

The Air Force Develops an Initiative to Manage Change in Avionics
Systems
In this CrossTalk interview, Jon Ogg, director of Engineering and Technical
Management Directorate, talks about the agency’s plans for designing avionics systems that
preclude their obsolescence.
by Pamela Bowers

Integrated Road Maps Route the Migration to Avionics Open Systems
David G. “Butch” Ardis, technical adviser for avionics systems architecture, talks to
CrossTalk about developing and implementing avionics road maps.
by Pamela Bowers

Customizing the Software Process to Support Avionics
Systems Enhancements
Here is a look at how different software development approaches and techniques, usually
applied in isolation, can be selected, customized, and combined to better meet organiza-
tional needs.
by Dr. Paolo Donzelli and Roberto Marozza

The Challenges of Software Certification
While the guidance on airborne software certification is mature, the issues with software reuse,
military avionics certification, ground-based software, and object-oriented technology are still evolving.
This article looks at how these challenges affect the safety critical community.
by George Romanski

Avionics Modernization and the C-130J Software Factory
This article presents insight into Lockheed Martin’s modernization of the C-130 airlifter family from a largely
mechanical aircraft to a software intensive system.
by Richard Conn, Stephen Traub, and Steven Chung

Practical Software Measurement, Performance-Based Earned Value
The Northrop Grumman team shares its experience with successful project management that focuses on
requirements, selecting the most effective software metrics, and using earned value management.
by Paul Solomon

2 CROSSTALK The Journal of Defense Software Engineering September 2001

CrossTalk

Kent Bingham,
Digital Illustration
and Design, is a

self-taught graphic
artist/designer
who freelances
print and Web

design projects.

3 From the Publisher

14 Coming Events

18 Call for Articles

24 Web Sites

30 STC 2002 Call for Exhibitors

31 BackTalk

4

8

10

15

19

25
Best Best Practices Practices

DepartmentsDepartments Article Submissions: We welcome articles of interest to the
defense software community. Articles must be approved by
the CROSSTALK editorial board prior to publication. Please
follow the Author Guidelines, available at www.stsc.hill.af.mil/
crosstalk/xtlkguid.pdf. CROSSTALK does not pay for submis-
sions. Articles published in CROSSTALK remain the property
of the authors and may be submitted to other publications.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology
Support Center. All product names referenced in this issue
are trademarks of their companies.
Coming Events: We often list conferences, seminars, sym-
posiums, etc. that are of interest to our readers. There is no
fee for this service, but we must receive the information at
least 90 days before registration. Send an announcement to
the CROSSTALK Editorial Department.
STSC Online Services: www.stsc.hill.af.mil
Call (801) 777-7026, e-mail: randy.schreifels@hill.af.mil
Back Issues Available:The STSC sometimes has extra copies
of back issues of CROSSTALK available free of charge.
The Software Technology Support Centerwas established
at Ogden Air Logistics Center (AFMC) by Headquarters
U.S. Air Force to help Air Force software organizations
identify, evaluate, and adopt technologies to improve the
quality of their software products, efficiency in producing
them, and their ability to accurately predict the cost and
schedule of their delivery.

SPONSOR

PUBLISHER

ASSOCIATE PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE
COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

CRSIP ONLINE

Lt. Col. Glenn A. Palmer

Tracy Stauder

Elizabeth Starrett

Pam Bowers

Benjamin Facer

Nicole Kentta

Janna Kay Jensen

(801) 586-0095
(801) 777-5633
crosstalk.staff@hill.af.mil
www.stsc.hill.af.mil/
crosstalk/crostalk.html

www.crsip.hill.af.mil

Subscriptions: Send correspondence concerning sub-
scriptions and changes of address to the following
address. You may e-mail or use the form on p. 29.

Ogden ALC/TISE
7278 Fourth St.
Hill AFB, UT 84056-5205

Avionics Avionics ModernizationModernization

ON THE COVER

September 2001 www.stsc.hill.af.mil 3

Software Community:
Ready for the Challenges of Avionics Upgrade?

One of the major challenges facing the U.S. military is keeping an ever aging fleet of
aircraft ready for the fight. While systems remain in the inventory longer, the

future vision of warfare demands more information exchange, and integration of more
sophisticated weapons. Dynamic updates to mission plans, increased exchange of data
from command and control platforms (e.g., Airborne Waring and Control System) and
tactical aircraft is on the horizon. This results in increased avionics complexity and sys-
tem interdependency. At the same time the military is grappling with how to handle

hardware obsolescence, which in turn drives software changes. This month’s CrossTalk
examines the impact on software and the contributions software technology is making to solve
the problems. Collectively the articles examine top-level strategy, project planning, software
development, and project control.

Jon Ogg, director, Engineering and Technical Management Directorate, Aeronautical
Systems Center (ASC) provides an interview on the challenges for avionics modernization and
the Air Force’s approach to the technology insertion and developing affordable upgrade paths.
David G. “Butch” Ardis, ASC’s technical director for Avionics, then explains the Air Force’s route
to migrating toward more open systems, the role of system road maps, and some of the techni-
cal challenges. He highlights the importance of improving simulation and support tools for test
and evaluation of software, and outlines the Air Force’s approach for developing crosscutting
solutions and synergy between platforms.

In Customizing the Software Process to Support Avionics Systems Enhancement, Roberto
Marozza and Dr. Paolo Donzelli show how different approaches such as waterfall, Rapid
Application Development, and incremental strategies can be combined and customized to satis-
fy customer goals within resource constraints.

In Challenges of Software Certification, George Romanski examines how software reuse, object
oriented technology, and legacy military avionics systems impact the certification process. The
Federal Aviation Administration's (FAA’s) use of DO-178B as a standard for development and
verification of airborne avionics systems and the application to military transport aircraft is an
important issue for a number of programs. Incorporating Global Air Traffic Management
(GATM), a concept for satellite-based communication, navigation, surveillance, and air traffic
management is incorporated into an existing military aircraft is an example of why this is impor-
tant to the Department of Defense. The FAA and the International Civil Aviation Organization,
a special agency of the United Nations, established GATM standards in order to keep air travel
safe and effective in increasingly crowded worldwide air space. In most cases, FAA certification
was not accomplished on the existing systems, so decisions on the scope of certification activi-
ties and the extent of testing became critical.

Lockheed Martin's Richard Conn, Stephen Traub, and Steve Chung reveal their experiences
in Avionics Modernization and the C-130J Software Factory. The article illustrates the evolution
of avionics and how requirements are driving increased complexity and the size of software devel-
opment activities. The software team's challenges of reuse, process improvement, certification
(Capability Maturity Model®, ISO, and the FAA), and culture shift are chronicled.

In Practical Software Measurement, Performance–Based Earned Value, Paul Solomon of
Northrop Grumman Corporation, discusses his organization's performance measurement tech-
niques.

Due to an overwhelming response of article submittals for this issue, the planned theme for
December is "Software Legacy Systems." The issue will address techniques for incremental
upgrade of legacy systems, software reengineering, and software emulation among other topics.
While the challenges for upgrade of military systems are formidable, it is encouraging to see the
innovative response of the software community.

From the Publisher

Lt. Col. Glenn A. Palmer
Director, Computer Resources Support Improvement Program

4 CROSSTALK The Journal of Defense Software Engineering September 2001

Q:Why has avionics modern-
ization recently gained so
much attention in the Air
Force?

Ogg: The catalyst for focusing a laser
beam on the subject of aging avionics
came about in the mid- to late-1990s
when it became apparent that the dimin-
ishing manufacturing sources (DMS) and
out-of-production parts were driving
costs to programs. We began to see a sub-
system development program nested
within a development program driven by
part obsolescence.

A classic example was the F-22. Three
years into its development we determined
the current avionics suite was not going to
be producible due to rapidly changing
technology, and key suppliers getting out
of the business, including Intel. We never
thought they would stop producing the I-
960 for the F-22. They had committed to
long-term plans back in the late 1980s.
However in the 1990s, Intel said that the
processor technology had far superceded
the 25-Megahertz I-960 processor; the
commercial industry was out with 200- to

300-Megahertz processors. Our [Depart-
ment of Defense] market was no longer
economically attractive to them.

That triggered a lot of interest at the
configuration management level across
the Air Force. It became necessary to fund
$1 billion into the ongoing F-22 research
and development and planned produc-
tion program to address the out-of-pro-
duction electronics and avionics.

The event that kicked us into high
gear happened in the fall of 1998. At a
quarterly acquisition program review the
chief of staff tasked the Air Force Materiel
Command to study the design of avionics
systems to preclude obsolescence.

Well, the irrefutable fact is that you
can’t preclude obsolescence. You have to
figure out how you’re going to manage it.
In spring 1999, Gen. (Ret.) Skantz wrote
on “Aging Avionics Systems” about aging
aircraft, especially avionics and the enor-
mous future cost of sustaining these sys-
tems, if we did not move to adopt more
commercial technologies and practices.
Simply put, we needed to do business dif-
ferently. So from mid-1999 through
December 1999, we brought industry in
to help put together an approach called

Affordable Combat Avionics (now called
Viable Combat Avionics) to look at the
effectiveness of the architectures while
identifying actions necessary to set a
course for the future. We found that the
more viable or open the architecture, the
less costly it was to produce, sustain, or
upgrade. (After all, the bottom line is still
dollars.)

Q: Why does it cost so much to
migrate to new hardware
considering that electronics
technology has decreased
from five-year cycles to one
year or less?

Ogg: Many of the current architectures
are unique and make software dependent
on hardware. So when hardware changes,
you have to redo software at an enormous
cost.

Today there is a big push on open sys-
tems and to insulate or isolate the hard-
ware from the functional/program soft-
ware. At some future point, the hardware
component technology will change. Open
systems minimize the dependency of exe-

The Air Force Develops an Initiative to Manage
Change in Avionics Systems

Pamela Bowers
CrossTalk

While the U.S. Air Force (USAF) systems are remaining in service longer than planned, the industrial base of prime and
original equipment manufacturers and suppliers is declining. Thus the USAF is faced with developing a plan for designing
avionics systems that precluded their obsolescence. Weapons in the field need to remain current and supportable. Future sys-
tems require a design that facilitates substitution of modern electronics over a system’s life. As a result, the Viable Combat

Avionics initiative was developed.

Earlier this year, Lt. Col. Glenn A. Palmer, program director, Computer Resources Support Improvement
Program, and Pam Bowers, CrossTalk managing editor, met with Jon Ogg at Wright-Patterson Air Force
Base to discuss the initiative. Ogg is a member of the Senior Executive Service and director, Engineering and

Technical Management Directorate, Aeronautical Systems Center (ASC), Air Force Materiel Command,
Dayton, Ohio. He provides overall management guidance for the development of systems engineering programs
for ASC with annual expenditures of more than $10 billion. He ensures the proper allocation and expenditure

of fiscal and personnel resources and provides engineering tools to the program offices.

Ogg entered federal civil service as a project engineer with the Flight Systems Directorate in 1975. He is recognized as the
Air Force’s leading authority on integrity for programs propulsion and power systems. He spent 15 years in propulsion and
has been involved with every phase of a system’s life cycle on nearly all gas turbine engines in the Air Force inventory. In addi-
tion, Ogg has provided technical and programmatic support to many ASC weapon system programs, including as chief engi-
neer for the F-22 Program for nearly a decade. He has led numerous reviews spanning acquisition strategies, request for pro-
posal preparation, independent cost estimates, technical risk assignments, and flight certification. He helped pioneer the cur-
rent integrated product process development and product team approach on the F-22 program.

Avionics Modernization

September 2001 www.stsc.hill.af.mil 5

The Air Force Develops an Initiative to Manage Change in Avionics Systems

cuting software on the underpinning
hardware. The focus is on making the sys-
tem more adaptable to future change.

In addition to the F-22 standing out
as an example of this problem, we had the
F-15, F-16, B-1, C-5, and C-130 – multi-
billion-dollar programs – all slated for
modernization. The end-user [warfighter]
wanted enhanced capabilities and func-
tionality that couldn’t be accommodated
with existing avionic architectures. So we
were faced with modernization that typi-
cally spans four to six years due to the
need to rebuild existing software for hard-
ware technology that was out of produc-
tion.

Most of our fielded systems were
developed back in the days when we
could influence the electronics industry.
We had a large portion of their business;
today, we’re less than 1 percent. We are
now faced with having to jump onto their
track. Instead of being a leader in the elec-
tronics industry, we’re a follower. In all
cases as we modernize our fielded systems,
we’re focused on looking at the commer-
cial world; where they are today, and,
more importantly, forecasting where they
are going in the future.

Clearly it is in our best interest to
structure architecture to accommodate
the inevitable changes over the course of
time. From year to year you’ll see tech-
nologies changing to provide better capa-
bility as well as lower cost. If you can’t
accommodate it within your architecture,
you drive up the development costs and
in turn the overall Total Ownership Cost
(TOC). That’s something we are obvious-
ly working to avoid.

Q: Is there an overarching strat-
egy for approaching avionics
modernization?

