of the
standards may fail to persuade a jury. It
is widely held by the public that the
policy of industry self-regulation has
failed. When those being forced to
comply are those making the rules, are
the rules trustworthy? Challenges in the
courts could be foreseen, claiming a
conflict of interest. This would invali-
date claims that consensus-based stan-
dards sufficiently protect customers.

However, the commercial aviation
industry is an example of the successful
application of industry-guided stan-
dards. Rigorous software guidelines in
the DO-178B standard were approved
through industry and government con-
sensus. These software safety guidelines
remain the most stringent software certi-
fication standards in the world. It is clear
that the Federal Aviation Administra-
tion’s influence played a role during the
formation of these standards.

There are self-correcting mecha-
nisms that work to some degree in self-
policing industries. If an industry such
as air travel failed to police itself, it
would lose so much favor with its cus-
tomer base that the entire industry
could fail.

Limiting ISV Liability
Possibly the best defense for any ISV is
the use of disclaimers, not reliance on
an SCL. There is a perverse advantage
to disclaiming one’s own product. The
less competent an ISV portrays itself to
be, the lower the standard of profes-
sionalism to which it will be held. Tak-
ing this principle to an extreme, we
might suggest that a disclaimer be in-
cluded in a comment at the top of each
program stating, “This software was
developed by incompetent people try-
ing to learn how to program, and it
probably does not work.” The degree to
which this tongue-in-cheek disclaimer
reflects reality is a sad commentary on
the state of our industry. But until more

Software Engineering Technology
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cases are tested in the courts, no one
knows how much protection software
disclaimers will afford.

Article 2B
There is one more interesting develop-
ment that has occurred: a draft of Ar-
ticle 2B of the Uniform Commercial
Code (UCC) (which pertains to com-
puters and computer services) was re-
leased Nov. 1, 1997 [2]. Article 2B will
play an important role in defining soft-
ware warranties. Article 2B will only
serve as a model template, and each
state in the United States will be re-
sponsible to modify it to their standards
before adopting it as law. Further, Ar-
ticle 2B has the potential to relax the
liability concerns that might force an
ISV to use a certification laboratory.
This could turn out to be a disaster for
those parties most concerned with soft-
ware quality.

Conclusion
Before we can determine what role
SCLs will play in software liability, we
must wait for more cases to be tested in
court to see to what standard of profes-
sionalism ISVs are held. If the criteria
for which SCLs test are not meaningful,
SCLs will find that neither developers

nor consumers of software care about
the certification process.

For SCLs to succeed, it also is im-
perative that they employ accurate
assessment technologies for objective
criteria. If SCLs do this, malpractice
suits against them will be difficult to
win unless they mishandle a particular
case or make false statements.

This article is entitled “Software
Certification Laboratories: To Be or
Not to Be Liable” because until these
hard issues are resolved, it is hard to
measure the degree of liability protec-
tion afforded an ISV by hiring the
services of an SCL. Nonetheless, if
SCLs can measure valuable criteria (and
by this I do not mean “lines of code”)
in a quick and inexpensive manner,
SCLs have the ability to foster greater
software commerce between vendors
and consumers. This could move an
SCL certificate from being viewed as a
tax to a trophy. u
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When a population is too large for exhaustive
study, as is the case for all possible uses of a soft-
ware system, a statistically correct sample must be

drawn as a basis for inferences about the population. In sta-
tistical testing of software, testing is treated as an engineering
problem to be solved by statistical methods. Figure 1 shows
the parallel between a classical statistical design and statistical
software testing.

Under a statistical protocol, the environment of use can
be modeled, and a statistically valid statement can be made
about the expected operational performance of the software
based on its test performance.

Statistical testing refers to the application of statistical
science to testing software-intensive systems. It begins with
characterizing all possible scenarios of use, includes analytical
advice on design for testability, and ends with random testing
to support estimates of the reliability of the system in field use.

