








Encapsulation Solutions


For Year 2000 Compliance








Working Paper


by


2000 Technologies Corporation


114 Waltham Street, Suite 19


Lexington, MA  02173  USA


781-860-5277


800-756-8046


email donestes@2000technologies.com


http://www.2000technologies.com








© 2000 Technologies Corporation 1997





Permission is granted for reproduction and distribution of this document provided


it is complete, unmodified, and retains all identification including this statement,


and provided that notification of recipient is sent to the above email address. 


All other reproduction and distribution is expressly forbidden.


�
Table of Contents





� TOC \o "1-3" �1. Executive Summary	� GOTOBUTTON _Toc406230926  � PAGEREF _Toc406230926 �1��


2. Technical Overview	� GOTOBUTTON _Toc406230927  � PAGEREF _Toc406230927 �2��


3. Program Encapsulation	� GOTOBUTTON _Toc406230928  � PAGEREF _Toc406230928 �5��


4. Data Encapsulation	� GOTOBUTTON _Toc406230929  � PAGEREF _Toc406230929 �7��


5. Testing	� GOTOBUTTON _Toc406230930  � PAGEREF _Toc406230930 �9��


5.1 Equivalence, Not Correctness	� GOTOBUTTON _Toc406230931  � PAGEREF _Toc406230931 �9��


5.2 Current Dated and Future Dated Regression Cases	� GOTOBUTTON _Toc406230932  � PAGEREF _Toc406230932 �9��


5.3 Coverage Analysis	� GOTOBUTTON _Toc406230933  � PAGEREF _Toc406230933 �10��


5.4 Encapsulation Eliminates Time Dimensional Testing - Discussion	� GOTOBUTTON _Toc406230934  � PAGEREF _Toc406230934 �11��


5.5 Encapsulation Eliminates Time Dimensional Testing - Proof	� GOTOBUTTON _Toc406230935  � PAGEREF _Toc406230935 �12��


5.5.1 Hypothesis	� GOTOBUTTON _Toc406230936  � PAGEREF _Toc406230936 �12��


5.5.2 Definition of Time Horizon for Failure	� GOTOBUTTON _Toc406230937  � PAGEREF _Toc406230937 �12��


5.5.3 Definition of Current Versus Time Dimensional Regression Testing	� GOTOBUTTON _Toc406230938  � PAGEREF _Toc406230938 �12��


5.5.4 Definition Of Automated Regression Testing	� GOTOBUTTON _Toc406230939  � PAGEREF _Toc406230939 �12��


5.5.5 Special Cases	� GOTOBUTTON _Toc406230940  � PAGEREF _Toc406230940 �13��


5.5.6 Baseline Cases	� GOTOBUTTON _Toc406230941  � PAGEREF _Toc406230941 �13��


5.5.7 Inductive Proof	� GOTOBUTTON _Toc406230942  � PAGEREF _Toc406230942 �14��


5.5.8 Overview of Test Cases:	� GOTOBUTTON _Toc406230943  � PAGEREF _Toc406230943 �14��


5.5.9 Test Cases 1(a) Through 4(a), Correctness:	� GOTOBUTTON _Toc406230944  � PAGEREF _Toc406230944 �16��


5.5.10 Test Cases 1(b) Through 4(b), Error in Time Dimensional Aging:	� GOTOBUTTON _Toc406230945  � PAGEREF _Toc406230945 �17��


5.5.11 Test Cases 1(c) Through 4(c), Error in Encapsulation:	� GOTOBUTTON _Toc406230946  � PAGEREF _Toc406230946 �18��


5.5.12 Test Cases 1(d) Through 4(d), Error in Both Encapsulation and Time Dimensional Testing:	� GOTOBUTTON _Toc406230947  � PAGEREF _Toc406230947 �19��


5.5.13 Conclusion	� GOTOBUTTON _Toc406230948  � PAGEREF _Toc406230948 �20��


5.6 Manual Time Dimensional Testing	� GOTOBUTTON _Toc406230949  � PAGEREF _Toc406230949 �20��


5.7 Special Testing Cases	� GOTOBUTTON _Toc406230950  � PAGEREF _Toc406230950 �21��


5.7.1 Date Literals	� GOTOBUTTON _Toc406230951  � PAGEREF _Toc406230951 �21��


5.7.2 Date Data Sequencing at the Century Boundary	� GOTOBUTTON _Toc406230952  � PAGEREF _Toc406230952 �22��


5.7.3 Pragmatics	� GOTOBUTTON _Toc406230953  � PAGEREF _Toc406230953 �23��


5.8 Unit Testing and Test Data	� GOTOBUTTON _Toc406230954  � PAGEREF _Toc406230954 �23��


5.9 Special Date Literals	� GOTOBUTTON _Toc406230955  � PAGEREF _Toc406230955 �24��


5.10 Pragmatic Considerations in Year 2000 Testing	� GOTOBUTTON _Toc406230956  � PAGEREF _Toc406230956 �25��


5.11 Summary of Testing	� GOTOBUTTON _Toc406230957  � PAGEREF _Toc406230957 �25��


6. Overview of Year 2000 Repair Methodologies	� GOTOBUTTON _Toc406230958  � PAGEREF _Toc406230958 �26��


6.1 Assessment	� GOTOBUTTON _Toc406230959  � PAGEREF _Toc406230959 �26��


6.2 Modification	� GOTOBUTTON _Toc406230960  � PAGEREF _Toc406230960 �26��


6.3 Testing	� GOTOBUTTON _Toc406230961  � PAGEREF _Toc406230961 �27��


6.4 Deployment	� GOTOBUTTON _Toc406230962  � PAGEREF _Toc406230962 �28��


7. Strategic Project Design Issues	� GOTOBUTTON _Toc406230963  � PAGEREF _Toc406230963 �29��


7.1 Pragmatics of Project Strategy Recommendations	� GOTOBUTTON _Toc406230964  � PAGEREF _Toc406230964 �29��


7.2 Encapsulation As A Temporary Fix	� GOTOBUTTON _Toc406230965  � PAGEREF _Toc406230965 �30��


7.3 Automated Testing	� GOTOBUTTON _Toc406230966  � PAGEREF _Toc406230966 �31��


8. Summary of Program Versus Data Encapsulation	� GOTOBUTTON _Toc406230967  � PAGEREF _Toc406230967 �34��


9. Summary	� GOTOBUTTON _Toc406230968  � PAGEREF _Toc406230968 �35��


�





�
1.	Executive Summary


Standard technical strategies to achieve Year 2000 compliance include replacement, date expansion, and various forms of windowing, bridging and/or variations on date encoding.  Recently added to this list are limited windowing strategies, which change only date sensitive comparisons and calculations, and time shifting strategies.  These new strategies offer significantly reduced costs, business risks, and time to implement and test.  This paper discusses the two variations of time shifting strategies: program encapsulation and data encapsulation.  





All of the benefits of encapsulation result from two central facts: 





Analysis and implementation efforts are minimal, and 





The requirement to perform tests against data near or after the century change is eliminated, provided 1 or 2 small tests are performed as applicable.  





The only required program changes for encapsulation occur at easily identified I/O verbs, and residual questions from analysis, a major aspect of error and delay in conventional projects, can be resolved immediately by simply looking at the stored data.  Since the renovation is established by turning back the clock by a multiple of 28 years, when you test the renovated application against current dated data, you are implicitly testing the application for the same multiple of 28 years into the future.  





This means that the costs of implementation are reduced, because of reduced scope in analysis and program change, and that the costs of testing are dramatically reduced, by eliminating the need to build future dated test cases. Furthermore, if encapsulation is implemented through an automated code instrumentation facility, a complementary automated regression testing facility can be bound into the program logic, further reducing testing costs.  In addition, because the relatively small amount of program code affected is at the logical boundary between the program and the outside data storage, it offers a minimal risk profile, and, because the file formats do not change, it has minimal deployment impact.  The elegant simplicity of the method is reflected in the low commercial prices and rapid delivery schedules for encapsulation projects.





Automation of date expansion and full windowing (procedural logic) solutions offer many of the implementation advantages of encapsulation, including cost reduction, if not to the same degree. Limited windowing methodologies can come close to encapsulation on an implementation cost basis.  However, in the area of testing, by far the most time consuming and expensive aspect of any Year 2000 project, encapsulation is in a class by itself, since only encapsulation can bypass the expense of future dated testing altogether and minimize the effort of fully automating the testing through the production parallel stage.  As the time horizon for failure draws near, this aspect of encapsulation will dominate strategy decisions.