Ogg: ASC was tapped to head up the
avionics modernization initiative in the
summer of 1999 because we have product
line management responsibilities for a
majority of the aircraft systems. We spon-
sored a forum that included industry,
multiple programs, and folks at the
depots. Here’s what we saw as the chal-
lenge: Where do the responsibility lines
fall: which is industry, and which is us?
How should we deal with obsolescence
and diminishing manufacturing sources?
How do we make it transparent to the
ultimate customer, the warfighter?

Modernization of the C-5 and C-130
aircraft constitutes a multi-billion dollar
investment. In the current environment,
there is no common approach across plat-

forms to leverage any specific architectur-
al definition. Every program has a unique
strategy. Furthermore, modernization is
done, i.e., funded to provide enhanced
capability. Using this approach, the move
to an open system must tie into changing
the architecture for providing the
enhanced capability thereby making it

more supportable as a by-product of the
enhanced capability funded upgrade. In
the past, we have gone to the warfighters
to say, “Here’s a great investment oppor-
tunity. If you spend a dollar today to
migrate to an open system, you’ll realize a
5-to-1 return during the course of the
next three to five years through savings
accrued across production and/or sup-
port.” However, modernization dollars
are so limited that the investment does
not occur even though the status quo
means paying out more in the long run.
Colors of monies, i.e., 3600
(Development), 3010 (Production), and
3400 (Support) create major impedi-
ments to prudent investment in reducing
TOC.

This is where I see the acquisition
community taking the lead with our
industry partners. Industry can make the
up-front investment, and based upon a
negotiated share of production or support
savings during a specified period of time,
the contractors accrue a return on their
investment. We structure it over a reason-
able period of time so that it represents an
attractive investment opportunity for
industry. Furthermore, if contractors can
drive costs down even further, I say go for
it. If, as a result, they realize a higher
return, great. We [government] will bene-
fit when we renegotiate the production or
support contract in three years or so.

Our solution looks at how we can
leverage the total modernization costs
across multiple programs. While it may
cost a little more to do the up-front work,
all the programs on the upgrade platter
benefit, and the net result is a savings to

the government – the taxpayers. However,
it’s still tough to get the folks’ support
because it’s likely to cost a particular pro-
gram more for the initial investment.

It is also important that we look at the
second- and third-tier suppliers as the
principal folks to do the long-haul sup-
port as technology changes. If they are

motivated by having a stake in supporting
the [sub]system, they’ll make the right
decisions up-front because they stand to
share in the downstream benefits. With
open systems you can still have competi-
tion at the appropriate level. If contractor
X owns a chunk of the avionics suite at
the first-tier supplier level, I believe we
ought to stay with contractor X. What we
ought to mandate is that they maintain at
least two or three suppliers for the piece
parts. Contractor X is most likely a
design/integration/assembly house, but
the bulk of components are supplied by
second- and third-tier suppliers. When
told they will be involved in sustainment,
we find a lot of original equipment man-
ufacturers, without customer interven-
tion, determining smart ways to select an
architecture that minimizes downstream
impacts [costs] as technology changes
over time.

Q:Where does the avionics
modernization program
stand at this point in time?

Ogg: In January 2000 we went to head-
quarters to present a plan for a viable
combat avionics architecture template.
This was a direct response to the tasking
action item from fall of 1998. This is
what we captured as the team’s charter:
• Present a plan to study the design of

avionics systems to preclude their
obsolescence. This includes weapons
in the field and how to keep them cur-
rent and fully supportable, and new
systems with a design strategy that

“A year ago we went to the chief of
staff with the need to recognize this
[avionics modernization] as a new

paradigm. You’ve got to look across
platforms. Without that support,
programs will continue to operate as they

always have even though it’s not the most cost
effective and efficient way to do business.”

Avionics Modernization

6 CROSSTALK The Journal of Defense Software Engineering September 2001

facilitates substitution of modern elec-
tronics during a system’s life.

• Plan how to manage the ever-acceler-
ating rate of change in avionics sys-
tems.

We put forth a solution focused on defin-
ing a future operating state for weapons
systems in the field in terms of an archi-
tecture based on open-systems principles
(see Figure 1). We advocated an integrat-
ed strategy that 1) supports evolutionary
acquisition, 2) utilizes integrated change
road maps, and 3) promotes designing for
affordable change. It requires an institu-
tionalized and evolutionary acquisition
program that invests every two to three
years. Insurmountable? I think not.
Difficult? You bet!

We recognized up front that the pri-
mary way money is put into programs
today is for increased capability.
Warfighters budget and fund to provide
enhanced capabilities, therefore we have
to leverage this investment in migrating
our systems to a more open/affordable
architecture.

For future systems, again we proposed
using open systems and master plans that
advance evolutionary acquisition with an
investment about every two or three years.
In support of this thrust, we advocated
getting the enabling language [require-
ments] into our solicitations. We used this
approach for the first time with the C-130
Avionics Modernization Program solicita-
tions. We required a description of the
architecture with test cases. This included
scenarios where in a few years certain
parts were postulated as going out of pro-

duction. We asked the offerors to address
what it would take to address that situa-
tion in the form of time and cost? Or, five
years out the warfighter will want a new
capability. Tell us how your architecture
accommodates providing it, and what the
cost will be for development and imple-
mentation.

Q: What is necessary to achiev-
ing your avionics modern-
ization plan?

Ogg: What we’re trying to do is maximize
common areas, which include moderniza-
tion focused upon providing the warfight-
er with more capability, the ever present
out-of-production parts, and inserting
new or emerging technologies aimed at
reducing the cost of ownership. Some con-
tinuing factors plague us: stovepipe think-
ing (every program does their own thing),
avionics complexity and the dependency
within systems and subsystems, interde-
pendency across systems, the rapid pace of
changing technology, and the fact that we
are no longer drive this technology train.
And, clearly, the budget constraints that
face us all. Our solution was a three-
pronged approach:
• Embrace evolutionary acquisition.

Accept the fact that every two to three
years you’re going to have a change.
The technology is going to change, and
you’ll need, or better want to accom-
modate it at a minimum cost [impact].

• Prepare avionics road maps. Factor in
the modernization effort, your tech-

nology refresh, and the fact that about
every two or three years you’ll be faced
with DMS problems. Develop and
integrate these road maps, taking into
account like efforts across multiple
platforms. Be a realist and tie as many
of these parallel thrusts into modern-
ization [capability enhancement] since
this is the principal source of funding.
Make these synergistic focused on pro-
viding the capability while driving
down the future development, produc-
tion, and sustainment costs, or in
short, reducing TOC.

• Design for affordable change by
migrating to open systems. Take
advantage of open systems’ set of pro-
tocol and interfaces.

When we presented these needs to the
chief of staff in January 2000, he respond-
ed with top-down support by issuing inter-
im policy. It explained simply that open
systems meant designing for ease of
change, which is the ability to accommo-
date constant turnover of the underpin-
ning technology every few years and to do
so in a manner that is affordable. He
charged the warfighter/acquisition/sus-
tainment communities with taking lead in
migrating the Air Force’s weapon systems
to a more open/viable/supportable archi-
tecture.

To support and gain momentum for
our activities, we held up the Aging
Avionics office with a focus of providing
support to all weapons systems as they
embark on this journey. We are surveying
other services’ and agencies’ to gain an
appreciation of how they are coping with
this challenge. We are educating the
warfighters’ on the magnitude of this
future bill to pay while working to gain
their support for our initiatives. And lastly,
but most importantly, we are developing
language for solicitations focused on open-
system principles. With this as a backdrop,
we sponsored two affordability studies: the
Boeing Open Avionics Systems Integr-
ation Study (OASIS), and Lockheed’s
Systems, Technologies, Architectures &
Acquisition Reform (STAAR) program.
Both studies are looking at opportunities
to capitalize on like improvement efforts
across platforms, quantifying the potential
savings possible in leveraging these efforts
across modernization programs.

Q:Have you had the opportu-
nity to use the integrated
change road maps to assess
and grade the current state
of the Air Force’s architec-
ture?

Figure 1: Affordability Initiatives in Open Avionics Systems

September 2001 www.stsc.hill.af.mil 7

The Air Force Develops an Initiative to Manage Change in Avionics Systems

Ogg: Previously David G. “Butch” Ardis,
technical adviser for Avionics Systems
Architecture, and the program offices had
initiated work on preparing moderniza-
tion road maps – a concentrated effort
over the past nine months.

The process has been somewhat
painful and a learning experience for
many of the stakeholders. In the year since
we received approval to move forward,
we’ve assessed these architectures to deter-
mine their viability. We looked at current
architectures, funded upgrades, and yet
unfunded but planned enhancements,
from the perspective of three viability
objectives:
• Producibility – The ability to produce

the subsystem in the future based
upon the current design.

• Supportability – The ability to sustain
the subsystem and meet the required
Mission Capable Rates.

• Future Requirements Growth – The
ability of the subsystem to meet pro-
jected combat capability requirements
with the current design and avionics
architecture.
Ratings were assigned per these evalu-

ation criteria. We broke out each system
through its projected life and based on
current architecture, it was given a color-
coded rating. Questions asked included:
• Can you accommodate what the user

has defined to you as requirements
growth?

• Can you accommodate increased
functionality?

• Can you continue to support or sus-
tain that into the future?

• Is it producible?
Each subsystem was scored. In summary,
of the weapon systems where the avionic
architectures were assessed, all exhibited
some form of viability shortfall. Realizing
this the warfighters, in concert with the
acquisition community, are making
investments to increase capability and in
the process working to migrate to more
open and affordable systems for the long
haul.

Our next step in the assessment
process is to see how we can influence the
future. We are going to the program
offices to see how we could leverage across
platforms to make more architecture
green, i.e., viable. The real test will be a
year or two from now when we will see
how we’ve influenced the programs’ paths
to achieve a more viable/affordable sys-
tem.

That’s where we are today, about four
miles into this marathon. Just how suc-
cessful we will be in the future depends on
our ability to leverage programs and to get

the acquisition community, especially our
defense industry to step out in front.
Customer [warfighter] funding will
remain tied to increased capability, not on
reducing life-cycle costs, and our ability to
drive real improvements in the cost of
ownership will be marginal unless we take
a step forward and capitalize on these
‘investment-return’ opportunities. How-
ever, there is no such thing as a guarantee

for industry, and they will assign these
investment opportunities risk factors and
rack them with other investment options.
To be successful in getting them to invest,
we need to be able to allow them reason-
able returns. We’re convinced that this can
be a win-win for both industry and gov-
ernment. First we need to gain the
momentum, get a few small wins, and
then it will take off.u

To accomplish a true avionics modernization program that goes beyond sim-
ply increasing capabilities to a true cross-platform open system will require

operating and cultural changes in government and industry. What must emerge is
an operating environment where the Department of Defense (DoD) has in place
the necessary business practices and life-cycle focus to make the problem of dimin-
ishing manufacturing sources and out of production parts (DMS/OP) transparent
to the customer, says Jon Ogg, director, Engineering and Technical Management
Directorate, Aeronautical Systems Center, Wright-Patterson Air Force Base, Ohio.
Ogg stresses that the DMS/OP is not going away. He lists the following enablers to
accomplish this change in state:

• Prime/Original Equipment Manufactures Proactive DMS/OP
Management: This means both government and industry getting
into a proactive vs. reactive role in dealing with the ever-accelerat-
ing rate-of-change in electronic technologies.

• Long-Term Prime/Original Equipment Manufactures Relation-
ships Fostered by DoD Commitment: These long-term relation-
ships are absolutely paramount. You need to maintain competition
at the right level, but not prescribe it at all levels.

• Defense Industry Defined/Supported Open System Architecture-
Based Standards: Part of the problem we inherited from the past is
the mandated standards across our business. We need to support
standard interfaces, protocol and operating systems similar to the
way it is done by industry in the personal computer domain. We
should not mandate but rather encourage and support industry’s
development and maintenance of standards.

• Price-Based Procurement/Sustainment: This provides an incentive
[business case] for prime/original equipment manufactures invest-
ment in the long-term producibility/sustainability of products.

NEW DIRECTION

Operating and Cultural Changes
Shadow Avionics Modernization

8 CROSSTALK The Journal of Defense Software Engineering September 2001

Q: As the person working
directly to implement avion-
ics modernization, what is
your architecture template
for change?

Ardis: Our change template for modern-
ization as well as other avionics changes
is centered around the Viable Combat
Avionics (VCA) initiative. Aging avion-
ics issues, avionics affordability issues,
and viability issues depending on
specifics, all refer to the same general
VCA concepts. Affordably dealing with
the changes that are occurring is a com-
bination problem: 85 percent business
and 15 percent technical. Business chal-
lenges include affordability and obsoles-
cence. Technically, the challenge is to
begin using the open-systems principles
that will facilitate affordably changing
our avionics systems; that is what I have
been tasked to do. The technical side
starts with using open-systems princi-
ples.