A usage model is a characterization of all possible sce-
narios of software use at a given level of abstraction. Usage
models can be constructed before code is written, and the
model-building process can lead to improvements in the
software specification that enhance testability.

A test case is any traversal of the usage model. A random
test case is a traversal of the usage model based on state tran-
sitions that are randomly selected from a usage probability
distribution.

Certification means attaining reliability and confidence
goals for an environment of use following a protocol of dem-
onstration. This protocol must be well defined, open to evalua-
tion, and repeatable. As with any costly testing program, it is
important that low-quality software be rejected (for example,
when selecting commercial-off-the-shelf software), or returned
to development (for revision and verification) quickly and
inexpensively, and that testing continue only if progress toward
certification of the software is being made.

Engineering practice refers to procedures that can be
applied to problems of a recognizable type to achieve predict-
able and repeatable results. Engineering practices are derived
from an appropriate science base, but the theoretical details
of the science are organized, packaged, and often automated
to be unobtrusive during application. Engineering practices

Engineering Practices for Statistical Testing
Jesse H. Poore, University of Tennessee

Carmen J. Trammell, Software Engineering Technology, Inc.

This article describes the application of statistical science to the testing and evaluation
of software and software-intensive systems. Engineering practices are described for sta-
tistical testing based on a usage model, which is an engineering formalism that repre-
sents the use of a system in a specific environment or situation, or for a specific customer
class. Engineering practices for statistical testing are based on a view of software use as
a stochastic process and of software testing as a problem amenable to statistical solution.

are designed to get work done rapidly and correctly. The
statistical testing process involves the six steps depicted in
Figure 2. The engineering practices for each step are de-
scribed in the succeeding sections.

Operational Usage Modeling

Building Model Structure
Usage models characterize the infinite population of sce-
narios of use. Usage models are built from specifications, user
guides, or even existing systems. The user might be a human,
a hardware device, another software system, or some combina-
tion. More than one model might be constructed for a single
system if there is more than one environment of interest.

The basic task in model building is to identify the states
of use of the system and the possible transitions among states
of use. This information is encoded into highly structured
Markov chains [1] in the form of directed graphs and sto-
chastic matrices. Every possible scenario of use, at the chosen
level of abstraction, is represented by the model. Thus, every
possible scenario of use is represented in the analysis, trace-
able on the model, and potentially generated from the model
as a test case. Figure 3 portrays a simple usage model as a
directed graph with transition probabilities on the arcs.

Models should be designed in a standard form that con-
sists of connected submodels with a single entry and single
exit. States and arcs can be expanded like macros. Submodels

Figure 1. Parallel between a statistical design and software testing.
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of canonical form can be collapsed to
states or arcs. This permits model vali-
dation, specification analysis, test plan-
ning, and test case generation to occur
on various levels of abstraction. The
structure of the usage models should be
reviewed with the specification writers,
the real or prospective users, the devel-
opers, and the testers. Users and specifi-
cation writers are essential to represent
the application domain and the work-
flow of the application. Developers get
an early opportunity to see how the
system will be used and look ahead to
implementation strategies that take
account of use and work-flow. Testers
are typically the usage model designers
and therefore get an early opportunity
to plan certification and to define and
automate the test environment.

Most usage modeling experience to
date is with embedded real-time sys-
tems, application program interfaces,
and graphical user interfaces. Models as
small as 20 states and 100 arcs have
proven highly useful. Typical models
are on the order of 500 states and 2,000
arcs; large models of more than 2,000
states and 20,000 arcs are in use. Even
the largest models developed to date are
small in comparison to similar math-
ematical models used in other fields of
science and engineering and are man-
ageable with available tool support.

Assigning Transition Probabilities
Transition probabilities among states in
a usage model come from historical or
projected usage data for the application.
Because transition probabilities repre-
sent classes of users, environments of

use, or special usage situations, there
may be several sets of probabilities for a
single model structure. Moreover, as the
system progresses through the lifecycle,
the probability set may change several
times based on maturation of system use
and availability of more information.