2.	�
Technical Overview


Time shifting strategies are similar to windowing (or procedural logic) strategies in that a 2 position year is maintained.  However, windowing strategies infer the century from the data and operate spanning the century boundary.  Time shifting strategies, by contrast, shift the data back in time to avoid the century boundary altogether.  The practical result of this subtle distinction, as we shall see below, is a substantial reduction in effort and associated cost.





The essential problem with maintaining a 2 position year is that 2000 > 1999 but 00 < 99.  By shifting the dates back time in time, typically by a multiple of 28 years, we end up with 1972 > 1971 and 72 > 71, solving the problem. Since there are 4 years between leap years, and 7 days to a week, the cycle of week days repeats every 28 years.  This breaks down for century years which are not leap years, which includes 1900 and 2100, so that the method can only be used for dates from 1901-2099.





There are two variations of time shifting:





Data encapsulation, in which the disk data remain essentially unchanged and the programs are modified to shift date data dynamically


Program encapsulation, in which the programs remain essentially unchanged and the date data are statically modified on disk


In other words, we encapsulate what we don't change.





So long as all dates are shifted consistently, we receive the same results for the same input, and the applications will work until 2027, 2055 or 2083.  Once all stored data are in the 21st century, the time shift can be turned off, at which time the application will work until 2100.  This may be a permanent fix, depending on archival data storage requirements.





An easily overlooked but important consideration involves date literals.  Whenever a date is coded into the program logic for comparison or calculation purposes, each such date must be shifted consistently with the data flowing through the program.  This includes system date calls where the dates are used for comparisons or calculations, although in this case MVS users may use a system clock simulator utility to avoid a program change.





The most important rule regarding encapsulation is whether or not the application under consideration has any date data used in calculations or comparisons from before the critical date of 1929 (for a 28 year shift).  Dates which are only stored and retrieved, such as birthdates, are not affected by this consideration. As long as computational and comparison years are within a 99 year range, implementing encapsulation is simple and straightforward. 





The amount of the time shift must be a multiple of 4, to assure that February 29 dates are always edited correctly by the program logic.  If the application is also day of week sensitive, as is a payroll application, for example, then we need to use a multiple of 28.  However, if there are data before the critical date, there are special case exceptions to this rule.  For example, if the application is not day of week sensitive, the time shift can be as little as 4 years, allowing computational and comparison dates back to 1905.  In this case the implementation is also simple and straightforward.





If there are only a small number of violations of the 1929 rule (for 28 year shift), then encapsulation is not necessarily eliminated.  For example, if a system of 1000 programs has only two programs which use birthdates in calculations, then those two programs could be windowed and the other 998 data encapsulated.  Yes, we will have to forward date test the two windowed programs, but we are much better off than having to forward date test all 1000.  Alternatively, we could window just the birthdate calculations within an encapsulated program, or expand just the birthdates with those programs' working storage.  In these cases where the 1929 rule is violated, encapsulation can still be used, but an economic evaluation needs to be applied to determine whether encapsulation is warranted.





If encapsulation is being used as a temporary fix, the time shift could be as little as 1 year.  Consider the case of a replacement or date expansion project which is running seriously late. Encapsulating the old system with a 1 year time shift would allow an additional year to complete.  This would put the critical date threshold at 1902, which is unlikely to cause a conflict in the one year it is expected to be operating.  The difficulties imposed would be that no transactions could be entered with a date of February 29, 2000, and that date of week related events would be one or two days off.  The February 29 transactions would have to be entered as February 28 or March 1, and date of week sensitive calculations reviewed.  This is an awkward solution, it is true, but much less awkward than no solution at all.  See section � REF _Ref405791169 \n �7.2� for a more complete discussion.





It is essential to realize that encapsulation is a technique for ensuring that we get the right results from current data, not a situation whereby we are repeating the same processing from 28 years ago.  If we need to subtract 1997 from 2001, we want to ensure we get 4.  But, to get the right answer, it doesn't matter whether we subtract 2001 - 1997, 97 - 93, or 73 - 69.  A similar situation occurs for comparisons of two dates.  





It is also important to realize that encapsulation allows a full 99 year range of data storage, not a 28 year data storage range, but with the earliest date stored being constrained to 1901 + the time shift constant employed.  For a 28 year time constant, we can't store anything before 1929, since we shift it back to 1901, but once shifted we have a range of 1901-1999 inclusive, giving an unshifted range of 1929-2027, inclusive.





A common question about the method has to do with holidays and other special dates.  For example, Easter will almost certainly fall on a different day in 2000 than in 1972. A program typically will read a calendar file to find the date for Easter in 2000.  Inside the program the year will be 1972, but the month and day used for Easter will be the month and day for Easter 2000, since it came from the calendar file record corresponding to Easter, 2000.  So long as everything is changed consistently, the correct results will be obtained.





Finally, there is an important consideration in encapsulation methodologies for sites which have not yet conducted a detailed assessment.  Due to the mind numbing complexity of detail in application assessment and in individual program analysis, confirmation of conclusions from the local subject matter experts is required.  However, this confirmation also constitutes one of the greatest sources of both error and delay, and time is our common enemy.  





An important benefit of encapsulation is that the indeterminacy of assessment is substantially reduced.  The single data entry and exit points in each program are vastly fewer in number and are essentially decoupled from each other, so that one need only examine those points and the data flowing through them to answer all questions.  There is no need to wait on subject matter experts for confirmation before proceeding, nor to maintain a state of high anxiety with regard to the inevitable errors of analysis that must occur with other methodologies, specifically including automated assessment tools of great power.


3.	�
Program Encapsulation�


It is helpful to visualize encapsulation as a time warp wherein the year has been shifted back by the warp constant.  Inside the time warp, everything is 28, 56 or 84 years earlier; outside the time warp everything is current dated.  As data cross the time warp boundary, they are consistently shifted back coming in and forward going out:


��


�





�


�


�








�





��








�








�




















��


��


�





�


�























�
The drawing above indicates a single program.  In a live system, there would be a number of encapsulated programs.  For programs that do not access date data outside the system boundary, or programs which only produce reports, there is little if any work to be done to make them compliant, once the appropriate data on disk are time shifted. Also, since many files in a typical system are temporary work files that are produced and consumed within the system, only the permanent and historical files need to be time shifted. As a result, program encapsulation is often the least effort approach to achieving year 2000 compliance.





A system view might be better represented thusly:


�����������������������


�








���



4.	Data Encapsulation


The critical difference between program and data encapsulation is the location where date data are shifted, on disk or within programs.  If we time shift the date data on disk and avoid program changes, we have program encapsulation.  If we time shift the date data within the programs and avoid data changes, we have data encapsulation.  In other words, we encapsulate what we don't change.








��


�


�








�


�








���











�


��������
Data encapsulation works on a program by program basis, as compared to program encapsulation which works on a system by system basis.  As a result, it is possible using the data encapsulation methodology for one program in a system to be data encapsulated, another to be given a standard windowing solution, and a third to be completely unchanged because date data flows through the program without being processed in any way.  This may be important for sites which plan to use encapsulation as a short-term fix while preparing a more comprehensive solution via full windowing, expansion or replacement.





Program encapsulation may have an implementation advantage over data encapsulation, although this will be significant primarily in larger projects.  This is because programs that do not cross the time warp zone boundary do not need to be modified, in most cases.  Program encapsulation may also have an operational advantage over data encapsulation due to reduced CPU consumption by dynamic time shifting routines, but this has not yet been shown to be a problem in actual production.  Preliminary results suggest this effect will be small and probably unmeasurable. 





Data encapsulation will have a significant deployment advantage, in that programs may be implemented one by one, not system by system.  Furthermore, encapsulation and windowing solutions may coexist in the same system, where warranted, in the sense that one program may be remediated with a windowing technique and another with a time shifting technique.  This works where the data remain unchanged on disk.





Note that in contrasting program and data encapsulation, only "pure" program encapsulation is discussed for reasons of clarity.  In practical projects, there may be some hybridization of the two methods for convenience.





5.	�
Testing


Testing is estimated to consume 40-60% of a Year 2000 project's expenses, many times the cost of direct renovation.  It is also a very complex topic, and is covered in greater detail in a separate working paper.  This is a superficial summary of the major topics as they apply to testing of encapsulation projects, plus an in-depth treatment of the most important testing topic relating to encapsulation: avoidance of future dated (time dimensional) testing.