The term open systems is a multi-
headed animal with lots of different def-
initions. Our first step in applying open-
system principles is to get rid of ambigu-
ity and say what it is we want from open
systems. The what we want then needs to
be put into performance terms that actu-
ally can be measured. Then when we put
those terms into our contracts, we’ll start
seeing the benefits of applying open-sys-
tems principles.

When we talk about applying open-

systems principles, we are talking about
finding ways to affordably do the things
we need to do when we change our
avionics. Changes include reliability
improvement, obsolescence mitigation,
periodic software updates, adding new
capabilities, etc. We also need new sys-
tems that are affordable to change.

Second, most of our systems are so
costly that in most cases any strategy
must be incremental or evolutionary in
nature. We have to take advantage of the
funds that will be available such as those
for operational capability improvements.

Third, since we have to make big
platform changes, and it must be done
incrementally, a strategic context needs
to be developed to determine what to
put into the current contract vs. con-
tracts years down the road. That was how
the idea of making integrated change
road maps came about.

Early on, mentioning affordable
avionics was met with resistance. The
system program directors were skeptical
and saw this as a plan to cut their already
lean budget. We had to explain that we
were not there to advocate taking away
their money. Rather, we were trying to
get the greatest benefit for every dollar
our operational customer spent.

We believe it will be possible to
improve the efficiency and effectiveness
of the funds invested if we can cut back
on the amount of money we spend on
diminishing manufacturing sources
(DMS), obsolete parts, verification, etc.,
and can reduce cycle time.

Q: What functions do the
avionics road maps serve?

Ardis: The real objective of the avionics
change road maps is to set the strategic con-
text for the system. To construct road maps,
we began by asking program managers to
do an avionics health-assessment based on
the affordability of their programs. Is the
design producible? That doesn’t mean that
the configuration won’t change during pro-
duction, but how much pain is associated
with any needed changes? Is the design sup-
portable and growable? We’re asking them
to look at their architecture and its imple-
mentation right now and then look at the
changes operational customers are propos-
ing. What can we do to the architecture to
migrate it to a more desirable state?

Once the desired result is defined, the
operational capability updates serve as a
target of opportunity for shifting and
evolving the architecture advancements
and affordability.

The basic assumption is that if we can-
not get money that is just for the basic
architecture changes, then deliver the fund-
ed required capabilities changes in a way
that mitigates the affordability issues we’re
having. I’m hopeful that if people think
along these lines, as they lay out the plan-
ning process to add capabilities, they auto-
matically start thinking about how to
migrate architecture with that plan. Given
budget constraints, that’s the best we can
do in terms of migrating to more affordable
platforms.

Integrated Road Maps Route the Migration
to Avionics Open Systems

Pamela Bowers
CrossTalk

The Viable Combat Avionics (VCA) initiative was developed to combat aging avionics, including diminishing manufac-
turing sources and out-of-production parts, and to create more affordable avionics by making it easier to insert new tech-

nology and operational capabilities into systems. An integral part of the initiative is the development of integrated
change road maps to guide the migration of avionics architectures to a state that enables their viability to be
continued. David G. “Butch” Ardis, technical adviser for avionics systems architecture, was tapped to provide
technical leadership to the VCA initiative, responsible as chief avionics architect for the aeronautical domain.

Lt. Col. Glenn A. Palmer, program director, Computer Resources Support Improvement Program, and
Pamela Bowers, CrossTalk managing editor, met with Ardis at Wright-Patterson Air Force Base to dis-

cuss these avionics road maps. Ardis is a Senior Level executive at the Aeronautical Systems Center (ASC).

Ardis began his federal service career as an officer in the Air Force. His military service included two combat tours in
Southeast Asia, a teaching assignment at the Air Force Electronic Warfare Officer Training School, and a tour in project

engineering at Aeronautical Systems Center. His civilian service includes assignments as technical expert for mission avion-
ics and technical director for avionics engineering at ASC.

September 2001 www.stsc.hill.af.mil 9

Integrated Road Maps Route the Migration to Avionics Open Systems

Q: In what role do you see the
Air Force Research
Laboratory in avionics-relat-
ed technologies in the next
five to six years?

Ardis: Obviously this is Butch Ardis’
opinion. There are many technology
opportunities for Air Force Research
Laboratory (AFRL) investment. Instead
of the normal technology discussions, let’s
restrict this to some thoughts about
things that will help us achieve the objec-
tives of more effectively and efficiently
dealing with the future viability of our
avionics.

Reducing the costs of verification of
modern high performance avionics is an
area that needs much attention. Our
avionics systems are continually undergo-
ing changes with the attendant verifica-
tion requirements. The highly integrated
nature of many of our systems demands
that more and more resources be used on
verification – especially safety critical
applications.

We have some major technical con-
cerns in some of our architecture propos-
als and difficulty in verifying their per-
formance. This is an opportunity for the
labs to help. As we go to these highly
integrated, high performance avionics sys-
tems it becomes necessary to develop and
qualify approaches that reduce the verifi-
cation resource burden. There are at least
two areas for consideration. First, we need
to make ease of verification a performance
consideration. Avionics system architec-
tures as well as hardware and software
architecture developments need to put
more emphasis on reducing verification
costs. I believe the labs can help us with
developing architectures that are easier to
test.

Second is the verification processes
themselves. The F-22 is an example. It has
unprecedented abilities to engage many
targets in a beyond visual range environ-
ment. Flight testing of its most stressing
performance requirements takes many
more resources than previous aircraft to
support some of the test conditions. We
must do as much as possible on the
ground to make our flight tests as effective
and efficient as possible – you do not
want to debug in the air. However, the
development of ground-based simulations
and support tools for verification also
takes tremendous resources. To effectively
do hardware-in-the-loop testing of the F-
22’s avionics approach on the ground
requires a high fidelity stimulation that
captures the relative movements of all

objects that the avionics senses and injects
signals with the proper time and kinemat-
ic characteristics into the front end of the
sensors. We really haven’t dealt with that
level of fidelity requirements before, and
it takes a large investment.

Another verification area we could use
help with is streamlining certification of
architectures where we are doing multi-
tasking and mixing levels of criticality in
safety. We have to get the promised lean
processes qualified. If we’re going to cut
program costs by reducing testing, then
we’ve got to demonstrate that the under-
lying fundamental processes are valid.
AFRL could help us develop these
processes. Otherwise, if we have not qual-
ified our verification processes and have
to use traditional safety certification
processes, we potentially have years worth
of testing every time we update software
in these mixed criticality, heavily loaded
processors.

Agreeably, we need to do a better job
of making sure the labs understand what
we’re trying to do with avionics in the
future.

Q: What do you see down the
road?

Ardis: Our biggest challenge is coming to
grips with what the probable future is for
avionics. I believe the objectives of Joint
Vision 2020 and the implications of mak-
ing our avionics systems effectively fit into
a systems-of-systems operating concept
will represent a major task for many of
our legacy and new platforms. There is a
lot of thought going into airborne and
space-borne sensors that support generat-
ing timely information. Communication
links are being put in so people can tap
into the information. What we have not
done adequately is look at how to take
advantage of that information inside the
cockpit. And what are we are going to do
with it once we get that information to
the pilot? This will drive future avionics
architecture requirements.

For example when we upgrade dis-
plays, we are trying to push our programs
to think aggressively about what is most
likely to be done with these platforms in
the systems-of-systems operations when
we have that type of real-time informa-

tion available in the airplane. There are
going to be some very big changes
required in onboard avionics. There will
be too much information for the pilot to
personally filter through everything. It
must be automated.

This is another area where the AFRL
can help us. How do you go about chang-
ing avionics from what truly is network
centric as opposed to platform centric? It
is a completely different approach to the
way we want to do things. I don’t think
that very many of our platforms have
avionics that are going to be compatible.
So as we evolve our architectures, I think
implementing systems-of-systems require-
ments and achieving interoperability will
drive big changes in avionics architectures
and their implementations. This will be
especially difficult due to the costs associ-
ated with large avionics changes.

We have the technology challenges
associated with obsolescence, DMS,
processors rapid change, etc., but avionics
performance requirements are going to be
a real shock when we finally step up to
implementing the systems-of-systems
requirements.

As for other challenges, road-mapping
a major activity is frustrating because we
can’t show the operational customers solu-
tions that have saved them billions of dol-
lars, yet. We are hopeful that down the
road, customers will start seeing the bene-
fits of the performance attributes associat-
ed with applying open systems.

A performance-based approach is key
to where we are trying to push things. Just
specifying open systems alone is not suffi-
cient. We are trying to put things in the
contracts that will give us the benefit of
open-systems approaches – the major
benefits being ease of change and verifica-
tion of changes.u

“The real objective of avionics change
road maps is to set the strategic con-
text. Is the design producible ... Is the
design supportable and growable ...
What can we do to architecture to

migrate it to a more desirable state?”

It is widely accepted that the key point in
keeping modern combat aircraft up-to-

date is the mission system, i.e., the collec-
tion of computers, electronics equipment,
and sensors that allow an aircraft to per-
form its mission. Aircraft operational lifes-
pan has been steadily increasing during the
past 60 years, and can now easily exceed
three decades (see Figure 1). Mission sys-
tems quickly become obsolete during this
time due to rapidly advancing technology
and fast-changing international scenarios.
For example, the capability of new
computer systems, or the flexibil-
ity required by recent peacekeep-
ing and peace-enforcing operations
were not even foreseeable when the
design of some modern aircraft began.

As final users, Air Forces are
the best candidates to identify and ana-
lyze new requirements to be implement-
ed. The availability of standard-based,
off-the-shelf sensors and equipment, and
the importance of software in present air-
borne systems offer new opportunities to
upgrade aircraft without having large
industrial facilities such as those neces-
sary to modify airframes or engines.
Thus, many users have developed in-
house facilities to evaluate software
running on their aircraft, experiment with
potential enhancements, and eventually
introduce approved modifications.

Since airborne software is vital, yet only
a component of a higher complex system, a
systemic approach must be adopted in
designing the corresponding development
process. It is crucial that the software
process adopted for a specific development
or maintenance purpose is customized to
achieve the goals of the encompassing sys-
tem project, and ultimately of the organi-
zation. For military organizations in partic-
ular, technical problems posed by the com-

plexity of the target systems often have to
be dealt with in combination with specific
needs and constraints such as ad-hoc capa-
bilities at time of international crisis, avail-
able experience, staff turnover, budget
reductions, relations with and between
industrial partners, etc.

By describing and analyzing a real
project [1,2], this article shows how

different software development
approaches and techniques, usually applied
in isolation, can be selected, customized,
and combined to better meet organization-
al needs. The project was undertaken to
investigate the feasibility of enhancing an
aircraft mission system by integrating a
laser designation pod. Here we describe the
software aspects of the integration by
focusing on the software process devised to
support the integration study, and on the
rationale behind the choices made. More
details about this specific project can be
found in [1,2].

In this article we briefly introduce the
integration problem then provide an

overview of the proposed software process,
and of its rationale. Then we discuss the
final results by providing both qualitative
and quantitative insights. Finally, we con-
clude and summarize the benefits of the
adopted approach.

Integration Problem Overview
When installed on an aircraft as an external
store and connected as an added-in facility
to the mission system, a laser illuminating
pod can greatly improve both the naviga-

tion and attack performance of the
aircraft. In practice, such a sub-

system will allow the pilot
to sight a ground point,
obtain the relative posi-

tion, and eventually illuminate
it with a laser beam for subsequent weapon
guidance.

An initial pre-feasibility study only had
defined the guidelines for the integration:
The laser pod had to be used as a targeting
sensor for the precision delivery of laser-
guided bombs and as a navigation sensor.
An integration project was therefore set off
as a low-budget short-term activity aiming
at two goals:
1. Fully investigate the feasibility of equip-

ping the aircraft with such a subsystem.
2. If feasible, identify an economical and

low-risk integration solution.
After an initial assessment of the integra-
tion problem, various risk-prone areas were
identified.

Complexity of Solution Space
Finding a solution to the integration prob-
lem means to define a complete and con-
sistent set of requirements that the new
system (i.e., the aircraft equipped with the
laser pod) has to satisfy. Only a minor set
of these requirements concern functional

10 CROSSTALK The Journal of Defense Software Engineering September 2001

Customizing the Software Process to Support
Avionics Systems Enhancements

Dr. Paolo Donzelli and Roberto Marozza

When an organization considers enhancing a software-intensive system, particularly an avionics system, selecting the
process to be adopted must include consideration of the particular encompassing project. This includes the applica-
tion domain, the size and complexity of the final product, the hosting system characteristics, etc. Simultaneously, it
must be driven by the specific organization’s goals, environment, and maturity. By describing and analyzing a real
project, this article shows how different approaches and techniques, usually applied in isolation, can be selected, cus-
tomized and combined to design a software process that better satisfies the organization’s goals and meets its con-
straints. The project was undertaken to investigate the feasibility of enhancing an aircraft mission system by inte-
grating new capabilities, and eventually to identify a quick, low-cost and low-risk solution. An uncertainty-driven
product architectural framework together with an ad-hoc simulation-based supporting environment were used to
combine in an effective and controlled fashion the waterfall, the Rapid Application Development, and the
Incremental Development models.