When extensive field data for simi-
lar or predecessor systems exists, a prob-
ability value may be known for every
arc of the model. For new systems, one
might stipulate expected practice based
on user interviews, user guides, and
training programs. This is a reasonable
starting point but should be open to
revision as new information becomes
available.

Generating Transition
Probabilities
An alternative to the direct assignment
of transition probabilities just discussed
is to generate them as the solution to a
system of equations [2]. Usage models
can be represented by a system of con-
straints (written as equations or in-
equalities in terms of the transition
probabilities as variables). The matrix of
transition probabilities can be generated
as the solution to the system. In gen-
eral, three forms of constraints are used
to define a model:
• Structural constraints are so named

because they define model structure:
the states themselves and both pos-
sible and impossible transitions
among the usage states.

• Usage constraints represent informa-
tion about known or expected pat-
terns of system use.

• Management constraints reflect
controls on the testing process to
enforce budget, schedule, or policy
decisions.
Probability values can be related to

each other by a function to represent
what is known about the relationship
without overstating the data and knowl-
edge. Most usage models can be defined
with extremely simple constraints.

Engineering Practice for
Operational Usage Modeling
Step 1. Identify the system boundary

and all hardware, software, and

human users of the software and the
stimuli they can send the software.

Step 2. Define the structure of the
usage model in terms of the possible
sequencing of stimuli. Identify any
areas where the software specifica-
tion will result in excessive (as op-
posed to essential) complexity and
cost in system development. Make
recommendations for possible sim-
plification.

Step 3. Define the important environ-
ments of use for the software, e.g.,
routine use, hazardous use, mali-
cious use, maximum capacity use,
and determine the number of envi-
ronments to be modeled. Continue
the process for each model.

Step 4. Define the transition prob-
abilities of the usage model.

Model Analysis and Validation

Long-Run Characteristics of the
Usage Model
A Markov chain is a thoroughly studied
mathematical model for which a stan-
dard set of statistics exists. In this case,
the standard statistics calculated for the
usage model have important interpreta-
tions for resource allocation, safety
analysis, test planning, and field sup-
port. Statistics that are routinely calcu-
lated from the model and used for these
purposes include the following:
Long-run occupancy of each state –

the usage profile as a percentage of
time spent in each state.

Occurrence probability – probability
of occurrence of each state in a
random use of the software.

Occurrence frequency – expected
number of occurrences of each state
in a random use of the software.

Figure 2. The statistical testing process.

Figure 3. Markov chain usage model.

Engineering Practices for Statistical Testing
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First occurrence – for each state, the
expected number of uses of the
software before it will first occur.

Expected sequence length – the ex-
pected number of state transitions
in a random use of the software; the
average length of a use case or test
case.
Analytical results are studied during

model validation, and surprises are not
uncommon. Parts of systems thought to
be unimportant might get surprisingly
heavy use, while parts that consume a
large amount of the development bud-
get might see little use. Since a usage
model is based on the software specifi-
cation rather than the code, it can be
done early in the lifecycle to inform the
development process as well as testing
and certification.

Engineering Practice for Model
Analysis and Validation
Step 1. Generate the standard analyti-

cal results for the model. Interpret
analytical values in terms of the
specification and expected usage to
validate their correctness or reason-
ableness.

Step 2. Change the model structure or
constraints if necessary. Changes to
the structure may be needed to
correctly represent the specification;
changes to constraints may be
needed to correctly represent usage
or test management issues.

Step 3. If the model has been changed,
repeat Steps 1 and 2.

Step 4. Generate some test cases and
confirm that they look realistic; if
not, return to Step 2.

Step 5. Use the model and its implica-
tions to inform development activi-
ties such as performance planning,
correctness verification, safety analy-
sis, and test planning.

Test Planning

Crafted (Nonrandom) Test Cases
There are compelling reasons for creat-
ing special, nonrandom test cases. Such
testing can remove uncertainty about
how the system will perform in various
circumstances and can contribute to

effectiveness and control over all test-
ing, both crafted and random.