5.1	Equivalence, Not Correctness


Testing does not prove that a program is correct.  It only proves the absence of faults under conditions of essential similarity to those tested.  Similarly, Year 2000 testing does not prove compliance, it only establishes the absence of date related faults for the range of conditions tested.  Given the expense and essential inconclusiveness of testing, the practical approach is to seek to minimize opportunities for faults, and to test exhaustively where the cost of an undetected fault will be potentially high.





A regression test is defined as testing a new version of a program against a known standard.  This is typically done by running the old and new versions of a program against the same input, and comparing the output.  This can be done manually, and if so we would typically be looking for evidence of incorrect results.  This method relies on the human ability for pattern recognition, which is very powerful, but is impractical for the volumes of tests and test data that must be performed.  Attempting to program AI engines to look for error patterns in the data is not likely to be cost/effective, nor sufficiently accurate, although it may be helpful as a second, complementary testing effort.





The alternative to manual regression tests is automated regression tests, in which a computer, not a human, looks for differences between the known standard and the output of the modified program.  If they are the same, then we consider the test to have established equivalence (not correctness) for the logic tested by that sample of data.





These automated regression tests are practical for the volumes of tests and test data that must be performed.  Therefore, for the purpose of this paper, we will henceforth refer only to automated regression tests, and leave manual regression testing for circumstances where automation is impractical and there are sufficient time and resources to complete adequate testing.


5.2	Current Dated and Future Dated Regression Cases


For Year 2000 testing for any method of renovation, we have to first establish a sufficient sample of data to establish equivalence for processing before we encounter the time horizon to failure, referred to as current dated regression testing. Then, we have to establish equivalence for future years after the time horizon for failure has been reached, through a process of forward aging data referred to as time dimensional testing to provide the future dated regression testing.  Sufficiency of test data is discussed in section � REF _Ref405726712 \n �5.3�.





This dual burden results in a potentially large number of test cases that have to be manually constructed in many if not most cases.  Current best practice defines 10 to 15 dates that have to be tested to establish current year regression: begin/end of week, begin/end of month, begin/end of quarter, begin/end of year, plus special dates such as February 29, holidays, fiscal year boundaries, mid-year boundaries, etc.  





To perform time dimensional testing, we define 3 to 5 years in the future which must be date tested, age the data statically or dynamically, and then run each of the test cases for each of those years.  If we have 10 dates and 4 future years, that requires 40 future test cases plus the baseline 10 cases plus the current year 10 cases, for a total of 60 test cases.  With 15 dates, the burden would be 90 test cases.  





For the fortunate systems where all the date test cases can be combined in a single run, we have 6 total runs, one for current year data baseline (unmodified) case, one for current year data baseline (modified), and 4 for the future year cases.  For those systems where all the test cases require a separate run, we could have 60 to 90 test runs, repeated each time a fault is found and repaired. In this context, it starts to be clear why testing is such a hugely expensive burden.





There are two special testing circumstances which may not be covered by time dimensional regression testing: date literal comparisons, and date data sequencing at the century boundary. If the data sample does not include appropriate dates, old date literals may not be tripped.  Dynamic aging of data, encountered with dynamic time dimensional testing and with data encapsulation, may create date data sequence testing problems at the century boundary if the dates used for indexing remain 6 digits. Their relevance here is that they constitute two additional specific test cases that must be evaluated.  This is discussed below.


5.3	Coverage Analysis


The current year and future year date test cases chosen by sites for conducting Year 2000 testing constitutes an informal attempt to provide sufficient code coverage in testing.  The proper way to conduct coverage analysis involves logical test path code coverage� and calculation boundary condition coverage.  There are tools available to determine both line of code coverage and logical test path coverage, of which the latter is much preferred, but calculation boundary condition coverage requires manual analysis to determine the conditions necessary to provide sufficient coverage�.





Coverage analysis leads directly into adequacy of test data.  If the test data are adequate, then all logical test paths and calculation boundary conditions will be tested.  Constructing adequate test data is a huge analytical and logistical task, made possible but not easy by use of appropriate tools.  Use of formal coverage analysis in deriving the test cases will define the test data that are needed to appropriately exercise the program code.  





For example, date literals will be revealed by logical test path analysis, because the group of logic invoked on or after a specific date will not be exercised unless appropriately dated data are included in the test data sets.  Calculation boundary conditions require analysis of each calculation involving a date.  In the absence of a formal analytical technique, it is recommended that all date boundaries from a standard list be included with the data, such as the sample list given above, plus any special dates revealed by manual analysis.


5.4	Encapsulation Eliminates Time Dimensional Testing - Discussion


Uniquely among all the renovation strategies, encapsulation reduces the burden of testing dramatically.  The process of aging data for the purpose of testing adds a constant number of years, months, weeks, or days to each date field, either by updating test files on disk (static aging) or by altering dates during execution (dynamic aging).  The process of encapsulation subtracts a constant number of years from each year field, either by statically updating data files on disk (program encapsulation) or dynamically during execution (data encapsulation).  In other words, they are the opposite of each other, and if time dimensional testing can establish future compliance, then an encapsulation project is already compliant for the number of years in its time warp constant, once it proves current year regression.  





Thus, our 60 to 90 test cases are reduced to 20 to 30 test cases, provided the special cases are tested.  For those systems where we can test all the current year dates in a single run, we need do only two runs, one for baseline (unmodified) and one for current year (modified).  In addition, the frequently arduous burden of aging test data is eliminated.  For example, one site reported two weeks of effort to age the data to test a 100 program unit.  Lack of system and personnel resources will commonly defeat plans for adequate forward testing of renovated applications, which may then argue for encapsulation solely on a risk reduction basis.





This conclusion has significant implications, so let us consider it in more detail.  There are 4 sources of faults in year 2000 repaired programs:





False positives, i.e., fields repaired that were not in fact dates


False negatives, i.e., date sensitive fields not discovered


Programming errors, i.e., repairs performed incorrectly


Collateral damage, i.e., faults inadvertently introduced into programs during the process of repair or existing masked faults now fully revealed by repairs


In the first case, false positives, one of two results can be obtained: the incorrect repair created a problem or it didn't.  If it created a problem, we will get a regression failure, typically because the field was used for arithmetic or comparisons.  If it didn't create a problem, we won't get a regression failure, probably because the field was simply moved through the program, but in this case no harm was done.  There is a latent bug waiting to reveal itself during future maintenance if the field becomes used for calculations or comparisons, but when that occurs regression testing at that time should find it, and furthermore we will be past the anticipated crisis point of possibly having an unmanageable number of failures.





In the second case, false negatives, we again see one of two results obtained: the failure to repair created a problem or it didn't. If it created a problem, we will get a regression failure, typically because the field was used for arithmetic or comparisons.  If it didn't create a problem, we won't get a regression failure, probably because the field was simply moved through the program, but in this case again no harm was done. In fact, one does not need to modify any programs which only move date data, though in practice it may be faster to modify the program with encapsulation than to establish that it does not need to be modified.





In the third case, a failure to correctly implement the time warp, we will get a regression failure testing with current data.  In the fourth case, breaking something else in the program, we again get a regression failure with current data.


5.5	Encapsulation Eliminates Time Dimensional Testing - Proof


5.5.1	Hypothesis


When encapsulation is used as a renovation strategy, automated time dimensional testing will add no information not already revealed by automated current date data testing.


5.5.2	Definition of Time Horizon for Failure


Time Horizon to Failure (THF): The earliest date at which the monotonically increasing, ordinal number property expected in date computations fails to produce the desired results.


5.5.3	Definition of Current Versus Time Dimensional Regression Testing


Automated current date data testing is automated regression testing < THF (before the Time Horizon for Failure).  Automated time dimensional testing is automated regression testing > THF (after the Time Horizon for Failure).


5.5.4	Definition Of Automated Regression Testing


Given a set of programs P, modified by a renovation process to give set P', we proceed by taking a sample set of input data D sufficient to meet code coverage requirements, which could be the full set of production data for production parallel testing.  Set D processed by P gives set P(D); similarly, D processed by P' gives set P'(D).  Before the THF, P(D) must equal P'(D) exactly, using byte for byte automated comparisons but eliminating meaningless differences like time stamps.  





After the THF, P(D) will not equal P'(D) reliably.  However, the fact that they are different does not establish that the program set P' is correct > THF; both P and P' might be wrong. Time dimensional testing is designed to give us a regression comparison data set derived from P(D) which is > THF but can be used for valid byte for byte comparisons against P'(D) > THF.