“It is crucial that the
software process

adopted for a specific
development or main-

tenance purpose is
customized to achieve

the goals of the
encompassing system

project ...”

Customizing the Software Process to Support Avionics Systems Enhancement

September 2001 www.stsc.hill.af.mil 11

aspects, e.g., the data the laser pod has to
provide as navigation sensor; most of them
are related to non-functional aspects.
These include both human factors such as
pilot workload, pilot performance, and sit-
uation awareness [3], and system quality
attributes such as usability, safety, reliabili-
ty, time, and cost [4].

In comparison with functional require-
ments, non-functional requirements are
highly subjective (e.g., test and front-line
pilots can have a different perception of the
same problem), strictly related to the par-
ticular context, and more difficult to dis-
cover, state, and validate without interact-
ing with the final system. This increases the
dimension of the solution space, intro-
duces instability in the requirements, and
makes it difficult to compare different
alternatives.

Complexity of Target Platform
Most of the functions in the mission sys-
tem are performed via a cooperation of two
or more subsystems. As a consequence,
modifying or enhancing such functions
requires operating on different equipment,
which may adopt different hardware and
software solutions requiring a broad range
of skills not usually available in the same
personnel. Moreover, equipment is pro-
duced and maintained by different con-
tractors, so that the Air Force is faced with
different levels of product visibility, pro-
curement processes, schedules, and costs.

Novel Aspects of Project
Being a single-seat aircraft, the problem of
adding the control of the laser pod to all
the other tasks usually carried out by the
pilot needed to be completely investigated,
both for safety and performance reasons.

Project Organization
Based on the initial goals, constraints, and
outcomes of the initial assessment of the
integration problem (Integration Problem
Overview), the project has been organized
following some simple guidelines:
• Minimize the impact of integration on

the aircraft mission system.
• Exploit internal resources and capabili-

ties, both in terms of personnel and
equipment.

• Reuse previous experiences, i.e., lessons
learned and available products, e.g.,
requirements, algorithms, software.

• Allow uncertainty to be part of the
project to improve the ability to inves-
tigate the solution space.

In practical terms, this has led to making
precise choices in organizing the team and
defining the software process.

The Team Organization
The project team was structured into three
different sub-groups with specific compe-
tencies, responsibilities, and workload:
• The software development team, tasked

with managing the whole project and
developing the necessary software, was
composed of two software engineers and
four technicians. The group members
worked together at the requirements
level; subgroups were identified to bet-
ter deal with the specific needs of the
various subsystems affected by the inte-
gration.

• The hardware support team, tasked
with implementing the avionics integra-
tion of the laser pod, was composed of
two technicians. In addition, they
played the role of logistics and mainte-
nance experts during the requirements
definition stage.

• The user group, tasked with collaborat-
ing during the requirements discovery
and validation phases, was composed of
two test pilots. Both of them had a spe-
cific experience with laser pod-based
operations and were supported by front-
line pilots.

Such a team structure provided us with
great versatility in tackling personnel-relat-
ed problems. First, it allowed us to really
involve the stakeholders and exploit avail-
able expertise. Second, it limited the
impacts of staff turnover, unavoidably due
to the project schedule, by dealing with
them within each group. Third, it incre-
mented the degree of concurrency between
the different tasks to be performed within
the organization, regarding this or other
projects. In particular, both the hardware
support team and the user group could bet-
ter plan their own involvement in this proj-
ect without hindering other projects.
Meanwhile, the software development
team, thanks also to the adopted software
process (see The Software Process below),
was not affected too much by some
unavoidable delays that the other subgroups
had in providing feedback and support.

The Software Process
The difficulty in adopting a classical water-
fall-based process [5], i.e., a process based
upon a series of sequential steps that goes
from requirements analysis to system deliv-
ery, emerged clearly just after a first attempt
at defining the initial set of requirements.
The waterfall model makes the develop-
ment process more visible by providing a set
of milestones around which the manage-
ment can plan, monitor, and control a proj-
ect. However, it is based on the assumption
that most of the requirements can be frozen

at the outset of the project, whereas it is well
recognized to perform poorly in case of
requirements instability [6].

In our case, not only was it impossible
to state precisely most of the requirements,
but there also were quite a few system areas
about which only general and soft consider-
ations could be made. For example, we
could identify the need for a pilot interface
suitable to reduce workload and improve
situation awareness, but we could not trans-
late this into a series of requirements able to
be implemented.

Thus a specific architectural framework
in which to develop the system was pro-
posed. It had to be flexible to accommodate
uncertain software development approach-
es, yet rigid enough to guarantee a visible
development process required by the organ-
ization. As illustrated in Figure 2 (see page
12), the software system was designed as a
collection of interacting components, each
of them acting as a focus for a particular
requirements area with a specific uncertain-
ty level.

A set of man-machine interface compo-
nents, a pod-control component, and a net-
work interface component form the archi-
tecture.
• The man-machine interface compo-

nents represent the software to be added
onto the displays (e.g., the head-up dis-
play) and the control panels of the air-
craft cockpit. They modify the pilot-air-
craft interface handling all the informa-
tion to be displayed and the user inter-
actions enabling the pilot to use the
laser pod. Here the level of uncertainty
was highest: The user group drafted
some guidelines about the pilot opera-
tions (mainly on the basis of previous
experience), but could not be more pre-
cise about the interaction with the indi-
vidual pilot. Even the specific displays
and switches to be used were matters for
discussion, leaving the number of com-
ponents to be developed an open issue.

F-84F

F-4 F/B-111

P-51

EF-2000

AMX

0

10

20

30

40

50

60

Years

in-service

development

1940 2000

Figure 1: Aircraft Operational Life

Avionics Modernization

12 CROSSTALK The Journal of Defense Software Engineering September 2001

• The pod-control component imple-
ments the algorithms to physically con-
trol the pod, for example allowing the
pilot to steer the pod in a specific direc-
tion. Although many of such algorithms
were reused (from available literature,
code, etc.), the component still present-
ed some degree of uncertainty, mainly
regarding its real-time performance in
the new avionics environment. In
designing and allocating the software,
both measurable parameters (computa-
tion elapsed time) and pilot judgement
(stability of the track image) had to be
taken into account.

• Finally, the network interface compo-
nent was specifically designed to handle
the message passing between the laser
pod and the physical systems hosting
the other components. This resulted in
the most stability, in fact, the laser pod,
an off-the-shelf item, dictated most of
the messages and the component had to
be allocated onto the main digital com-
puter.

The adopted architectural framework (see
Figure 2) allowed us to combine different
development approaches in a controlled
fashion.

A full rapid application development
(RAD) approach was applied to the man-
machine interface components, which were
developed as a set of concurrently evolving
prototypes [7]. In RAD, the exact opposite
of the traditional software approach is held
true: Time and resources are fixed, as far as
possible, and the requirements are allowed
to change. This suited our situation well;
the stakeholders did not have a clear initial
idea of the system to be developed. This was
expected to mature over time, and different
solutions appeared to be equally valid. RAD

enabled us to rapidly construct primitive
versions of the components by heavily
involving the members of the user group.

The user group’s key role in the devel-
opment process has been widely recognized.
The major advantages of the so-called user-
centered approaches [8] come from letting
the user participate in and contribute to the
design process from its first inception
onwards. Through the user group, the users
felt that they were an active part of the
development team. They took part at the
initial design sessions, and their feedback
was incorporated to correct, refine, and
enrich the emerging system properties until
the final set of components was obtained.
For the pod-control component, a throw-
away prototype [9] was used to quickly
compare the different algorithms available
before setting off on a more traditional
waterfall-based approach. To develop the
network interface component, a waterfall-
based process was applied from the begin-
ning.

The components were developed in
parallel with tight collaboration among the
team groups and a continuous exchange of
results, experience, and products. An ad-
hoc Avionics Simulation Station was devel-
oped [10] that supported the whole inte-
gration study (see Figure 3). Apart from the
Software Development and Testing Stations
used to modify the software and test it
directly on the airborne computers, the
Avionics Simulation Station consists of a
mixture of real and simulated equipment.
For example, while all the main sensors are
simulated (inertial navigation system, radar,
etc.), a real laser pod is used together with
real units associated with the cockpit (dis-
plays, control panels, etc.). The cockpit
allows a pilot to form part of the overall sta-

tion so that the effects of the investigated
laser pod integration on pilot performance
can be determined.

The Avionics Simulation Station
enabled us to work with a variable combi-
nation of components running on their
allocated computers, and components still
at a prototype level. In particular, the net-
work interface component was developed
directly on the main digital computer. The
other components were implemented using
a high-level equipment simulation tool to
evaluate them in a real environment with-
out affecting the aircraft equipment. Such a
simulation tool allowed us also to adopt for
the prototypes the same programming lan-
guages used by the potential hosts, highly
simplifying the subsequent porting phase.

The prototypes were used to enrich the
Avionics Simulation Station with the laser
pod. Then the Avionics Simulation Station
was employed to analyze the pod operating
procedures with the members of the user
group. Only when the prototypes reached a
stable state, were they moved to the corre-
sponding computers to finalize evaluation
and testing. This environment guaranteed
the right trade-off between flexibility and
rigor to support the integration study.
Different alternative solutions were easily
investigated (e.g., a different set of compo-
nents or different allocation of the same
components), while the use of real equip-
ment provided early feedback on the pro-
ject’s technical feasibility. For example, the
real-time performance of the pod-control
component on the selected target computer
could be assessed while the user group was
still defining the interface to be adopted.
Furthermore, it strongly reduced our
dependency upon the equipment manufac-
turers, for example by enabling us to involve
them only at the final stage (the porting
step), thus reducing the associated costs and
delays.

Although RAD is a good method to
deal with unstable requirements, it suffers
when applied to big projects or when
requirements instability is not confined to a
specific area. In both cases, it can in fact lead
to an explosion of project complexity and of
associated risks. Whereas the initial archi-
tectural framework (see Figure 2) enabled us
to manage instability in order to increase
our control over the project, we decided to
combine RAD with an incremental devel-
opment method. In other words, the initial
unstable set of requirements was broken
down into three more manageable subsets:
• Set A regarding the basic laser pod con-

trol functions (e.g., in-flight and on-
ground pod test, basic pod orientation,
etc.).

• Set B incrementing Set A with the laser

Network Interface

Pod-Control

Man-Machine Interface

Airborne Network
System

High Uncertainty

Medium Uncertainty

Low Uncertainty

Figure 2: An Uncertainty-Driven Software Architectural Framework

September 2001 www.stsc.hill.af.mil 13

Customizing the Software Process to Support Avionics Systems Enhancement

pod-based navigation functions (e.g.,
use of the pod to acquire an on-ground
point position).

• Set C incrementing Set B with the
laser pod-based attack functions (e.g.,
use pod capabilities to support a spe-
cific ground attack mode).
In moving from Set A to Set C, the

complexity of the man-machine interface
clearly increased. By requiring more infor-
mation to be displayed and more controls
made available, the incremental approach
combined with RAD allowed us to gradu-
ally involve the user group, which had
time to face new problems (new require-
ments) starting from a previously estab-
lished platform (already implemented
requirements). Besides facilitating require-
ments capturing and formalization, such
an approach led also to better-designed
software, for all the involved components.

The resulting software process is
schematized in Figure 4, which summa-
rized what has been said so far. As shown
in Figure 4, the process is based on three
main phases. Phase 1 is the initial require-
ment analysis phase during which the
decisions of adopting the architectural
framework depicted in Figure 2 and of
dividing the requirements into incremen-
tal subsets were made. During Phase 2, the
system evolved as a set of components and
prototypes by first implementing the
requirements set A (version A), then the
set B (version B), and finally the set C
(version C). For each version, using
Avionics Simulation Station led to correc-
tion and refinement loops. We only passed
on to Phase 3 when a high confidence in
version C was reached. Here the compo-
nents still at a prototype level were ported
on the real equipment, and the final sys-
tem test and evaluation performed.

Project Results
The integration study and the supporting
software process allowed us to fully inves-
tigate the integration feasibility (goal 1),
and then to identify what we considered
an economical and low-risk integration
solution (goal 2).

The flexibility of the process and prod-
uct enabled us to find both quantitative
and qualitative answers from the early
stage of the project. Aspects such as the
real-time performance of the modified
mission system, the compatibility of the
new software with the target equipment,
and the pilot needs were carefully investi-
gated. In particular, it was assessed that it
was feasible for the laser pod to be operat-
ed by the pilot while flying the aircraft.

The software produced consisted of

about 11,000 lines of code (LOC); 1,500
LOC of Ada were written as ancillary code
to adapt the prototypes to the Avionics
Simulation Station. The impact on the
total airborne software was relatively small
(with an average of 1 percent modified
and 5 percent new software on the various
airborne computers), thus sensitively
reducing the effort required to reevaluate
and test the existing functions.