Following are types of nonrandom
testing that may be useful prior to ran-
dom testing.
Model coverage tests. Using just the

structure of the model, a graph-
theoretic algorithm generates the
minimal sequence of test events
(least cost sequence) to cover all arcs
(and therefore all states). If it is
practical to conduct this test, it is a
good first step in that it will confirm
that the testers know how to con-
duct testing and evaluate the results
for every state of use and every pos-
sible transition.

Mandatory tests. Any specific test
sequences that are required on con-
tractual, policy, moral, or ethical
grounds can be mapped onto the
model and run.

(Nonrandom) regression tests. Regres-
sion test suites can be mapped to the
model. This is an effective way to
discover the redundancy in the test
suite and assess its omissions.

Critical but unlikely use. Critical
states, transitions, and subpaths that
would have low likelihood of arising
in a random sample can be identi-
fied from the model and tested by
crafted cases.

Importance tests. Importance sam-
pling can be implemented by add-
ing management constraints and an
objective function that will produce
the transition probabilities that will
emphasize the “value” in the sam-
pling process.

Partition testing. The usage model can
be used to identify and define parti-
tions to gain sampling efficiency.

Random Test Cases
Random test cases may be automatically
generated from the usage model. Each
test case is a “random walk” through the
model, from the initial state to the ter-
minal state. Test cases may be generated
as scripts for human testers or as input
sequences for automated testing. Post-
processing of test cases often further
facilitates human or automated evalua-
tion. One may generate as large a set of
test cases as the budget and schedule

will bear and establish bounds on test
outcomes before incurring the cost of
performing the tests.

Engineering Practice for Test
Planning
Random testing should begin only after
all crafted testing has been completed.
Step 1. Using the expected test case

length derived during model analy-
sis, estimate and generate the num-
ber of random test cases that can be
run within the schedule and budget.

Step 2. Define the best-case scenario.
Assume that no failures occur in
random testing, and determine the
values of product quality and pro-
cess sufficiency that can be achieved
by running the number of test cases
generated in Step 1. (These mea-
sures are described in the “Product
and Process Measurement” section.)

Step 3. Define the worst-case scenario.
Assume some profile of failures and
construct a failure log based on the
profile. (This may be done for sev-
eral scenarios.) Again, determine the
values of product and process certi-
fication measures under the sce-
nario. The comparison of these
values with actual certification goals
will reveal how much bad news the
budget and schedule can absorb.

Step 4. Analyze the coverage of model
states, arcs, and paths that will oc-
cur.

Step 5. Analysis might show that test-
ing as planned and budgeted can-
not, even in the case of no failures,
satisfy requirements for model cov-
erage or demonstrable reliability.
Given this fact, one may choose to
either revise goals or revise plans.

Testing
It is essential to the integrity of the
certification process to maintain experi-
mental control throughout random
testing. Experimental control refers to
complying with the assumptions associ-
ated with a statistical protocol. Results
must be evaluated consistently. The
team must ensure a common under-
standing of all test materials and poli-
cies so that consistent test decisions are

Software Engineering Technology
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made. Other steps to ensure experimen-
tal control are given in [3, Chap. 17].

Engineering Practice for Testing
Step 1. Hold the specification and

oracle constant for each version of
the software that is tested.

Step 2. Sustain the conditions in the
environment throughout testing.

Step 3. Monitor the performance of
human testers to prevent “drift.”

Step 4. Run test cases in the order in
which they are generated.

Step 5. Schedule regular communica-
tion among testers for discussion of
matters that may affect test judg-
ment.

Step 6. Log all failures.
Step 7. Maintain at least two testing

chains, i.e., testing records encoded
as Markov chains, one for the cur-
rent version of the software and one
for the history of testing across all
versions. The current-version testing
chain will be used for certification
and stopping decisions. The histori-
cal testing chain will be used to
study the development and testing
processes.