Let us define an operator T which is the time dimensional aging operator.  Applied to a set of data, T ages the data by a parameterized number of years, months, weeks, and/or days.  Therefore, < THF, P(T(D)) will equal P'(T(D)).  However, > THF, P(T(D)) is invalid, but T(P(D)) creates a practical set of comparison data (provided one performs the tests for the special cases discussed below).  Therefore, we derive a comparison test case, and compare T(P(D)) against P'(T(D)) byte for byte, eliminating meaningless differences through a masking process.  





Of course, the whole point of Year 2000 renovation is that P will fail to produce correct results > THF.  In conducting our testing, we are proposing to prove that P' will produce equivalent results to those obtained by P < THF, or at least to detect any faults producing incorrect results so we can correct them and re-test until equivalency is established.


5.5.5	Special Cases 


There are two conditions for which automated time dimensional testing is blind: date indexed data sequencing at the century boundary discontinuity when using dynamically aged data, which affects data encapsulation only, and the effects of date literals in the programs.  Strictly speaking, this is outside the hypothesis, but as a practical matter one or both of these much smaller tests must be conducted in lieu of time dimensional testing, if relevant to the particular system. These cases are discussed in more detail in section � REF _Ref405627467 \n �5.7�.


5.5.6	Baseline Cases


Because the proof requires review of an exhaustive number of cases, let us introduce the process by considering the 3 baseline cases that would constitute a normal implementation. We consider for our examples a simple check printing program which takes a parameter date and prints checks for all accounts expiring in the next 7 days.  First, we illustrate current processing with unmodified code (Program set P) as of the end of December, 1997:





CURRENT-DATE�
is taken from the system date, �
�
PRINT-CURRENT�
is input from JCL,�
�
NEW-POINT�
is calculated as PRINT-CURRENT + 7 days, �
�
CHECK-DATE�
is a stored date field retrieved for printing only�
�
TIMES-EXPIRE�
is used in a comparison, �
�



TIMES-EXPIRE is required to be >= PRINT-CURRENT and < NEW-POINT in order for that record to be selected for printing.  





Baseline Case 1





Program set P with dates < THF:





CURRENT-DATE �
971228�
�
PRINT-CURRENT �
971228�
�
NEW-POINT �
980104�
�
CHECK-DATE �
971228�
�
TIMES-EXPIRE�
date ranges on disk file: 960101 through 980301�
�



Result, print all checks with dates 971228 through 980103, inclusive.





Baseline Case 2





Program set P with dates aged 2 years to just encounter the THF, 01/01/2000:





CURRENT-DATE�
971228�
�
PRINT-CURRENT�
991228�
�
NEW-POINT�
000104�
�
CHECK-DATE�
991228�
�
TIMES-EXPIRE�
date ranges on disk, 980101 through 000301�
�



Result, print all checks with dates 991228 through 991231, inclusive, = FAILURE!.





Baseline Case 3





Program set P' (encapsulated programs) with dates aged 2 years to just encounter the THF, 01/01/2000:





CURRENT-DATE�
971228, processed internally as 691228�
�
PRINT-CURRENT�
991228, processed internally as 711228�
�
NEW-POINT�
000104, processed internally as 720104�
�
CHECK-DATE�
991228�
�
TIMES-EXPIRE�
date ranges on disk, 980101 through 000301, processed internally as 680101 through 720301�
�



Result, print all checks with dates 991228 through 000103, inclusive, = SUCCESS!





5.5.7	Inductive Proof


We will consider all the cases and demonstrate a failure to refute the hypothesis under each circumstance.  To refute the hypothesis, we would have to show for the process of renovation via encapsulation a case where P(D) = P'(D) < THF but T(P(D)) not = P'(T(D)) > THF, in the domain of the encapsulation time constant (28 years in the examples given).


5.5.8	Overview of Test Cases:


The following examples assume data encapsulation for clarity, but for program encapsulation the only difference is that the data are aged backwards on disk instead of dynamically at I/O time. Similarly, we assume static time dimensional testing, aging the dates on disk, even though dynamic is easier in practice, because static aging is a clearer example.





We define the test dataset D to be the December, 1997 files discussed above in Baseline Case 1.  For our time dimensional aging operator, we define the aging parameter to be 2 years, so that the T(D) data set will be dated December, 1999, as in Baseline Cases 2 and 3.  Note that the T operator adds 2 years to the year field only of EACH IDENTIFIED date field.





We consider the 4 sources of error each in turn:





False positives


False negatives


Programmer error


Collateral damage





We have in our example all 3 kinds of date usage:





Dates used in comparisons (including implicit comparisons such as sorts, date indexed tables, and date indexed files


Dates used in calculations 


Dates moved only


We have a total of 4 processing cases:





P with D input and P(D) output < THF


P' with D input and P'(D) output < THF


P failure, T(P(D)) derived output > THF


P' with T(D) input and P'(T(D)) output > THF


We also have 4 error cases:





No error in either encapsulation or time dimensional aging (correctness)


No error in encapsulation but error in time dimensional aging


Error in encapsulation but no error in time dimensional aging


The same error in both encapsulation and time dimensional aging


This provides a total of 4x3x4x4, or 192 cases to consider.  Fortunately, there are some simplifying analyses we can perform to keep the number of cases we have to consider to a reasonable level.





First, false positives and false negatives are essentially the same error; a testing regime that will detect one will detect the other and, conversely, a testing regime that will fail to detect one will also fail with the other.  Second, in a similar manner, programmer error and collateral damage will both be detected or missed by the same testing regime.  However, for the method of automated regression testing under consideration, the false positive/negative case is the more difficult, and we take as given that tests which will detect false positives/negatives will also detect programmer error and collateral damage, given sufficient coverage in the test data sample.  This assumption can be proven through an inductive argument similar to that of the overall argument.  Focusing on the false negative case leaves us with 48 cases to consider.





Considering the 3 types of date usage in programs, the third, date data movement only, can be neglected as either making no difference or, as in the case of programmer error that causes a date not to be moved, as being detectable by the same test regime for false negatives.  





The first and second date usage, comparison versus calculation is more difficult.  Comparison problems will be revealed by sufficient data to provide complete logical test path coverage, and is the problem chosen for illustration in the cases presented below (via the TIMES-EXPIRE dataname).  However, calculations are assumed to encounter a problem at the THF but not before, so that the calculation case is neglected here so long as encapsulation is restricted to the domain of its time constant, thereby never approaching its THF.  





This leaves us with 16 cases to consider: 





Error Case:�
Case 1: Unmodified < THF�
Case 2: Modified < THF�
Case 3: Unmodified > THF�
Case 4: Modified > THF�
�
Correctness�
1(a)�
2(a)�
3(a)�
4(a)�
�
Error in data aging�
1(b)�
2(b)�
3(b)�
4(b)�
�
Error in encapsulation�
1(c)�
2(c)�
3(c)�
4(c)�
�
Error in both�
1(d)�
2(d)�
3(d)�
4(d)�
�



Cases 3(b) through 3(d) are identical to 3(a), eliminating 3 cases, and cases 1(b) and 2(b) are identical to 1(a) and 2(a), respectively, because tests 1 and 2 are before the THF where data aging is irrelevant.  This gives a total of 11 cases to consider.


5.5.9	Test Cases 1(a) Through 4(a), Correctness:


Case 1(a): unmodified code with Dec, 1997 data (P with D input and P(D) output):





CURRENT-DATE�
971228�
�
PRINT-CURRENT�
971228�
�
NEW-POINT�
980104�
�
CHECK-DATE�
971228�
�
TIMES-EXPIRE�
date ranges on disk, 960101 through 980301�
�



Result, print all checks with dates 971228 through 980103, inclusive, = success.  This is the same as Baseline Case 1.





Case 2(a), correctly encapsulated code with Dec, 1997 data (P' with D input and P'(D) output)





CURRENT-DATE�
971228, processed internally as 691228�
�
PRINT-CURRENT�
971228, processed internally as 691228�
�
NEW-POINT�
980104, processed internally as 700104�
�
CHECK-DATE�
971228�
�
TIMES-EXPIRE�
date ranges on disk, 960101 through 980301, processed internally as 680101 through 700301�
�



Result, print all checks with dates 691228 through 700103, inclusive, as 971228 through 980103, = success.





Comparing Cases 1(a) and 2(a) outputs:





P(D) = P'(D), because we are < THF





Case 3(a), derive a regression test case comparison data set via time dimensional testing by taking the output of Case 1(a) and adding 2 years to the identified dates, creating T(P(D)), an output file showing all checks with dates 991228 through 000103, inclusive.