The development lasted for 10 months
during a calendar time of 15 months. This
difference was due mainly to preemption
of personnel for other tasks (about three
months) and to some bureaucratic delays
with partner industries (about two
months). Most of the effort (about 90 per-
cent) was spent on Phase 2, with 45 per-
cent required for development of version
A, 30 percent for version B, and 15 per-
cent for version C. Quality confirmation
of the components and prototypes form-
ing the system version C, and of the
adopted process Phase 3 required only 5
percent of the effort. For the porting, three
people from the manufacturers were
involved for a limited number of meetings
and a total of six days of actual software
development. The final testing and evalu-
ation revealed only some minor defects.

Conclusions
This article described the software process
adopted to support the integration study
of a new weapon system onto an existing
military aircraft in the context of a low-
cost, high-confidence-of-success project.

To integrate two systems means to

identify the synergistic combination that
best exploits them both. At the initial
stage, only some general guidelines are
usually fixed, whereas many different solu-
tions appear equally valid and worth inves-
tigating. Such uncertainty drove the
design of the initial software architectural
framework in which the waterfall, the
RAD, and the incremental software devel-
opment models were combined in an
effective and controlled fashion. The
process provided the necessary mix of visi-
bility, flexibility, and performance, taking
into account the available personnel, time,
and funding, as well as increasing the orga-
nization’s experience and improving col-
laboration with the industrial partners.u

Software
Development and Testing

Simulated Equipment

Pilot Displays and
Control Panels

Pilots
Stick
and

Throttle

Real Equipment

Airborne Network System

Airborne
Computers

Aircraft Model

Aircraft Sensors Models

Laser Pod

Figure 3: Architecture of the Avionics Simulation Station

System
Development

System
Evaluation

(on the ASR)

Components
&

Prototypes

Feedback
(errors,
new
require-
ments)

Requirements
set C

Requirements
 set B

Requirements
 set A

Phase 2

System
Evolution

Phase 3

Initial Requirements Analysis

Phase 1

System
Version

Architectural
Frameworks

Prototype
Porting and
finalization

Final System
Test & Evaluation

(on the ASR)

Final System
Feedback
(errors, new
requirements)

Delivered System

Figure 4: Adopted Software Process

Avionics Modernization

14 CROSSTALK The Journal of Defense Software Engineering September 2001

References
1. Donzelli, P., Marozza R. “Laser

Designation Pod on the Italian Air
Force AMX Aircraft: A Prototype
Integration,” Proceedings of the
NATO/RTO (Research and
Technology Organization) Systems
Concepts and Integration Panel Joint
Symposium on Advances in Vehicle
Systems Concepts and Integration,
Ankara, Turkey, April 26-28, 1999,
published by NATO-/RTO, BP 25, 7
Rue Ancelle, F-92201 Neuilly-Sur-
Seine Cedex, France, April 2000,
ISBN 92-837-0011-2.

2. Donzelli, P., Marozza R. “Un Laser
Pod Anche Per l’ AMX,” Rivista
Aeronautica (Italian Air Force
Journal), Dec. 2000, Roma, Italy.
<www.aeronautica. difesa.it>.

3. Prince, C., Salas E., and Emery L.
“Situation Awareness: What Do We
Know Now That the ‘Buz’ Has
Gone?” Engineering Psychology and
Cognitive Ergonomics, Vol. 3:
Transportation Systems, Medical
Ergonomics and Training, pp 215-
222. Edited by Don Harris, Ashgate
Publishing Ltd, Aldershot, England,
1999.

4. Chung L., and Nixon B. “Dealing
with Non-functional Requirements:
Three Experimental Studies of a

Process Oriented Approach,”
Proceedings of the International
Conference on Software Engineering,
Seattle, WA, USA, 1995.

5. Mills, H.D., O’Neill, D., Linger,
R.C., Dyer, M., and Quinnan, R.E.
“The Management of Software Engin-
eering,” IBM System Journal, 24 (2),
1980.

6. Bohem, B. “Anchoring the Software
Process,” IEEE Software, Vol. 13, No.
14, July 1996.

7. DSDM Consortium. Dynamic
Systems Development Method,
Version 3. DSDM Consortium,
Ashford (UK), 1997.

8. Norman D. and Draper S., “User
Centered System Design,” LEA, Hills-
dale, N.J.,1986.

9. Stytz M.R., Adams T., Garcia B.,
Sheasby S.M., and Zurita B. “Rapid
Prototyping for Distributed Virtual
Environment,” IEEE Software, Vol.
14 No. 5, Sept./Oct. 1997.

10. Donzelli, P., Moulding M.R.
“Developments in Application
Domain Modeling for the Verification
and Validation of Synthetic
Environments: A Formal Require-
ments Engineering Framework,”
Proceedings of the Spring ‘99
Simulation Interoperability Work-
shop, Orlando, FL, March 1999.

COMING EVENTS

October 15-18
SEI 16th Annual

Software Engineering Symposium
Washington D.C.

www.sei.cmu.edu/symposium

October 22-26
Systems Engineering

and Supportability Conference
San Diego, CA

http://register.ndia.org/interview/
register.ndia

October 28 - November 1
5th Annual DoD Symposium and Exhibition

Kansas City, MO
www.ndia.org

October 29 - November 2
6th Annual Expeditionary

Warfare Conference (EWC)
Panama City, FL

http://register.ndia.org/interview/
register.ndia?~brochure~270

November 6-8
TechNet Asia-Pacific 2001

Honolulu, HI
www.afcea.org

November 12-16
5th International Software and Internet

Quality Week - Europe 2001
Brussels, Belgium

www.qualityweek.com

November 13-15
1st Annual CMMI Technology Conference

and User Group
Denver, CO

djenks@ndia.org

February 4-6, 2002
International Conference on COTS-
Based Software Systems (ICCBSS)

At the Heart of the Revolution
Lake Buena Vista, FL

www.iccbss.org

March 19-21, 2002
Federal Office Systems Exposition 2002

Washington D.C.
www.fose.com

April 28 - May 3, 2002
STC 2002

“Forging the Future of Defense
Through Technology”
Salt Lake City, UT
www.stc-online.org

About the Authors
Paolo Donzelli, Ph.D.,
is an advisor with the
Department of Infor-
matics of the Office of
the Prime Minister in
Italy. A former serving

engineering officer with the
Operational Testing Centre of the
Italian Air Force, Dr. Donzelli was a
senior research fellow with the
Computing Information Systems
Engineering Group, at RMCS,
Cranfield University (UK). Dr.
Donzelli has a variety of interests in
the software engineering area, and his
Ph.D. thesis was in software process
quality modeling.

Office of the Prime Minister
Department of Informatics
Via della Stamperia 8
00187 Roma, Italy
Phone: (39) 0335-736-5194
Fax: (39) 06-6779-4736
E-mail: p.donzelli@palazzochigi.it

Roberto Marozza was a
serving engineering
officer with the Italian
Air Force before mov-
ing into industry. He
has been program

manager of the on-board mission soft-
ware for the Anglo-Italian EH-101
ASW helicopter, and has also worked
in some airborne software projects for
the Tornado and the AMX attack air-
craft. Recently, he was involved at
Aerospatiale in the software require-
ments definition of the ATV, the orbit-
ing vehicle that will transfer
unmanned payloads from ground to
the International Space Station.
Marozza has a Laurea Degree in elec-
tronics engineering.

Banca d’Italia
Largo Guido Carli 1
Frascati, 00040 Roma, Italy
Phone: (39) 0348-654-2067
E-mail: rmarozza@libero.it

September 2001 www.stsc.hill.af.mil 15

The Challenges of Software Certification
George Romanski

Verocel, Inc.

The safety critical community – those involved in developing and verifying safety critical systems – is very conser-
vative and adverse to change. Meanwhile, technology is changing rapidly, and there is pressure to adapt systems to
improve their efficiency and safety. This presents a number of challenges. The community has already addressed some;
others are in process. While the guidance on airborne software certification is mature, the issues with software reuse,
military avionics certification, ground-based software, and object oriented technology are still evolving.

Computer-controlled systems pervade
our lives. We take many of them for

granted, although many are critical to our
safety. Dire consequences may result if the
software in an automobile’s computer-
controlled braking system failed during a
highway maneuver. Software faults in the
automobile’s computer may cause the
brakes to malfunction. What can be
done to make sure that this software
does not contribute to the cause of
an accident?

An extreme measure would be to limit
the speed of automobiles to a walking
pace. When automobiles were first
licensed to travel on public highways, a
person carrying a red flag had to walk
in front of them. Clearly this restriction
is impractical, and was abandoned
many decades ago. An alternative is
not setting up the computer system as
the sole means of control. A com-
puter-controlled braking system
could include hydraulic/mechanical con-
trols that provide backup operations when
the computer system fails. However,
this approach may be impracti-
cal for some complex sys-
tems.

A bicycle can turn corners
much faster than a tricycle, but it
requires active control by the cyclist to
maintain balance. Similarly a high per-
formance airplane may be built with an
unstable flight profile. For example, a
paper plane with wings that are level may
swerve and dive during flight, but a plane
whose wings tilt up slightly glides
smoothly. Fighter planes are often built
unstable to make them more agile but
they include movable surfaces. A comput-
er system controls the movable surfaces
and induces stability through control
algorithms.

A modern transport airplane may be
built to have a stable flight profile, but
computers are used to control and opti-
mize aircraft flight. These types of com-
puter systems and their software have a
direct impact on the safety of the aircraft
and its occupants. A level of assurance is
required to provide confidence in this

software. In commercial avionics systems
a document called “Software Consider-
ations in Aircraft Systems and Equipment
Certification” is used to provide assur-
ance. In the United States, this document
is called DO-178B and is published by
Requirements and Technical Concepts for
Aviation, Inc. (RTCA) [1].

DO-178B
Although DO-178B is referred to as a
guidance document, it is treated as a stan-
dard that imposes requirements on the
development and verification of airborne
avionics systems. A Federal Aviation
Regulation lists DO-178B as a means of
compliance that is acceptable to the soft-
ware regulators in the avionics communi-
ty. In the United States, the regulatory
body is the Federal Aviation Authority
(FAA). While DO-178B is not the only
means of compliance, compliance with
the objectives of DO-178B must be
shown if a different approach is used.

In Europe, a similar statutory regula-
tion called ED-12B is published by
EUROCAE. This is the same document
as the DO-178B and was produced by an
international consensus-based committee
representing practitioners as well as regu-
lators.

DO-178B is intended to describe the
objectives of the software life-cycle
processes, the process activities, and the
evidence of compliance required at differ-
ent software levels. The software levels are
chosen by determining the severity of the
failure conditions, which may affect the
aircraft and its occupants [2]. The failure
conditions are named and have corre-
sponding levels identified by letters. For
each level there is a set of process objec-
tives that must be satisfied. An example of
a process objective is A-7.3 “Test
Coverage of low-level requirements is
achieved.” The number of process objec-

tives by software level is shown in Table
1 (see page 16).

The certification agen-
cies have received many

requests to clarify the intent of
DO-178B since its publication in

December 1992. A consensus-based com-
mittee called SC-190 (and WG-52 in
Europe) was formed and tasked to pro-
pose clarifying text. After four years of
work by 150 registered members, a docu-
ment called The Annual Report for
Clarification of DO-178B (DO-248A)
was published by RTCA, Inc. [3]. This
document provides corrections (typo-
graphical and editorial), answers to fre-
quently asked questions (FAQs), and dis-
cussion papers.

A subset of the SC-190 committee is
continuing with a new document for use
in Communications, Navigation and
Surveillance/Air Traffic Management sys-
tems (CNS/ATM). This will result in a
new software assurance document intend-
ed for ground-based (and space-borne)
systems. There are subtle differences
between the way the two application
domains are treated. Airborne systems
undergo a certification process while
ground-based systems go through an
approval process. In the following text
certification materials describe materials
that support certification or approval.
Here are some typical FAQs published in
DO-248A (shortened for brevity):
Q: Is recursion permitted in airborne

applications?

“Although DO-178B
is referred to as a

guidance document, it
is treated as a stan-
dard that imposes

requirements on the
development and ver-
ification of airborne
avionics systems.”

Avionics Modernization

16 CROSSTALK The Journal of Defense Software Engineering September 2001

A: Yes! But it must be bounded.
Q: Is source-code to object-code trace-

ability required?
A: Yes, if the applicant is providing cov-

erage analysis at the source-code level
and the assurance is at level A. No, if
coverage analysis is provided at the
machine-code level.

Q: If some run-time functions are
inlined, is coverage still required of
the run-time functions?

A: Yes! Coverage analysis is required of
all of the code that may be reached
within the address space.

Q: Can compiler features be used to sim-
plify coverage analysis at object code?

A: Yes! For example, short circuit condi-
tions may be used. However, as the
compiler feature is being used as a ver-
ification tool, this feature of the com-
piler must be qualified as a verifica-
tion tool. (Qualification is the process
of assuring that a tool can be used in
place of a verification activity per-
formed manually.)
One of the most discussed topics is

the use of previously developed software
(PDS). Commercial off-the-shelf
(COTS) software is considered PDS as it
may be developed independently of any
specific airborne application. Operating
systems (OS) may be considered to be
COTS software and may have been
developed using in-house development
processes that are not necessarily compli-
ant with DO-178B requirements. These
pose a burden on the user of the OS to
reengineer the verification evidence
required unless it is made available by the
OS developer.