Step 8. If one or more failures occur
during testing of the current ver-
sion, a decision must be made
about whether to stop testing.
Many factors may be involved,
including the nature of the failures,
schedules, and organizational poli-
cies. Monitor reliability, confi-
dence, and convergence of the
testing chain to the usage model to
guide stopping decisions.

Step 9. If no failures are seen during
testing, base stopping decisions on
reliability, confidence, and conver-
gence measures together with re-
maining schedules and budgets.

Product and Process
Measurement
The usage model from which the test
cases are generated is called the “usage
chain.” A chain of initially identical
structure is developed to record actual
testing experience, called the “testing
chain.” The progress of testing is moni-
tored by tracking measures calculated
from these two chains.

Product Measures
A reliability measure is calculated from
the testing chain along with confidence
intervals. This reliability is defined
strictly in terms of the failure experi-
ence recorded in the testing chain; there
are no other mathematical assumptions.
This definition of reliability is appli-
cable whenever testing has revealed one
or more failures. (When testing reveals
no failures, distributional models
should be used, e.g., [3, Chap. 5; 4].)

Process Measures
An information theoretic comparison
of the usage and testing chains is com-
puted to assess the degree to which the
testing experience has become represen-
tative of expected field use. Its graph
will have a terrace-like appearance of
declines and plateaus. The trend in the
measure reveals the rate at which the
usage and testing chains are becoming
indistinguishable. As the two converge,
it becomes less likely that new informa-
tion will be gained by further testing.

Certification
The certification process involves ongo-
ing evaluation of the merits of continued
testing. Stopping criteria are based on
reliability, confidence, and uncertainty
remaining. Decisions to continue testing
are based on an assessment that the goals
of testing can still be realized within the
schedule and budget remaining.

In most cases, users of statistical
testing methods release a version of the
software in which no failures have been
observed. Reliability estimates such as
those in [3, Chap. 5; 4] are recom-
mended in this case.

Software is sometimes released with
known faults. If the test data includes
failures, reliability and confidence may
be calculated from the testing chain.
The reliability measure computed in
this manner reflects all aspects of the
sequences tested, including the prob-
ability weighting defined by the usage
model.

Certification is always relative to a
protocol, and the protocol includes the
entire testing process and all work
products. An independent audit of
testing must be possible to confirm

correctness of reports. An independent
repetition of the protocol should pro-
duce the same conclusions to within
acceptable statistical variation.

Conclusions
The model construction and validation
process is an investment in understand-
ing how the system will be used. Several
calculations flow directly from the us-
age models without further assump-
tions that quantify the size and com-
plexity of the testing problem. For
many practitioners, this quantitative,
defensible characterization of size and
complexity provides insights that are
overwhelming. Practitioners have vari-
ously slashed requirements, pruned user
options, erected firewalls, extended
schedules, extended budgets, initiated
test automation efforts, and decimated
reliability goals. If one believes that the
usage model accurately captures the
capability described in the specifica-
tions and that the probabilities repre-
sent the intended environment of use,
the calculations and conclusions based
on them are inescapable.

Work in progress is focused on com-
position of usage models from compo-
nents, synthesizing information about
the whole from the components, and
combining testing information across
the product lifecycle. u
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Any experienced program man-
ager (PM) will quickly recognize
that I have indulged in a little

hyperbole in the following article to
emphasize a number of deeply held
beliefs.

I stress that the article is not in-
tended to provide a shield for those
PMs who go to extreme lengths to
avoid any risks. By definition, good
PMs are risk takers. That is their
strength. Risk taking becomes a weak-
ness only if the PM does not under-
stand the difference between gambling
and controlled risk taking. In real life,
the knowledgeable risk taker will (al-
most) always outperform the gambler
and the ultraconservative—by a wide
margin. A word to the wise: Most in-
surance companies are highly profit-
able—by design, not by accident.