Recall that we couldn't use P(T(D)) because we reach our THF on 01/01/2000, and due to program failure the checks for 01/01/2000 through 01/03/2000 were not printed.  But, T(P(D)) does contain the checks for 01/01/2000 through 01/03/2000, and so constitutes a valid set of comparison data to put against P'(T(D)) in Case 4(a).





Note that, in our simple example, we don't need to test for the two special cases, because we don't have date indexed data to have a discontinuity at the century boundary, and we don't have any date literals in the processing.  These will be relevant in some projects, in which case they would require separate validation, but one which is much less effort than time dimensional testing.





Case 4(a), correctly encapsulated code with 1997 data correctly aged 2 years as input (P' with T(D) input and P'(T(D)) output):





CURRENT-DATE�
971228, processed internally as 691228�
�
PRINT-CURRENT�
991228, processed internally as 711228�
�
NEW-POINT�
000104, calculated from 991228 internally as 711228, processed internally as 720104�
�
CHECK-DATE�
991228�
�
TIMES-EXPIRE�
date ranges on disk, 980101 through 000301, processed internally as 700101 through 720301�
�



Result, print all checks with dates 991228 through 000103, inclusive and CHECK-DATE = 991228.





Comparing Cases 3(a) and 4(a) outputs:





T(P(D)) = P'(T(D)), > THF





Results: time dimensional testing produced the same comparison results as the Cases 1(a) and 2(a) comparison above.  No new errors were revealed, and no information was added.


5.5.10	Test Cases 1(b) Through 4(b), Error in Time Dimensional Aging:


Next is case (b) of TIMES-EXPIRE date identified in encapsulation but missed in time dimensional testing aging:





Case 1(b) is identical to Case 1(a).





Case 2(b) is identical to Case 2(a).





Case 3(b) is identical to Case 3(a).





Case 4(b): correctly encapsulated code with 1997 data incorrectly time dimensionally aged 2 years as input (P' with T(D) input and P'(T(D)) output):





CURRENT-DATE�
971228, processed internally as 691228�
�
PRINT-CURRENT�
991228, processed internally as 711228�
�
NEW-POINT�
000104, calculated from 991228 internally as 711228, processed internally as 720104�
�
CHECK-DATE�
991228�
�
TIMES-EXPIRE�
date ranges on disk, 960101 through 980301 not aged in error (should have been 980101 through 000301)�
�



Result, no checks selected and the print file is null.





Comparing Cases 3(b) and 4(b) outputs:





T(P(D)) not = P'(T(D)), > THF





Error in time dimensional testing detected.  However, if the hypothesis is proven, then we would never perform any of the (b) cases, so that errors in time dimensional aging are irrelevant.  This result requires that we detect this same error in test case 2(c) below.


5.5.11	Test Cases 1(c) Through 4(c), Error in Encapsulation:


Case 1(c): identical to case 1(a), P with D input produces P(D) output.





Case 2(c): incorrectly encapsulated code with Dec, 1997 data, P' with D input produces P'(D) output:





CURRENT-DATE�
971228, processed internally as 691228�
�
PRINT-CURRENT�
971228, processed internally as 691228�
�
NEW-POINT�
980104, processed internally as 700104�
�
CHECK-DATE�
971228�
�
TIMES-EXPIRE�
date ranges on disk, 960101 through 980301, processed incorrectly internally as 960101 through 980301�
�



Result, empty print file, since no checks were selected.





Comparing Cases 1(c) and 2(c) outputs:





P(D) not = P'(D), < THF





We detect the same error as cases 3(b) and 4(b), rendering those tests redundant.





Case 3(c) is identical to Case 3(a).





Case 4(c): incorrectly encapsulated code with 1997 data correctly time dimensionally aged 2 years as input:





CURRENT-DATE�
991228, processed internally as 711228�
�
PRINT-CURRENT�
991228, processed internally as 711228�
�
NEW-POINT�
000104, calculated from 991228 internally as 711228, processed internally as 720104�
�
CHECK-DATE�
991228�
�
TIMES-EXPIRE�
date ranges on disk, 960101 through 980301 aged via time dimensional testing to 980101 through 000301, processed incorrectly internally as 980101 through 000301�
�



Result, empty print file, since no checks were selected.





Comparing Cases 3(c) and 4(c) outputs:





T(P(D)) not = P'(T(D)), > THF





Error in encapsulation detected.  However, we already detected this error at 2(c), so no additional information was imparted by this test, per the hypothesis.


5.5.12	Test Cases 1(d) Through 4(d), Error in Both Encapsulation and Time Dimensional Testing:


Case 1(d): identical to case 1(a), P with D input producing P(D) output.





Case 2(d): incorrectly encapsulated code with Dec, 1997 data, P' with D input produces P'(D) output:





CURRENT-DATE�
971228, processed internally as 691228�
�
PRINT-CURRENT�
971228, processed internally as 691228�
�
NEW-POINT�
980104, processed internally as 700104�
�
CHECK-DATE�
971228�
�
TIMES-EXPIRE�
date ranges on disk, 960101 through 980301, processed incorrectly internally as 960101 through 980301�
�



Result, empty print file, since no checks were selected.





Comparing Cases 1(d) and 2(d) outputs:





P(D) not = P'(D), < THF





Error in encapsulation detected. However, we already detected this error at 2(c), so no additional information was imparted by this test.  





Case 3(d) is identical to Case 3(a).





Case 4(d): TIMES-EXPIRE missed by both encapsulation and time dimensional aging (a double false negative case).  For the encapsulation failure, the field was not dynamically time shifted back 28 years, and for the time dimensional aging, it was not shifted forward 2 years.





CURRENT-DATE�
971228, processed internally as 691228�
�
PRINT-CURRENT�
991228, processed internally as 711228�
�
NEW-POINT�
000104, calculated from 991228 internally as 711228, processed internally as 720104�
�
CHECK-DATE�
991228�
�
TIMES-EXPIRE�
date ranges on disk, 960101 through 980301 not aged in error (should have been 980101 through 000301) and not processed internally time shifted�
�



Result, empty print file, since no checks were selected.





Comparing Cases 3(d) and 4(d) outputs:





T(P(D)) not = P'(T(D)), > THF





Error in encapsulation detected.  However, we already detected this error at 2(c) and 2(d), so no additional information was imparted by this test, per the hypothesis.


5.5.13	Conclusion


We have established that automated time dimensional testing will correctly catch errors in encapsulation projects, but we have also shown that those same errors would be caught by automated current date data testing.  We have failed to refute the hypothesis with a counterexample, and therefore we have a working hypothesis that can be put to productive use.


5.6	Manual Time Dimensional Testing


This proof has been challenged by the example of manual time dimensional testing.  In manual testing, the human ability for pattern recognition comes into play, so that a human tester can recognize when something is incorrect, as opposed to computer executed regression analysis which can only establish difference.





The specific counterexample presented was the false negative case of unidentified date fields used in for store and retrieval only in a given program.  Encapsulation plus automated current date data testing will not identify that field as a false negative.  Furthermore, while the error may be benign in one program, it may be passed to other programs where the result may be more serious.





Formally, this counterexample is sufficiently serious that the hypothesis is limited to automated regression testing only.  However, on a practical level, this counterexample is not considered serious, for several reasons:





Human pattern recognition is powerful but limited by low speed and fatigue, so that any manual methodology is inherently unreliable, even though it may catch some errors that would be missed by automated regression testing


Human Year 2000 workers are in short supply, and we need to free them from testing duties to be focused on renovation and conversion tasks


The immense volume of testing required is impossible to execute manually to the level of accuracy dictated by the business case


The investment of the time (and financial resources) for manual time dimensional testing would be better spent doing data integrity validation testing, which is a far more efficient and organized way of seeking accidental discoveries, and is supported by business rule evaluation utilities from companies like QDB�, Unitech�, and others, or by homegrown utilities.  However, we consider data integrity testing to be a complement, not a substitute, for regression testing.





This specific counterexample given is a non-issue, since a false negative that does not cause a difference in outputs is not considered a serious problem, and if it did create a problem in a downstream program, automated regression testing would catch it in that program.  While there may be a case for manual time dimensional testing in specific limited circumstances, we have not encountered a general case arguing for it, and so we recommend completing automated regression testing first, and if there is any time left over, then use that time for manual time dimensional testing where there is a sensible case to be made for it, or perform data integrity validation.