DO-178B makes provisions for
reengineering requirements, design infor-
mation, tests, and review of all artifacts in
accordance with the DO-178B objectives.
The processes must be documented in a
set of plans and evidence must be available
to show that this was performed in a con-
trolled way. DO-178B provides an alter-
native means mechanism allowing devel-
opers to present evidence that is not typi-
cal. The developer has the burden of proof
that the materials presented are acceptable
alternatives to a risk adverse audience.

Operating System Issues
An OS takes control of the target machine
on which it runs. It shares resources
between processing threads. The threads
may be represented as processes, tasks, or
co-resident applications, depending on the
nature of the OS. The shared resources
include processor time, interrupts, memo-
ry, and input/output transactions to name
a few. The OS has visibility and control
over application programs and would have
a direct impact on system behavior if the
OS were to malfunction. Because of this
close connection between the OS and the
applications, the OS must have certifica-
tion evidence at least to the same software
level as the systems that it supports. This
means that all certification criteria that
apply to the applications also apply to the
OS. In particular, there must be a level of
confidence that the OS itself behaves
deterministically, and that the underlying
applications will be controlled in a deter-
ministic way.

The level of determinism may be based
on functionality, resources, and time.
Functional determinism can be demon-
strated through testing only if the results of
a function are the inevitable consequence
of its inputs. The function inputs are the
parameters, but may also include global
variables, and possibly external states based
on interrupts. Clearly the more variables
there are, the more difficult it is to demon-
strate functional determinism through
testing alone.

Use of resources must be bounded,
otherwise their consumption will grow
unchecked. This includes the use of
dynamically allocated memory, like the
heap, but also includes a bound on stack
space. The OS used in safety critical sys-
tems may prevent use of dynamic memory
allocation or may restrict this after the sys-
tem completes its initialization. If the OS
does not offer such precautions, then the
application developers must be very cau-
tious to ensure that memory creep does not
cause the system to malfunction at some
point in the future. Application code as
well as the OS affect stack growth. An
operating system will allocate space for the

applications and may allot some of this
space for control data structures such as
task control blocks. After this allotment,
the operating system functions typically
consume little of the stack, and release it as
soon as the call is finished. It is up to the
application programmer to estimate the
worst-case stack usage space. Users typical-
ly allow large margins to the space allocat-
ed to ensure that the resource is not entire-
ly consumed.

Time is a difficult resource to measure
and allocate. In an effort to improve
processor throughput, hardware engineers
have added many improvements to mod-
ern computing devices. Cache memory,
pipeline processing, and co-processors may
improve performance tremendously, but
they also make it very difficult to put an
absolute bound on the worst-case execu-
tion time for a particular function.
Nevertheless, the performance improve-
ment through the use of cache memory
can be so dramatic that in many situations
it becomes the overriding concern. The
performance of an OS function may be
dependent on the contents of instruction
and data cache memory.

This varies depending on the execution
paths taken through the applications as
they run. In practice, timing measures of
OS functions add little to the question of
deterministic behavior. Typically, the appli-
cation execution time is measured under
estimated worst-case conditions to deter-
mine if the time bounds can be met.
Measures of tasking performance under
these worst-case conditions can be used to
calculate the total throughput, and then
determine whether deadlines of the tasks
cooperating in the application can be met.
This leaves the burden of timing measure-
ment and verification to the application
developer.

The COTS Reuse Argument
Software may have been developed and in
service for a long time with no problems. If
we have a record of the behavior, then
intuitively it seems that we should be able
to trust this software. Use-of-service histo-
ry as a means of obtaining approval credit
is an attractive option to help reduce certi-
fication costs. The notion is that if an
application is used and its service history is
recorded (frequency, severity, and distribu-
tion of faults found) then by extrapolation,
similar behavior would be expected in
applications running the same software in
equivalent environments.

Low fault rates in the past may mean
expected low fault rates in the future. This
reasoning is particularly attractive for com-

Failure Condition DO-178B Software Level Process Objectives

Catastrophic A 66

Hazardous B 65

Major C 57

Minor D 28

No Effect E 0

Table 1: Relationship Between Failure Conditions, Levels, and Objectives

September 2001 www.stsc.hill.af.mil 17

The Challenges of Software Certification

panies that developed systems for military
airplanes who want to reuse the same tech-
nology for commercial aircraft. However,
this approach should be used with cau-
tion. At the higher software assurance lev-
els, requirements for coverage analysis are
intended to provide a measure of the
absence of unintended functionality. By
showing what code is executed in the
application and what is not executed, the
shortcomings of the requirements-based
testing process can be estimated. If any
code is discovered that cannot be traced to
a requirement, then this dead code must
be removed. Use-of-service history will
not show presence of unintended func-
tionality, so it does not satisfy the coverage
analysis objective.

Coverage analysis is also used to show
the effectiveness of testing. The type of
coverage analysis required by DO-178B
depends on the software level. At level C,
only statement coverage is required. At
level B, all entry points and exit points as
well as all decisions and their outcomes
must be covered in addition to all state-
ments. At level A (the highest), coverage
requirements of level B in addition to
Modified Condition/Decision Coverage
(MC/DC) is required.

MC/DC analysis is a unique require-
ment to DO-178B. Its goal is to show that
each condition has its intended effect on
the outcome of a decision. Applicants try-
ing to reduce the scope and cost of the test
and analysis effort have applied a number
of different interpretations. To ensure that
the interpretations are common, the SC-
190 committee produced clarification
through a discussion paper. This paper is
included in the DO-248B document.
Here are some valid approaches: perform
coverage analysis at the machine-code
level, show source-to-object code traceabil-
ity together with coverage analysis at the
source-code level, or develop multiple vot-
ing systems and use different languages
where each compiler used is created by a
different developer.

A draft policy for reusable software
components (RSC) has been developed to
allow certification evidence and its
approval to be reused when it exists. The
intent of this policy is not aimed at reusing
components in different variants of a par-
ticular system being deployed. If a certified
system exists, certification credit can be
taken for components when moving the
system to a different aircraft. This is
already covered by other regulations.

A developer producing a software com-
ponent and developing certification mate-
rial in the absence of a specific avionic sys-
tem may be creating a reusable software

component. The FAA does not charge for
its approval services, so it does not deal
with such developers directly. (Otherwise
the burden of dealing with software suppli-
ers directly would be overwhelming.)

Airframe or subsystem manufacturers
(such as the developer of an aircraft or a
flight management system) may establish a
certification liaison with the FAA as an
applicant. As part of the delivery of mate-
rials for review, the applicant may submit
DO-178B compliant materials for the
RSC. This submission will also include
information such as proposed software
level, identification of the processor, and
identification of the compiler used. Once
approval of the airframe or subsystem is
obtained, the FAA may provide a letter to
the RSC developer and to the applicant
documenting certification credit. This let-
ter either reduces or eliminates certification
effort required on a new project.

Military Avionics
To reap the benefits of a wider audience
and participation by practitioners outside
the Department of Defense (DoD)
domain, the agency gradually moved
towards standards that were co-developed
with industry members. DO-178B is a
consensus-based guidance document that
has been adopted by the DoD for certain
safety critical systems. Development of cer-
tification evidence in accordance with
DO-178B is not undertaken retroactively;
new projects and updates to projects do
adopt this guidance document in place of a
military standard. The initial draft policy
focuses on transport aircraft. Fighters,
bombers, and unmanned vehicles are
excluded. The policy is directed at Com-
munications Navigation and Surveil-
lance/Air Traffic Management (CNS/
ATM) systems, both airborne and ground
based. The FAA owns the U.S. airspace.
The U.S. Air Force is required to show that
its transport planes do not degrade airspace
safety during peacetime.

It could be argued (in jest) that military
pilots have parachutes and cannot sue the
government if an airplane malfunctions, so
the software levels for the systems can be
lowered. In practice, the software quality is
taken seriously, but not all of the objectives
of DO-178B are applicable in the DoD
setting. The regulations, policies, and pro-
cedures within the FAA have evolved to
encompass the DO-178B document.
Certification liaison procedures are part of
the approval process documented in DO-
178B. An airborne system development
and certification project is encouraged to
form a relationship with an Aircraft

Certification Office of the FAA very early
in the life cycle of the project. Throughout
the project lifetime, FAA personnel and/or
designated engineering representatives
(DERs) oversee all steps through the proj-
ect phases. DERs are engineers who have
been accepted through an approval process
to act on behalf of the FAA. These engi-
neers may provide guidance to the devel-
opers and have the authority to approve
the materials developed for certification.

This certification liaison process is still
to be developed within the DoD. On mil-
itary projects, the contractual and
approval processes and adherence to mili-
tary standards have been used to measure a
project. The DoD approach has been to
contract with a supplier to develop a sys-
tem subject to the provisions of an agreed
contract. The FAA aircraft certification
approach is much more open-ended. It
allows applicants to spend their money
seeking certification approval from the
FAA.

The DO-178B guidance document
lists objectives that must be satisfied, but it
does not prescribe how. Through the certi-
fication liaison and DER review/approval
process, the process plans should be devel-
oped and agreed upon. As long as certifi-
cation materials are produced according to
the documented processes, they should be
acceptable during the final audits before
approval.

Ground-Based Systems
The ground-based community (CNS/
ATM) faces a similar challenge to the
DoD as both funding and approval are
bestowed from the same organization.

The Air Traffic Management systems
have growth challenges. Many of the con-
trol centers use systems that are becoming
obsolete, while at the same time air traffic
continues to increase. The projected
growth is 6 percent annually in Europe
and 4 percent in the United States. This
comes at a time when the capacity loading
is already very high.

The promise for the future is to
improve capacity and safety through the
introduction of free flight. Current tech-
nology allows commercial airplanes to fly
from one airport to another inside pre-
scribed corridors at prescribed heights.
This reduces the workload of air traffic
controllers and allows them to focus on
maintaining separation between aircraft.
The free-flight system will allow an aircraft
to choose its preferred climb from the
departure airport, its preferred path, and
its preferred descent to the arrival airport.
Clearly if each aircraft were to take this

approach independently, the result would
be chaotic and dangerous.

By disclosing its intended behavior, an
airplane may join the set of aircraft man-
aged by a ground-based system. There is
much data to be accumulated, shared, and
tracked to avoid possible conflicts. Static
information must be uploaded to the
plane describing the local terrain, airways,
and other airport information. Dynamic
information is uploaded as required
throughout the flight, including weather,
possible warnings, capacity constraints, and
special use airspace schedules (e.g., military
requirements). Given this information the
pilot can produce a flight plan that results
in a filed flight trajectory. This can be treat-
ed as an object, which will then be used by
ground-based systems.

During flight, the pilot may wish to
change the flight plans, but can only pro-
pose a change that must be approved by the
ground-based system before it can be
adopted. Furthermore, the actual trajectory
is recorded and transmitted by the aircraft,
so that the ground-based systems can track
it as an object. The accumulation of this
airspace data allows traffic density predic-
tions to be calculated, and dynamic route
structure objects to be produced [4].
These objects – produced, consumed and
manipulated by computers – may be mod-
eled and even implemented through some
Object Oriented Technology. There are
languages that support these concepts and
provide a direct way of manipulating them.
The implementation of the free-flight ini-
tiative has still not addressed such issues.
The FAA is evaluating the problems of
Object Oriented Technology.

Object Oriented Technology
There is pressure from industry to use
object oriented paradigms in the develop-

ment of safety critical software. The expec-
tation is that, as in other industry sectors,
such programming will lower the develop-
ment costs. There is some reluctance by
regulators to approve this type of program-
ming as it introduces concepts of informa-
tion hiding, polymorphism, and inheri-
tance. This makes the coupling between
code and data less obvious to an auditor. It
may invoke run-time support code that
creates and destroys these objects dynami-
cally, depending on the scope of the objects
during execution. The timing and resource
usage of such run-time programs make the
application less deterministic, complicating
the analysis and approval of such systems.
It is expected that ultimately some compro-
mise will be reached and a subset of the
object oriented programming paradigm
will be adopted, thereby satisfying the con-
cerns of determinism and providing the
benefits of this new technology.

Conclusion
Although a number of challenges remain,
the industry is very focused on safe air
transportation. It is through tremendous
vigilance and determinism that the indus-
try has a good safety record. It can be
improved, and these on-going initiatives
will contribute to safer flight.u

References
1. DO-178B. Software Considerations in

Airborne Systems and Equipment
Certification. RTCA, Dec. 1, 1992.

2. AC 25-1309-1A, Advisory Circular,
Federal Aviation Administration.

3. DO-248A. Annual Report for
Clarification of DO-178B. RTCA,
Oct. 6, 1999. (DO-248B to be pub-
lished in 2001.)

4. National Airspace System Concepts of
Operations. RTCA, Dec. 13, 2000.

Resources
• For a complete listing of RTCA docu-

ments please see <www.rtca.org>.
• The FAA Flight Standards Service pro-

vides links to the regulatory Web sites
at the following Web site <www.faa.
gov/avr/afs/fars/far_idx.htm>.