If I seem to have let engineers off
easily, that is not the intent. Engineers
are fully responsible for the specific task
assigned to them and must answer in
full for a competent job. However, only
the PM and chief engineer are respon-
sible for the full job. They must shoul-
der the full blame if the project fails.
The point is, if the project is lost for
“want of a nail1 ...,” for the failure of
one—or even several— lower-level
engineers, or because of a few minor
glitches, the program manager and
chief engineer are mightily to blame.

Bad Management
Engineering development disasters are
always due to bad management and
never to bad engineering because, for
any but the smallest noncritical project,
the PM must do risk management. The
plea “failed due to uncontrollable
forces” or “my team let me down” is
almost invariably an admission of bad

management. Worse, it means not only
that the PM was inept but also does not
have a clue about how to improve. A
manager is not merely an overpaid ad-
ministrator who handles the budget and
doles out the work. A manager is the
principal defense against the real-life
disasters that can destroy any program.

Simply put, the PM must expect
and plan for all engineering problems.
This includes workable contingency
plans that will prevent problems from
impacting schedule and cost. Even with
the best of engineers, creativity cannot
be planned for and scheduled like a
train timetable; some slippage is bound
to occur. The most mundane engineer-
ing projects contain requirements for a
substantial degree of good engineering
and creativity. Provision must be made
for things not going as planned; other-
wise, who needs a PM?

Contingency Plans
There are all sorts of contingency plans
and safeguards against problems due to
bad engineering. Some will also work
for almost any unexpected technical
difficulties. The different problem cat-
egories should be treated differently but
have some overlap and similarities for
planning purposes. Here, we will only
take a superficial view of planning to
prevent the impact of bad engineering.

Assessing Teammates Strengths
The first line of defense for the PM is
to correctly assess the abilities of the
engineer, then correctly assign the engi-
neer to a job. The “hallway” technique
of assigning people is a sure recipe for
disaster. This technique assumes that
everyone within the same labor cat-
egory is equivalent, so it must be okay
to assign the first warm body of the

appropriate category to pass the
manager’s door in the hallway to the
job at hand. The amazing thing is not
how often the warm body fails but
rather, how often they succeed.

For any given job, there are four
types of people. One type has never
done a similar job and may possess
some or most of the necessary skills but
is fundamentally an unknown quantity.
The other three types have done a simi-
lar job before, but one has failed at it,
one has performed acceptably, and one
has performed outstandingly. Clearly,
depending on the skill pool and if other
priorities permit, the choice is one of
the latter two types. If the task is suffi-
ciently critical, the choice may be only
someone of the last type. The PM must
give special care to the selection of the
chief engineer and plan to accommodate
their strengths and weaknesses. (A good
chief engineer will devise a similar plan
to accommodate the PM.)

If people of the first two types only
are available, the manager must spend
considerably more effort to decide
among the candidates. But if managers
lack qualified people for a program,
they must have the courage to tell their
management and insist on a workable
solution. Agreeing to take on an impos-
sible program is managerial malpractice.
It is impossible to categorize people with
respect to a job if the manager has no
notion of what skills the proposed job
requires or what skills the candidate’s
previous job required. Both are easily
determined, as well as the performance
of engineers on past jobs, but not with-
out effort on the manager’s part.

In deciding to give someone “an-
other chance,” the manager must assess
whether that someone has demon-
strated an unremediated lack of some

Engineering disasters are always the result of bad management and never
the result of bad engineering—or almost always.  This article describes three
lines of defense any manager can use to guard against bad engineering.

Engineering Disasters . . .
Norman F. Simenson

Federal Aviation Administration
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necessary technical or personality skill.
To determine if someone deserves a
crack at something that will probably
stretch their abilities, the manager must
decide whether that person has the
basic technical and personality skills
needed and is likely to rise to the occa-
sion. In either case, it must be assumed
that an individual that has failed at or
has never performed a task will need
extra support in the form of training,
mentoring, and supervision. That person
is also likely to take longer to perform
the task than one of the successful
people. Due allowance must be made.