5.7	Special Testing Cases


Encapsulation may eliminate the need for automated time dimensional testing, but it does not eliminate the need to test for the two special cases to which automated time dimensional testing is also blind: date literals and date data sequencing at the century boundary.


5.7.1	Date Literals


A date literal test occurs anytime the logic tests against a specific date for any purpose, as, for example, can be seen in the following code fragment:





IF TRANS-DATE > 670401


    PERFORM NEW-DATE-ROUTINE


ELSE


    PERFORM OLD-DATE-ROUTINE.





The numerical value, 670401, is a date literal representing April 1, 1967.





Encapsulation requires that the literal compared against TRANS-DATE be time shifted equivalently to TRANS-DATE itself.  If we fail to detect the comparison literal, and we time shift the data back 28 years, we could pass current date regression but subsequently get a back dated transaction which would trip the old date routine.  As a result, we may not need to test all the 10 to 15 date cases, but we do need to test before and after each date literal found in the code.  Note, however, that time dimensional testing of encapsulation projects, being forward dated, would have missed this case as well.  There is also the potential for the same problem with other methodologies, particularly windowing.





The point here is that date literals constitute an important source of potential errors regardless of the remediation methodology.  If you are using a formal coverage analysis tool, then this case will be dealt with automatically, but for the many projects that will not use formal coverage analysis, it is imperative to scan the sources for date literals, and ensure that test data will coverage at least those cases.


5.7.2	Date Data Sequencing at the Century Boundary


The second special case involves date data sequencing at the century boundary, but this applies only to data encapsulation and only if 6 digit dates are retained in the date indices. Expanded 8 digit dates used as indices, even if bridged into working storage as 6 digits, eliminate this problem.  Program encapsulation, since it time shifts the data on disk, does not reach the century boundary and also does not have this problem. (The same problem occurs with dynamically aged data used for time dimensional testing of non�encapsulated programs, but does not occur for statically aged data.)  Current date regression testing for data encapsulation, like time shifting data for future date regression testing, is blind to data sequence errors at the century boundary because the current date data, by definition, are not yet at the century boundary.  





To illustrate the problem, let us consider a keyed data file with key of 6 digit account number and 6 digit date (YYMMDD format). If we take data from 1994 through 1999, the records will fall in the following sequence:





	000123940214


	000123950214


	000123960214


	000123970214


	000123980214


	000123990214





However, with data spanning the century boundary, the records on disk will fall in the following sequence for 1997 through 2002:





	000123000214


	000123010214


	000123020214


	000123970214


	000123980214


	000123990214





Then, if we take the 1994-1999 records and dynamically time shift them forward 3 years to simulate future dated test data, the program logic being tested will get the data in the following sequence:





	000123970214


	000123980214


	000123990214


	000123000214


	000123010214


	000123020214





Obviously, this dynamically aged data is in different sequence from the statically aged data, and will produce different results, although admittedly they may be meaningless differences in many cases, such as the order of transaction detail on a statement. A possible error of this type will not be detected either by the current date only regression test nor by dynamic time dimensional testing.


5.7.3	Pragmatics


If these issues are relevant, the encapsulation project has four alternatives: 





Use program encapsulation, which does not have this problem


Expand all dates used as indices


Invest in static aged time dimensional testing for the whole application, the avoidance of which is the greatest benefit of this renovation method


Construct a small, future aged case for each file with date indexed data, and exercise only the program logic needed to read that file in the correct order


Options 1 or 4 are the recommended methods, with option 1 being the cheapest solution in most cases.  If the data cannot be changed on disk, then data encapsulation will require consideration of the other 3 options.  Option 2 may be more expensive than option 4, and option 3 will almost always be more expensive than option 4.  If we select option 4 and conduct a special test for each date indexed file or table access, we then have the same level of accuracy as static aged test data, but fortunately we need only one test case for each date index file, not 10 to 15 each for every file.


5.8	Unit Testing and Test Data


Of the 5 stages of testing�, unit testing is by far the most expensive because of the primarily manual construction of low volume test packs.  On the other hand, avoiding unit test data creation by use of production data is usually more expensive because of the volumes involved, and because production data may not contain all the cases one might wish to test.  





Except for the case where automated universal testing� is integrated with the renovation technology, the practical way to deal with this issue is by asking two questions: (1) what is the potential cost of an undetected fault and (2) what is the probability of that undetected fault being present.  This then reduces to a straight risk/cost/benefit equation.  Where the potential cost times the probability is less than the cost of constructing and executing the unit test cases with sufficient code coverage, bypass unit testing and proceed directly to production parallel.  Where the potential cost times the probability is greater than the cost of constructing and executing unit test cases, then the unit testing should proceed.  Availability of automated testing capabilities may affect the cost of testing significantly, and shift the decision toward extended production parallel testing. 





When these decisions are being made, we strongly recommend involving organization audit staff and senior management in making the decision.  These are not decisions which should be made at the technical level, since they are inherently management decisions, and every one in the organization should accept an appropriate level of responsibility for the cost of undetected faults, since there will be undetected faults in every case.  Furthermore, it is difficult for technicians involved with an application to be objective in evaluating its likelihood of failure.  The budget for testing should be established on strict business case criteria, and the technical staff should seek to obtain the greatest amount of testing within that budget.  Finally, management needs to thorough document the decision made in case of potential future litigation, at least in the private sector.�





An intermediate case, where probability of a fault is very low but the potential cost of an undetected fault is high, could also be addressed by extended production parallel testing.  In this case, we avoid the high cost of building the unit test data but extend the cost of evaluating parallel testing.  Another solution is to set up automated business rule validation processes in parallel which, like automated universal testing, will lead to rapid detection and resolution of residual faults, but which are only as good as the accuracy of the business rules specified.


5.9	Special Date Literals


One problem inherent to all testing involves use of special date literals to indicate something other than dates.  This does not include the use of invalid date values, such as LOW-VALUES, HIGH-VALUES, or 999999, which can be easily detected.  For example, 123199 is a valid date but may be used to mean that this subscription should never expire, or 010101 may mean a new account.  





All renovation methodologies can trip over this problem, which if not repaired accurately will result in application failures when the date is reached.  No testing methodology will detect an incorrect repair unless the dates sampled happen to include the critical date, and only formal coverage analysis can ensure that this occurs.  Encapsulation as a methodology may be slightly better off than other methodologies since date literals have to be addressed specifically as part of implementing the solution, but it too is subject to an incorrect repair.  No testing method that does not include formal coverage analysis, with the possible exception of automated universal testing combined with business rule validation and time dimensional testing, will reliably detect this problem in advance of the failure.


5.10	Pragmatic Considerations in Year 2000 Testing


The pragmatics of testing in an encapsulation project involve business case analysis to determine the level of accuracy, logical test path coverage analysis, date calculation boundary condition analysis, and the economic and logistical factors of testing.  And, we have to consider the whole space of programs which have some degree of coupling one to another.





The most significant consideration has nothing to do with the renovation methodology, and that is the decision on constructing test data with sufficient code coverage versus using production data for extended production parallel.  If a strategy other than encapsulation is being contemplated, then this decision must be coupled with a decision on future date test cases that must be tested.  It is strongly recommended that the budget for the testing be established on the basis of the business case, not the technical case, because the full costs of performing testing to the level of accuracy required by the business can, for mission critical applications, be beyond what any technician may feel that he or she can recommend, and thereby place the organization at risk.  When the full cost of testing is considered, encapsulation may be the best business choice, because of the low risk profile and low cost of testing, as compared to alternatives preferred by the technical staff.





Once encapsulation has been selected in order to eliminate the cost and time required to perform time dimensional testing, it is important not to forget the special cases.  For both forms of encapsulation, either a source scanning process should be utilized to seek out all date literals in the programs, or formal test path coverage analysis should be employed to ensure that all are tested.  For data encapsulation only, small scale tests of program access of date indexed files with contrived data at the century boundary must be executed where relevant.


5.11	Summary of Testing


The cost of testing is much reduced under an encapsulation methodology.  Time dimensional testing can be completely eliminated.  Unit testing may optionally be eliminated, primarily for lower risk applications or individual programs, or replaced by extended production parallel testing possibly complemented by automated business rule validation processing, based on the specifics of each application.  Two special testing cases, date literal comparisons and date data sequencing at the century boundary (for data encapsulation only), must be specially tested if they are relevant to the specific application.





6.	�
Overview of Year 2000 Repair Methodologies


All Year 2000 projects, including encapsulation projects, can be divided into phases:





Assessment


Modification


Testing


Deployment





Let us compare and contrast the encapsulation methodologies against the alternative repair strategies available.  A more complete discussion is given in our Year 2000 Strategic Project Design working paper�.