About the Author
George Romanski has
specialized in the pro-
duction of software
development environ-
ments for the past 30
years. Romanski was

vice president of Technology at
EDS/Scicon, vice president of
Engineering at Alsys and director of
Safety Critical Software at Aonix.
Romanski also serves the safety-critical
industry as a member of the HRG
(Annex H Rapporteur Group) for the
Ada95 ISO standard addressing safety
and security issues as well as the
Requirements and Technical Concepts
for Aviation (RTCA)/SC-190 commit-
tee working to provide clarification of
DO-178B for avionics and ground-
based systems. Romanski is president
of Verocel, a company specializing in
the verification of software, and in the
development of tools that help in this
process.

Verocel, Inc.
234 Littleton Road, Suite 2A
Chelmsford, MA 01886
Phone: (978) 392-8860
E-mail: romanski@verocel.com

Avionics Modernization

18 CROSSTALK The Journal of Defense Software Engineering September 2001

September 2001 www.stsc.hill.af.mil 19

Avionics Modernization and the
C-130J Software Factory

Richard Conn, Stephen Traub, and Steven Chung
Lockheed Martin Aeronautics Company

The rollout of the first production C-130 aircraft, the C-130A, took place on March 10, 1955. Since then, more
than 2,100 C-130s have been built in dozens of variations and are flown by more than 60 nations worldwide.
They carry troops, vehicles, and armaments into battle. They drop paratroopers and supplies from the sky. They serve
as airborne and ground refuelers. They serve as flying hospitals, hurricane hunters, and provide emergency evacua-
tion and humanitarian relief. They perform airborne early warning and maritime surveillance. They’ve worn skis
in Antarctica and have helped recover space capsules. In May 1992, the 2,000th C-130, a C-130H, was delivered.
In September 1992, formal development of the C-130J began. Unlike its predecessors, the C-130J is a software
intensive system employing modern avionics that have made significant improvements in its performance. By March
2001, the C-130J flew with a complete compliment of mission computer software setting 50 world records. This
article presents insight into Lockheed Martin’s modernization of the C-130 airlifter family.

The C-130J looks like the earlier mod-
els, but it is really a brand new air-

plane with improved performance [1]. A
key difference is that the C-130J is a soft-
ware intensive system, where the earlier
models were largely mechanical aircraft.
Compared to the production C-130E,
here are the C-130J improvements:
• Maximum speed is 21 percent greater.
• Climbing time is 50 percent less.
• Cruising altitude is 40 percent higher.
• Range is 40 percent longer.

The introduction of software intensive
systems to the aircraft contributed signifi-
cantly to all of these improvements. By
June 1999, the C-130J had set 50 world
aeronautical records in two aircraft cate-
gories. Twenty-one records were set in
the Class C-1.N, Turboprop
category for speed over a
1,000 and 2,000 kilometer
closed course and for altitude with pay-
load. The other 29 records
were set in the Short
Takeoff and
Landing, Class N,
Turboprop category for 1,000 and 2,000
kilometer speed over a closed course, alti-
tude with payload, and time-to-climb to
3,000, 6,000, and 9,000 meters.

The C-130J also offers reduced man-
power requirements, lower operating
costs, lower support costs, and lower life-
cycle costs. Here are the three key distin-
guishing features of the C-130J:
• A new propulsion system featuring

four Full-Authority Digital Engine
Control Allison AE2100D3 engines
that generate 29 percent more thrust
while increasing fuel efficiency by 15
percent.

• Advanced avionics technology featur-

ing two holographic heads-up displays
and four multifunctional heads-down
Liquid Crystal Displays for aircraft
flight control, onboard systems moni-
toring and control, and navigation;
the displays are night vision imaging
system compatible.

• Two mission computers and two back-
up bus interface units provide infor-
mation flow and dual redundancy for
the onboard systems, including an
extensive integrated diagnostics sys-
tem.

The C-130J family started with
the 382J, a commercial aircraft that
was created specifically to achieve
Type Certification by the Federal
Aviation Administration (FAA). FAA
Type Certification was at Level A (the
highest level) of the DO-178B stan-
dard. This milestone established that
the C-130J family has complied with
the safety critical requirements of the
FAA should we later have a commer-
cial customer. Once FAA Type
Certification was achieved, the C-
130J was derived from the 382J,
establishing the military baseline soft-
ware for all future variants of the air-

craft. Each major version of software
for the C-130J is called a block, and
more than 96 percent of the 382J soft-
ware (Block 2) was reused in creating
the C-130J military baseline (Block
3). Ninety percent or more of the mil-
itary baseline software (Block 3) has
been reused so far for each variant of
the aircraft (Block 4):

• Block 1: basic airworthiness software.
• Block 2: safety-critical 382J aircraft

software.
• Block 3: military baseline of the C-

130J aircraft software.
• Block 4: custom variants of the C-

130J aircraft software.
• Block 5: Block Upgrade Program.
• Beyond Block 5: Hercules Improve-

ment Plan for soft-
ware/systems will

address future C-130J
upgrades as a continuous

process and product impr-ove-
ment activity and to address new

and changed customer needs.
Each block provided a foundation of

reusable software for the following blocks.
As of March 2000, our level of software
reuse typically exceeded 90 percent for
most of our products:
• Block 3 military software baseline - 96

percent reused from Block 2.
• Block 4 software for the Royal Air

Force - 95 percent reused from Block
3.

• Block 4 software for the Royal
Australian Air Force - 95 percent
reused from Block 3.

• Block 4 software for the United States
Air Force - 97 percent reused from
Block 3.

• Block 4 software for the Italian Air
Force - 90 percent reused from Block
3.

• Block 4 software for the Tanker vari-

“The C-130J also
offers reduced man-
power requirements,

lower operating
costs, lower support
costs, and lower life-

cycle costs.”

® Capability Maturity Model and CMM are registered
in the U.S. Patent and Trademark Office.

Avionics Modernization

20 CROSSTALK The Journal of Defense Software Engineering September 2001

ant - 90 percent reused from Block 3.
• Reuse on the C-27J aircraft, the C-5

Aircraft Modernization Program, and
proposed for the C-130 Aircraft
Modernization Program is yet to be
measured but is expected to be equally
high.

The first flight of the C-130J was April
1996 with a minimum of onboard soft-
ware. The C-130J flew with a complete
mission computer software suite (Block
5.3) in March 2001. The new software is
expected to be installed in the deployed
worldwide fleet of C-130J aircraft during a
one-year period beginning the summer of
2001 after Air Force qualification testing is
completed at the Air Force Flight Test
Center at Edwards Air Force Base.

Plans for reuse of C-130J software and
technology were laid out during the early
days of the software development effort.
The C-130J’s advanced avionics technolo-
gy and mission computer software are
already being reused in the C-27J aircraft,
the C-5 Aircraft Modernization Program,
and Lockheed Martin’s proposed Joint
Strike Fighter. C-130J avionics and soft-
ware reuse has also been proposed for the
Lockheed Martin’s C-130 Aircraft
Modernization Program that is intended
to incorporate newer technology into the
older C-130 aircraft in the fleet.

The C-130J Aircraft as a
Software Intensive System
The C-130J aircraft is an integrated col-
lection of software systems produced by
more than 25 suppliers. These systems,
which are developed in compliance with
the Lockheed Martin C-130J Tier I
Software Development Plan, are integrat-
ed with the devices on the aircraft such as
the engines, pneumatics, flight station dis-
plays, and the radar. A common Tier I
Software Development Plan helped to
enforce commonality between all the sup-
pliers, making integration of their prod-
ucts into the air vehicle easier.

The Lockheed Martin C-130J
Software Integrated Product Team devel-
ops the air vehicle and ground-based data
system software also in compliance with
the Tier I plan. Thus Lockheed put the
same commonality requirements on itself
as it did its suppliers. All suppliers, includ-
ing Lockheed, produced their own Tier II
Software Development Plans per direc-
tions in the Tier I Software Development
Plan.

The air vehicle software consists of the
Mission Computer (MC) Operational
Flight Program (OFP) and Bus Interface
Unit (BIU) OFP. The MC OFP manages

the overall software operations within the
C-130J aircraft and executes within a nor-
mal or backup mode. Both modes of the
MC OFP include the primary roles of
maintaining a central database, providing
executive control for all software func-
tions, providing interfaces to the MIL-
STD-1553 data buses, and performing
fault detection/fault isolation.

The BIU OFP operates in conjunction
with the MC OFP in performing the inte-
gration of the C-130J avionics. The BIU
OFP operates within a normal mode or an
MC backup mode. The primary roles of
the BIU OFP during normal mode opera-
tions are monitoring health, storing and
validating critical data, and providing
interfaces to non-MIL-STD-1553B data
sources. The primary roles of the BIU
OFP during MC backup mode operations
include acquiring the role as bus con-
troller and performing critical functions.

The ground-based data system soft-
ware includes the Ground Maintenance
System (GMS) and the Organizational
Maintenance System (OMS). The GMS is
a ground-based computer system that pro-
vides a central database for maintaining
line-replaceable unit (LRU) configuration
information and archived aircraft history
for each tail number in the C-130J fleet or
squadron. The GMS processes the main-
tenance-related data recorded to on-board
removable memory modules on the C-
130J aircraft.

The GMS provides an automated or
manual flight crew maintenance debrief
function and reads data stored on the
removable memory module. The GMS
validates the downloaded data, runs auto-
matic fault isolation routines, calculates
health and usage parameters, and gener-
ates maintenance work orders as required.
The system processes structural and
engine data to monitor component life
and supports configuration control and
status reporting of the air vehicle. The
GMS maintains a variety of printed
reports to support aircraft maintenance.
The GMS is also hosted on the Portable
Maintenance Aid, which is loose equip-
ment for each C-130J. This capability is
provided to support the need to forward
deploy the aircraft for operations away
from its home base.

The OMS provides the user interface
between the maintainer and the C-130J
aircraft systems for performing organiza-
tional level maintenance on the aircraft.
The OMS supports the maintainers by
accessing electronic technical orders, trou-
bleshooting aircraft failures, evaluating
status of aircraft systems, checking config-
uration of aircraft systems, and uploading

and downloading files to and from the air-
craft systems. The GMS interfaces with
the OMS for maintenance work order
processing, status reporting of mainte-
nance actions performed, and recording of
diagnostic data during ground mainte-
nance.

The Software Factory
In the culture of our aircraft manufactur-
ing facility, software is a part on the air-
craft, tracked just like the engines, pneu-
matic systems, and radar systems. The C-
130J Software Integrated Product Team
operates a software factory that produces
the air vehicle and ground-based data sys-
tem software parts and approves the soft-
ware parts for all computerized devices on
the aircraft. The air vehicle software parts
are written in Ada (250,000 lines of code),
and the ground-based data system soft-
ware parts are written in C++ and a fourth
generation language (400,000 lines of
code total) for each aircraft. Each software
part has a part number, a set of associated
drawings, and an assembly (such as a
removable memory module). The draw-
ings associated with each software part
include the following:
• Software Item Drawings assign a

unique part number to each computer
software configuration item that is 1)
installed on the aircraft, 2) used to cre-
ate or prepare a part for aircraft instal-
lation, or 3) used to install or transfer
a software item into an aircraft part.
The notes on each Software Item
Drawing describe 1) the host hardware
part number, 2) the image file names
and software version identities or a ref-
erence to the document containing
specific software configuration infor-
mation (i.e. version description docu-
ment), and 3) the software-to-software
compatibility dependencies.

• Software Assembly Drawings are pro-
duced for each software assembly
(integrated collection of software
items). A Software Assembly Drawing
describes 1) a software assembly used
in the production of a deliverable part,
or 2) a software assembly delivered to
a customer. Software Assembly
Drawings assign a unique part number
to each release of each software assem-
bly. The parts list in the Software
Assembly Drawing describes the soft-
ware items (by part number and loca-
tion code) contained on the assembly
and the specific media (i.e., 3.5-inch
diskette, 4mm tape, etc.) of which the
assembly is made. The notes on the
Software Assembly Drawing describe

September 2001 www.stsc.hill.af.mil 21

Avionics Modernization and the C-130J Software Factory

1) the configuration of any vendor-
supplied software items (i.e., reference
to Vendor’s Version Description
Document), 2) the specific software
assembly instructions used to create
the software assembly, and 3) the con-
tents of the label placed on the com-
pleted software assembly.

• Software Assembly Instruction Draw-
ings are produced for each deliverable
software assembly. The Software
Assembly Instruction Drawing de-
scribes the required hardware equip-
ment, software environment, person-
nel, access privileges, and detailed pro-
cedures necessary to produce the soft-
ware assembly.

• Software Installation Instruction
Drawings are produced for each soft-
ware item installed into a deliverable
part. The Software Installation
Instruction Drawing describes the
required hardware equipment, soft-
ware environment, personnel, access
privileges, and detailed procedures
necessary to install the software
item(s) into the host hardware part.