Provide Support and Resources
The second line of defense is to ensure
that the engineer assigned to the task has
the necessary support and resources. If
these are not supplied in sufficient qual-
ity and quantity, the correlation between
past and future success is bound to be
poor. No matter how skillful the carpen-
ter, a good job of nailing one board to
another is unlikely without a hammer or
nails or if one board is at another site
two miles away. Unfortunately, it is
common to overload an outstanding
performer. It is easy to assume that a
fraction of one good worker is better
than all of a weak one or that a strong
performer can make do with signifi-
cantly less, i.e., inadequate support and
significantly fewer resources. Almost
equally disastrous is the practice of ra-
tioning resources “impartially” with little
or no regard to the difficulty of the job
or the ability of the performer. It does
not work for parents, and it will not
work for managers.

Plan Redundancy
A third line of defense is planned redun-
dancy. It always amazes me how top
managers will skimp on a program when
sufficient planning and use of resources
will ensure delivery, then spend re-
sources, seemingly without limit, once
failure is imminent and generally un-
avoidable. If you plan for failure
upfront, it is avoidable. Suppose the only
candidates for a job are of the first two
types of employee described earlier. In
this case, it is best to start two or even
three on different aspects of the same job

in parallel. When one or two of your
candidates fail, go with the successful
candidate. Never make the mistake of
shifting resources from a succeeding
candidate to a failing candidate. This is a
formula to ensure that everyone will fail,
which has been proven repeatedly in
military combat. Cut your losses
quickly—this includes getting rid of bad
engineers quickly. (Bad engineers are
those who are not only incompetent but
also take no responsibility for, and there-
fore do not learn from, their mistakes.)

If you wind up with all failing can-
didates, make sure you have the ma-
chinery in place to detect this early and,
as each candidate fails, switch to an
alternative strategy. This may involve
supporting or replacing them with a
more successful performer. This is one
reason why you want to plan to support
the weak candidate with more time and
resources and with more supervision at
the outset. It also is a reason never to
start a program without some engineer-
ing reserve (which may be no more
than potential overtime). Programs that
start with everyone already overcom-
mitted always fail. For critical tasks, it is
a good idea to backup even the best
engineers. Consider this “bus” insur-
ance. (You must always worry about
and plan for your key engineers being
hit by a bus or other catastrophe.)

Using a low-risk, redundant ap-
proach assures against the failure of any
high-risk approach. The resources ex-
pended on the redundant alternative(s)
should be considered an insurance
premium. Where a parallel approach
strategy is used, multiple successes will
speed the result, so not much is lost if
properly planned.

There are many other strategies a
competent manager can use to ensure
against bad engineering or other disas-
ters. Enough strategies should be used
to reduce the risk of failure to a toler-
able level at an acceptable cost.

Conclusion
In closing, I make three points. First,
nothing in this article applies particu-
larly to software managers. Second,
through the software process improve-
ment method and related techniques

initiated by the Software Engineering
Institute and others, software has done
more than its fair share to raise “scien-
tific” management  from a simple col-
lection of  heuristics toward the status
of a science. Third, despite the general
wailing, breast-beating, and gnashing of
teeth, software must be doing something
right. There has been nothing like the
headlong rush to software since the
similar rush to electronics after World
War I. The average automobile of today
has more software in it than the first
Apollo spacecraft to arrive at the moon
less than 30 years ago! u
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Note
1. “For want of a nail, a shoe was lost. For

want of a shoe, a horse was lost. For want
of a horse, a message was lost. For want of
a message, a battle was lost. For want of a
battle, a war was lost. For want of a war, a
kingdom was lost. And all for the want of
a nail!”
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I’ve spent the last hour trying to come up with an ironic opening line about the
reliability of commercial software, but every time I try to type something my com-
puter locks up. So instead I’ll state my point outright: I support legitimate military
efforts to integrate commercial-off-the-shelf (COTS) software, so long as the compa-
nies that created the software for my computer aren’t allowed anywhere within the
same time zone as a U.S. military base.