6.1	Assessment


In date expansion and standard windowing (procedural logic) projects, assessment consists of finding all dates in data files, on-line and batch transactions, and reports, and finding all date related data names and logic within the program.  Furthermore, it is necessary to understand the design of the program to ensure that compliance modifications do not inadvertently introduce faults into the operation of the program.  





In the case of limited windowing projects, it is necessary to locate all the dates within files and programs, but it is not necessary to understand their function within the program.  Not having to understand the program removes a substantial burden from the project staff, as this is the most error prone aspect of the whole project.





In the case of encapsulation, assessment consists primarily of finding all dates in data files�, on-line and batch transactions, and reports.  In addition, date literals in programs and any program calls which return dates must be identified.  This is a significant reduction of effort by itself, but the most important aspect is again that the program logic need not be understood.


6.2	Modification


Date expansion has to increase the storage allocations for all years from 2 to 4 digits.  Some date encoding schemes remove some of this burden by storing the date in existing allocations, but it has to be expanded inside the program for use.  Then, all related logic has to be examined for continued correct functioning, and bridges built to unadjusted data files.  Where cosmetic changes are required, on-line screens and reports have to be expanded as well. Where on-line screens and reports are required to be left unmodified (a fairly common requirement), century inference on screen input and century stripping on screen and report output are required within programs.





Standard windowing (procedural logic) projects do not change the storage allocations, but infer the century in the logic.  All date related logic has to be examined and frequently modified as well.  On-line screens and reports will typically not be modified.





Limited windowing (proprietary procedural logic) projects do not change the storage allocations, and make use of their methodologies to change a relatively small amount of the logic, roughly 10% of a standard windowing project.  Both methodologies examined to date rely on automation to achieve their goals efficiently. On-line screens and reports will not be modified.  Details beyond this would violate the non-disclosure agreements we have made with the proprietary vendors, so that further information must be obtained directly from the vendors.





Program encapsulation puts time shifting logic at the point where the system interacts with the non-time shifted universe.  In practical terms, this means intercepting on-line transactions either just before they arrive at the program, or at the point of arrival within the program, to perform the time shift.  Similarly, batch input and output transactions are intercepted and time shifted at the point where they enter or leave the system.  Report print lines can be modified on disk, intercepted at the print spooler or at the point of creation in the program, depending on the level of indeterminacy of the report format.  Date literals must be time shifted by the same constant applied to the data files, to maintain consistency.  Finally, external CALL's including or returning date information must be time shifted as well.  When all of this is in place, all the date data in the permanent and historical data files must be turned back by the amount of the time shift constant. Programs which interact wholly within the application system and which contain no date literals need not be modified at all. It is important to note that this is the only methodology that can be applied to systems with missing or suspect source code, in which case the date literals must be found and shifted in the object code.





Data encapsulation puts the time shifting logic within the program.  In the simplest terms, every event which moves date data into or out of the program must be followed or preceded, respectively, by time shifting logic if the event arguments contain dates. Since the data files are not modified, once the program modifications are complete the programs can be put immediately into testing.


6.3	Testing


Date expansion, full windowing and limited windowing methodologies will require the full range of testing: unit tests from current year sample dates, time dimensional testing from future year sample dates, plus integration and production parallel testing.  In addition, all the windowing methodologies will require date literal testing as well as date data sequencing testing at the century boundary.





Both forms of encapsulation avoid the need for time dimensional testing altogether.  However, a given site which is uncomfortable with the proof given above may wish to have this demonstrated as part of acceptance testing of a pilot project.  





The necessity for unit testing under an encapsulation methodology will be established by a risk/cost/benefit calculation for each application.  As a result, some applications will be unit tested for the selected range of sample dates for current year data only, whereas others will proceed directly into integration and production parallel testing.





Both encapsulation methodologies, like full and limited windowing methodologies, will require date literal testing, if anything short of full coverage analysis is being used.  However, only program encapsulation avoids date data sequencing testing at the century boundary.


6.4	Deployment


Once the applications have been repaired and tested, they have to be put into production.  Date expansion projects have the largest deployment burden, since the data and the data formats have to be modified.  This burden can be so substantial that phased deployments are required, with bridges built between modified and unmodified programs and data files.





Program encapsulation deployment requires that the permanent and historical data be modified, but not the formats, allocations nor transient files, so this burden is eased but not eliminated�.  If phased deployment is required due to the size of the data files, then bridges will have to be built between modified and unmodified programs and data files.





Full windowing, limited windowing, and data encapsulation exhibit the lowest deployment effort. These methods have no more deployment burden than putting a program into production in the course of regular maintenance.  Deployment issues can become a bottleneck in finishing a project, sufficiently so in selected projects to warrant a reconsideration of the technical strategy selected.


7.	�
Strategic Project Design Issues


7.1	Pragmatics of Project Strategy Recommendations


Our recommendations with regard to technical strategy flow as follows, in descending order of desirability:





Replacement with a new system (completely new or licensed off the shelf unmodified)


Date expansion 


Program encapsulation (data changed but not programs)


Data encapsulation (programs changed but not data)


Hybrid encapsulation


Limited windowing (change calculations and comparisons only, no data movement changes, no cosmetics)


Encoding or functionally similar proprietary logic methods


Program bridging (6 digit programs bridged to 8 digit data)


Full windowing (look and feel of expansion with 8 digit fields within the program, but the data remain 6 digit on disk)


Enhancing a system while creating Y2K compliance through any methodology


Licensing a system and modifying it before use





Our reasoning is as follows:





Replacement, properly done, should return the greatest business benefits to the organization


Date expansion is clearly the best technical solution, if it doesn't make technical or financial sense to replace


If 1 or 2 are not chosen, it will usually be for reasons of cost, risk, or limited time.  If this be your situation, then the lowest cost, lowest risk, and fastest to implement solution would be the best choice, which is typically program encapsulation.


If changes to the data on disk are not acceptable, choose data encapsulation


If date data are present that must be shifted but would then be in the 1800's, choose limited windowing, split the application between windowing and data encapsulation, or use a modified encapsulation strategy


If more than 100 years of data must be stored, then choose encoding or a functionally similar proprietary logic method


The program bridging and full windowing strategies are judged as potentially risky, but have their place if the program data declarations are very robust or if the database structures are properly normalized


The other two possibilities are judged likely to deliver late, given the rapid approach of the time horizon for failure and experience with delivery overruns on these types of projects:


Enhancement disallows automated regression testing, and provides many opportunities for the project to stall at the last minute


Licensing a system and modifying it is the most likely method to fail to deliver.


7.2	Encapsulation As A Temporary Fix


The discussion in this paper has centered around use of encapsulation as a more or less permanent fix.  For applications that can reasonably assumed to be retired before the time constant is reached in 2027 or 2055, or which will delete all their 20th century history before then so that the encapsulation logic can be switched off, encapsulation can be considered a permanent fix.





However, what about encapsulation as a temporary fix?  Think ahead to the point when it becomes clear that a given project is just not going to finish on time.  Does encapsulation have application in this situation?





We have discussed previously that all data, once shifted, must lie in the same century, presumably 1901-1999. An application can't have data back before 1900 or you wouldn't have a 6 position date problem now.  It is possible that there might be a few records with 1900 or 1901 dates, but they would be few enough to be tracked separately in a temporary solution.  So, let's consider an encapsulation solution with a 1 year time shift constant.  What are the consequences?





First, and most importantly, we buy one more year to finish the "right" solution, less the time spent implementing the encapsulation, of course.  Given the productivity metrics we have seen with automated encapsulation solutions, it could plausibly be applied in time, particularly if outsourced.





Second, a 1 year shift would prevent entry of February 29, 2000 dates, since they would be shifted to February 29, 1999 and the encapsulated logic should reject them.  As a temporary fix, entering February 28 or March 1 could be acceptable.





Third, the day of week would be off by one day up to the end of February, and two days after that.  This is unpleasant, but probably bearable for many applications, and certainly bearable if the alternative is application failure.





Fourth, it would be necessary to track manually those 1900 and 1901 dates, since we would have to convert them to 1902, and later back again.  In many ways, a 4 year time shift will be simpler than a 1 year shift, due to leap year considerations.





Our conclusion is that this could make sense under some emergency conditions, or as contingency plans for any project judged potentially at risk or with a high consequence of failure.