The companies that created the software for my computer are all led by former
executives of “Yugo Corp.” Their quality standards for cars (“Transmission is se-
curely attached with extra-strength masking tape!”) have translated over to their
software reliability rates (“Crash per hour rate is below 2.5!”). For example, below
are the results from a commercial translation program. The following sample E-
mail message went from English to Portuguese and back to English.

English version: “Hey, what’s up? I’ve been slamming out some of my hottest code ever, but our
new chief bugs me. At first she seemed pretty on the ball, but she won’t cut us any slack. I can’t take it, so
I’m laying low and hoping she gets downsized. Drop me a line some time, all right? Well, I’ve got to cruise
to my pad and hit the sack. Take care, John.”

Translated to Portuguese and back: “Hey, that is above? I have beaten for I am of some
the my hottest code always, but of our new main errors me. Beginning in seemed consideravelmente in the
sphere, but in it will not cut them flabby. I cannot make examination d, thus that I am placing point low e
waiting I start downsized. He leaves me to fall a line some hour, all for the right? Well, I started to cross
cushion and beat sack. Care of the taking, John.”

To be fair, this was translated by a beta version of the program, which was probably
created faster and cheaper than the government could form a steering committee to
appoint a task force to schedule an investigation on which countries use Portuguese.
The bad news is, down the road this task force would probably recommend buying
the above software for all military correspondence in Portuguese, and judging by the
translation quality, within a matter of weeks we would be at war with Brazil.

But since COTS appears to be the wave of the future, some companies may need
practice building software according to stricter military standards. Before integrating
their software into our systems, we should let commercial producers start by build-
ing military systems where quality problems won’t impact our national security—
such as creating missile guidance systems for Third-World military dictatorships:
Dictator: Is the missile ready for launch against the line-dancing, Big Mac-eating capitalist swine?
Minion: Yes, oh crazed despotic leader! Type in the launch code and press enter when you are ready.
Dictator (types code and presses enter): Arg! A little paper clip cartoon is asking if I want help!
Minion: Press “cancel” and hit “fire”! (Dictator presses “cancel” and “fire.”)
Computer: ARE YOU SURE YOU WANT TO FIRE? <Yes> <No>
Dictator: Yes! Fire! (WHOOOOOOSH!!!!) Finally! Take that, you NATO ninnies!
Computer (pauses for several seconds): GENERAL MISSILE DEFAULT. PRESS <Yes> TO RESTART.
Dictator: Hurry! Shut this rotten thing down and boot up our old system!
Computer: SHUTTING DOWN. PLEASE WAIT WHILE MISSILE RETURNS TO SILO.
Minion: Incoming!
Dictator: AAAAAAAAAAIIIIIIIIIIEEEEEEEEEEEEEEEEEEEEEEEE!!!

As the military integrates more COTS software, there will be some adjustments.
For example, we will need additional personnel to update our airplanes, tanks, missiles,
and boats so that they can still communicate with each other whenever a COTS manu-
facturer decides to release a new version of software that has no perceivable advantage
over its previous six upgrades (save for a cooler box). To maintain version control,
perhaps we will someday see, for example, the F-16.3.11 Falcon fighter (“Now imports
all leading spreadsheet formats!”) or the M1.22B-Abrams tank (“New patch: turret
now turns clockwise and counterclockwise!”). They would probably also need several
crews to paint and repaint the extra version numbers on the equipment. I’m not sure
whether I’m joking about all this or not.

With time and experience, I’m sure COTS software will settle into its proper,
most logical uses. But as far as treating COTS as the end-all answer to our cost
problems, I say, “Don’t count your chickens before they hatch.” Or as they say in
Brazil, “He does not count its hens before they shock.”       — Lorin May

COTS Reliability: An Oxymoron?