7.3	�
Automated Testing


Encapsulation projects may optionally be accompanied by integrated automated testing, as described in more detail in our Year 2000 Strategic Project Design paper section on Automated Universal Testing.  In fact, the method may be applied to automatically test any renovation methodology except replacement and enhancement, but here we consider it only as it relates to encapsulation.  The core concept behind this approach to testing is capture/replay of all inputs and outputs to and from the program under test, both batch and on�line.  Given a program:





��


�








�


�








�











�


���������
We instrument the unmodified programs first to capture each and every input and output, each READ, WRITE, SEND, RECEIVE, ACCEPT, DISPLAY, CALL, etc., to a capture file:


��





�


�





�


�








�





�





�


����������
Then, we instrument the renovated programs to replay the capture file, i.e., supplying each and every input from the capture file and comparing the new output record with the captured output record on the fly.  For program encapsulation projects, the captured data may have to be dynamically time shifted back during the replay to match the time shift on disk for that application.  For non-encapsulation automated testing, dynamic forward date aging may be applied during replay.








�




















�





�
















































































����



8.	Summary of Program Versus Data Encapsulation


Comparison Item�
Program Encapsulation�
Data Encapsulation�
�
Analysis required�
Identification of date data in permanent and historical files, transactions and reports, and date literals in programs�
Identification of date data in all files, transactions and reports, and date literals in programs�
�
Program changes required�
Hard coded date comparisons, system date CALL's, unless a system date simulator is used.�
Hard coded date comparisons; SORT's with date keys; and indexed READ's with date indices, and any action in which dates enter or leave the program.�
�
Pre and post processing required�
Time shift at SEND and RECEIVE of on-line transactions; report print lines; and READ and WRITE of data files external to application system�
None�
�
Deployment requirements�
Turn date data back, system wide implementation�
Program by program implementation�
�
Can be implemented if source code is missing�
Yes�
No�
�
Query processing�
Query must shift date in retrieved data, and deal with century boundary query specification if applicable�
Query must deal with century boundary ordering of data�
�
Affected programs�
Any programs which accesses data external to the system, plus those with date literals and system date CALL's�
All programs except those performing only MOVE's on date data�
�
Current date regression testing�
Yes, including fully automated testing�
Yes, including fully automated testing�
�
Unit test data construction�
Optional�
Optional�
�
Time dimensional testing�
Redundant�
Redundant�
�
Date literal testing�
Yes�
Yes�
�
Date sequence test at century boundary�
No�
Yes�
�



9.	�
Summary


Encapsulation consists of two variations on time shifting which achieve Year 2000 compliance with very low impact on existing program logic and data allocations.  Because the assessment for encapsulation is conducted only at the program interface with the outside world, the effort of assessment is substantially reduced and the indeterminacy of assessment is eliminated.  Furthermore, because the methodology is the logical inverse of the time dimensional testing used to establish future dated processing accuracy, time dimensional testing is redundant, provided one or two specific cases are explicitly testing.  As a result, encapsulation is one of the lowest cost methods to assess and implement, and is the lowest cost method to test.  Since testing is roughly 40-60% of total project costs, encapsulation offers the lowest overall cost as well as the quickest time to completion.





Encapsulation is not a permanent solution for Year 2000.  At best, it will work until 2100, but in many cases it will work only until 2027 or 2055, depending on the range of historical data that must be stored.  On the other hand, if the anticipated lifetime of the system is less than 28 or 56 years, then encapsulation may be permanent for all practical purposes.  As a result, our anticipated use of these two methods is for buying time to complete the redesign and replacement of a system, or as a first step prior to full date expansion.





The use of encapsulation as a first step also may be considered on purely cost grounds. Over the next few years, while consulting rates are artificially high, encapsulation may allow postponement of the project into a time when rates return to normal, resulting in a net savings as well as minimizing the impact on short-term cash flow. It can also be used as a contingency plan in case a more ambitious project were to encounter unforeseen obstacles to timely completion, or simply to save money while reducing business risk.








�
About the Author


Don Estes is a graduate of MIT in physics, with a post-graduate degree from the University of Texas in Educational Psychology.  He is Chief Technology Officer for 2000 Technologies Corporation, with USA offices located in Lexington, Massachusetts, Arlington, Virginia, and Littleton, Colorado.


Don has been involved with COBOL and database applications for 25 years, and database and mainframe performance tuning for 10 years.  For the last 7 years, he has specialized with the design and execution of projects for the mass modification of large bodies of source code, primarily for the purpose of platform migration.  These projects were designed using state of the art automated source language transformation technologies and automated testing methodologies.  He serves as Year 2000 Advisor to the State of Rhode Island, technical consultant to the Millennium Investment Corporation, legal and technology firms, and end users.  He is a regular contributor to Peter deJager's Year 2000 mail list, where he is known for his contributions relating to Year 2000 rapid compliance strategies and automated testing.





About the Paper


This material has been assembled for the benefit of the community of professionals struggling with the Year 2000 challenge.  It is a work in progress that is far from perfect, contains opinions that challenge some readers' points of view, and is constantly being extended.  If you have found it valuable, please help improve and extend it by providing your frank criticism, thoughts, experiences or other contributions by annotating the document and emailing to donestes@2000technologies.com.  No compensation will be provided for such contributions, and all submissions, whether accepted or not, become the property of 2000 Technologies Corporation and may be used without further attribution.


This material is also distributed free of charge, subject to the minimal copyright restrictions contained on its face.  It also forms a significant part of seminars on the subject of Year 2000 strategic project design and risk assessment, which are provided on a fee basis, and forms part of the analytical basis for consultancy services.


Finally, this material represents the opinions of the author, and is based on current best practice criteria.  However, any warranties express or implied are specifically disclaimed, and any use made of this material, its interpretation, or its applicability to any given project is specifically the responsibility of the reader, and no liabilities for actual or consequential damages may be applied to the author, 2000 Technologies Corporation, or any associated person or entity.








� The process of program encapsulation was originally developed and patented by Turn of the Century Solution LP.  Information on licensing the process and the set of enabling utilities can be found at www.TOCS.com.


� See the discussion of this topic by McCabe and Associates, www.mccabe.com.


� For a more complete discussion, see "Constructing Adequate Test Data" by Don Estes, Year 2000 Journal, November-December, 1997.


� See www.qdb.com.


� See www.unitechsys.com.


� For a more complete discussion, see our working paper, "Year 2000 Automated Testing".  All of our white papers are available free by email request to whitepapers@2000technologies.com.


� See discussion in our working paper, "Year 2000 Strategic Project Design: Risk Assessment, Cost Control And Automated Testing ".


� For a more complete discussion, see our working paper, "Year 2000 Automated Testing".


� Available on request via email to whitepapers@2000technologies.com.


� Program encapsulation requires even less in that only permanent and historical files, not all files, need to be examined for dates.


� Note, for example, the program encapsulation conversion utilities provided by Turn of the Century Solution, www.TOCS.com.





Encapsulation Solutions


For Year 2000 Compliance











Encapsulation Solutions


For Year 2000 Compliance





Page �PAGE  �36�


		V 5.0 © 2000 Technologies Corp 1997








   � 


Batch input transactions





Current Time Zone - 1997





On-line input transactions





Time warping back: 1997 ==> 1969





 � 





Time Warp Zone - 1969





  � 


Data Files





Time warping forward: 1969 ==> 1997





   � 


Reports





   � 


Batch output transactions





On-line output transactions





On-line output transactions





   � 


Reports





   � 


Batch output transactions





 �





 �





 �





  � 


Data Files





Time Warp Zone - 1969





Current Time Zone - 1997





On-line input transactions





   � 


Batch input transactions





Time warping forward: 


1969 ==> 1997





Time warping back: 1997 ==> 1969





On-line output transactions





   � 


Batch output transactions





Current Time Zone - 1997





On-line input transactions





   � 


Batch input transactions





 � 





Time Warp Zone - 1969





  � 


Data Files





Time warping forward: 1969 ==> 1997, and time warping back: 1997 ==> 1969





   � 


Reports





On-line output transactions





   � 


Batch output transactions





On-line input transactions





   � 


Batch input transactions





 � 





CALL's to date/time, subroutines, etc.





  � 


Data Files





   � 


Reports





On-line output transactions





   � 


Batch output transactions





On-line input transactions





Capture Process





   � 


Batch input transactions





 � 





  � 


Capture File





CALL's to date/time, subroutines, etc.





  � 


Data Files





   � 


Reports





Replay Process





 � 





  � 


Capture File





   � 


 Replay Report