• Software Index Drawings facilitate the
identification of customer deliverable
software on each aircraft model, thus
allowing the software design organiza-
tion to control interim software releas-
es to production aircraft without
changing the master index for produc-
tion software releases that are not
delivered to a customer.

• Software Control Drawings are pro-
duced for each C-130J customer. The
Software Control Drawing details the
software and hardware combinations
delivered to each customer. The body
of the Software Control Drawing con-
tains the following information for
each deliverable software item: 1) find
number, 2) software description, 3)
identification of the software manu-
facturer, 4) software part number, 5)
software version identity, 6) the air-
craft model, version, serialization
usage of the software/hardware combi-
nation, 7) note references, 8) hardware
description, 9) identification of the
hardware manufacturer, and 10) the
host hardware part number. Notes in
the Software Control Drawing
describe: 1) which software items are
loadable in the field and 2) any soft-
ware compatibility/usage limitations.
The people who work in the C-130J

Software Factory are collectively called
knowledge workers, and they serve in
many distinct roles such as software prod-
uct managers, software requirements engi-
neers, software development engineers,

software test engineers, software process
engineers, software quality assurance spe-
cialists, and documentation specialists.
These knowledge workers are tied togeth-
er through a digital nervous system
(DNS), a term coined by Bill Gates of
Microsoft [2]:

“A DNS comprises the digital
processes that closely link every
aspect of a company’s thoughts and
actions. Basic operations such as
finance and production, plus feed-
back from customers, are electron-
ically accessible to a company’s
knowledge workers, who use digi-
tal tools to quickly adapt and
respond. The immediate availabili-
ty of accurate information changes
strategic thinking from a separate,
stand-alone activity to an ongoing
process integrated with regular
business activities.”

Reuse
Software reuse has been at the heart of the
C-130J Software Factory since develop-
ment of the C-130J aircraft began in
1992. The program started with domain
analysis and engineering, looking at what
could be reused from other programs,
defining the domain of the C-130J, and
creating reusable assets that have been
exploited throughout the program. The
cost of developing air vehicle and ground-
based data system software is the primary
reason for Lockheed’s aggressive efforts to
achieve real, effective reuse. Reuse has sig-
nificantly lowered the life-cycle cost and
program risk.

Many products of the C-130J
Software Factory were designed from the
beginning to be reusable:
• Template-Based Design: Six domain-

specific design patterns were originally
created to serve as class definitions for
all device interfaces to the MC OFP
and the BIU OFP. Since 1992, three
more design patterns were created to
address new technology transition,
bringing the total to nine design pat-
terns. Courseware was prepared to
document these design patterns and
teach newcomers how to use the pat-
terns. The productivity gains,
improved reliability, and reduced test-
ing overhead provided by applying
template-based design were observed
throughout the development of the
software.

• Source Code: For many device inter-
faces, source code used for other device
interfaces could be reused with very

minor modification. In addition,
source code from previous blocks
could be reused extensively on later
blocks (note the reuse figures between
Blocks 2 and 3 and Blocks 3 and 4, see
page 19).

• Test Scripts: Due to the definition of
the classes of device interfaces, test
scripts could also be reused.
Requirements-based testing also
helped by supporting automated gen-
eration of test cases directly from the
requirements specifications.

• Documentation: Delivered and inter-
nal documentation was designed to be
reusable, facilitating its production
from one software build to the next.

• Software Development Domain
Specific Kits (DSKs): Commercially-
available DSKs, such as Microsoft
Visual Studio .NET and Microsoft
Visual Basic for Applications, greatly
enhance productivity. We also employ
homegrown DSKs, such as our Data
Collection System Version 3, which is
a DSK designed to build data collec-
tion applications.

• Common Software Development
Tools: Our Environment and Tools
Working Group establishes a set of
common software development tools,
such as Rational APEX and Cadre
Teamwork for use on several Lockheed
Martin programs. We save cost in
terms of both purchase price and train-
ing, and we gain by having more read-
ily interchangeable personnel. Reuse is
also enhanced in that tool-specific
conversions are reduced or eliminated
should an asset produced by one pro-
gram be adopted by another.

• Domain Knowledge: Knowledge cap-
tured during the early domain analysis
and engineering activities was stored in
courseware, reusable as a teaching
instrument throughout the life of the
program.

Challenges
The C-130J aircraft denotes a cultural
change in a significant part of a major cor-
poration from producing largely mechan-
ical aircraft to producing software inten-
sive aircraft. Such a change takes time for
the culture to adapt, and there are many
challenges that both the management and
technical communities within that culture
must face. These are the challenges faced
by the C-130J Software Integrated
Product Team:
• Building safety critical, high integrity

[3] software for an aircraft with corpo-
rate funding (the development of the

Avionics Modernization

22 CROSSTALK The Journal of Defense Software Engineering September 2001

C-130J was done without funding
from external sources, such as the
United States government), the corpo-
rate investment and risk were high.

• Reducing risk and life-cycle cost for a
software intensive system with a 30-
year life span by achieving effective
software reuse.

• Designing a software intensive system
that is adaptable to changing technol-
ogy during a 30-year life span.

• Meeting the requirements of FAA
Type Certification.

• Controlling changes and software ver-
sions in light of thousands of require-
ments against multiple baselines for
multiple customers, and creating dif-
ferent builds for different customers
concurrently – satisfying the needs of a
diverse group of customers, each with
their own unique requirements during
a 30-year life span.

• Achieving Capability Maturity
Model® Level 3 and ISO 9001 certifi-
cations and continuing the investment
needed to maintain these certifica-
tions.
From a broad perspective, the chal-

lenges may be grouped into four areas:
software reuse, process, certification (for
CMM Level 3, ISO 9001, and the FAA),
and culture. Within the domain of our
company (aircraft development and man-
ufacturing), these challenges were
addressed from the point of view of the
pre-software intensive culture that was
already in place:
• Software reuse was one of the easier

challenges to address. The concept of
line replaceable units (LRUs) was
already in management’s minds from a
hardware perspective, so adding soft-
ware parts as LRUs was not a signifi-
cant leap. Neither was viewing those
software parts as complex parts con-
taining smaller component parts.
Domain engineering was done at the
beginning of the program, at a time
when the development laboratories
were not yet ready and the systems
engineers were engaged in design and
simulation. Ideas were also picked up

from other existing aircraft programs,
adding credibility to our domain engi-
neering effort.

• Introducing a software process orienta-
tion was also an easier challenge to
address. Management was already
aware of manufacturing process con-
cepts, so software development process
concepts were not a significant leap in
the early stages. A common Software
Engineering Process Group was readi-
ly established to share ideas and infra-
structure between the various software
development Integrated Product
Teams, such as the C-130J, F-22, C-5
AMP, and C-27J.

The primary obstacle to our
process definition efforts arose when
management implemented a lean ini-
tiative to reduce waste in both the
hardware and software processes. In
the efforts to completely document the
processes, it became evident how
expensive a complete process descrip-
tion would be to produce. In describ-
ing our software development process-
es down to the level of following the
trail of paper and electronic data
between people’s desks, the C-130J
Software Integrated Product Team
alone ended up with 114 distinct
processes in a hierarchy that was three
levels deep.

This collection of process
descriptions was a small part of the
overall detailed process description for
the development and manufacturing
of the entire aircraft, which is current-
ly incomplete and estimated to be
between 3,000 and 5,000 distinct
processes. The effort to create the
detailed process description for the
hardware side is continuing as we are
moving to CMMI adoption.

• Certification activities were more chal-
lenging than software reuse and
process. Our lean effort described in
the previous bullet was a significant
aid in our CMM Level 3 certification
activities, and applying web technolo-
gies to describe our processes allowed
us to present this information from the

point of view of a CMM assessor,
organized by Key Process Area and
Key Practice. The introduction of
automated data collection during the
last three years has made it much easi-
er to produce the evidence demanded
by the CMM assessors, but gathering
more than 300 artifacts for a CMM
assessment is still a daunting task. The
challenge of FAA Type Certification
was similar to CMM Level 3 certifica-
tion, and the ISO 9001 certification
challenges fell nicely into place as our
CMM Level 3 certification challenges
were addressed.

• The cultural shift required by manage-
ment to understand the issues and cul-
ture of the software engineers was our
greatest challenge. Management
expectations were originally high that
software engineers could possess the
same domain knowledge as systems
engineers, and this was simply not the
case. The mindset of someone with a
master’s degree in mechanical or elec-
trical engineering, especially if that
degree was granted more than 10 years
ago, is fundamentally different from
the mindset of a contemporary soft-
ware engineer.

Attempts were made to have sys-
tems engineers perform software engi-
neering work – the success of these
attempts was mixed. Over time, sys-
tems engineers and software engineers
gradually came to understand each
other’s mindsets, but occasional per-
sonnel turnover disrupted this under-
standing; we found a continual need
to reeducate engineers on both sides.

Likewise, management’s accept-
ance of software engineering concepts
has been gradual, again requiring reed-
ucation with personnel turnovers.
After a decade, the three groups –
management, systems engineering,
and software engineering – still do not
completely accept each other’s mind-
sets. We expect this cultural difference
to continue for some time to come.
The following statistics are noted in

the more than 5 million source lines of
code delivered to date: The C-130J soft-
ware has been built for a 30-year life span.
A lot can change in terms of the demands
placed on the C-130J aircraft and its mis-
sion during these many years. Incorpor-
ation of a Global Air Traffic Management
system and a comprehensive software
maintenance plan are two of the efforts
currently underway, and software produc-
tion is continuing with a projection of
more than 9 million lines of code deliv-
ered by the end of 2001. New missions,

Statistic Tracked 1998 1999 2000
Number of changes processed 2,430 2,350 2,115

Number of engineering software builds 240 300 330

Number of software qualification tests 79 85 81

Number of pages of documentation produced 472,500 564,200 531,010

Number of software tests executed 700,450 798,683 751,700

Test success percentage 98.27% 98.75% 99.00%

Table 1: Modern Avionics in the C-130J has Contributed to its Improved Performance

September 2001 www.stsc.hill.af.mil 23

Avionics Modernization and the C-130J Software Factory

About the Authors
Richard L. Conn has
more than 20 years
experience in software
engineering and proj-
ect management.
Conn is currently the

software process engineer for the C-
130J Airlifter at Lockheed Martin
Aeronautics Company. He graduated
with bachelor’s and master’s degrees in
computer science from Rose-Hulman
Institute of Technology in 1976 and
the University of Illinois in 1978,
respectively. Conn was an Army offi-
cer from 1978-82 at the Army’s
Satellite Communications Agency and
the Air Force Institute of Technology,
where he taught computer science.
Conn was a member of the Federal
Advisory Board for Ada and a distin-
guished reviewer of the Department of
Defense’s Software Reuse Technology
Road Map.

Lockheed Martin Aeronautics Company
86 South Cobb Drive
Dept. 70-D6, Mail Zone 0674
Marietta, GA 30063-0674
Phone: (770) 494-1670
Fax: (770) 494-1345
E-mail: richard.l.conn@lmco.com

Stephen M. Traub has
more than 20 years
experience in software
engineering and proj-
ect management.
Traub is currently the

software designated engineering rep-
resentative at Lockheed Martin
Aeronautics Company on behalf of
the Federal Aviation Administration.
Graduating from Elon University in
North Carolina in 1984, Traub
worked for Unisys from 1980-1984 as
the principal software engineer for
Weapons Assignment tasks for several
Navy shipboard systems. He has been
at Lockheed Martin since 1984, first
working on the C-5B aircraft, and
then working on the C-130J in the
roles of Mission Computer Software
Development lead, software product
manager, and Software Integrated
Product Team lead.

Lockheed Martin Aeronautics Company
86 South Cobb Drive
Dept. 70-D6, Mail Zone 0674
Marietta, GA 30063-0674
Phone: (770) 494-1670
Fax: (770) 494-1345
E-mail: stephen.m.traub@lmco.com

Steven J. Chung has
18 years of experience
in software engineer-
ing and project man-
agement. Chung is
currently the Software

Integrated Product Team lead for the
C-130J Airlifter at Lockheed Martin
Aeronautics Company. Graduating
from the University of South Florida
in 1983, he worked for Honeywell
Space Systems as a software engineer
on the Space Shuttle and the
Advanced Space Communications
Technology programs and E-Systems
on a real-time communications net-
work. Chung came to the C-130J
program at Lockheed in 1996 as a
staff engineer and was promoted to
Software Integrated Product Team
lead in 2001.

Lockheed Martin Aeronautics Company
86 South Cobb Drive
Dept. 70-D6, Mail Zone 0674
Marietta, GA 30063-0674
Phone: (770) 494-1670
Fax: (770) 494-1345
E-mail: steven.j.chung@lmco.com

different requirements from new cus-
tomers, changing requirements from exist-
ing customers, and the introduction of
even newer technology to the aircraft are
the key factors causing this software
growth. Continual process improvement,
particularly through the C-130J Digital
Nervous System, is underway, and increas-
ing levels of capability maturity, through
CMM Level 4 to Level 5, are planned.

Lessons Learned
Many lessons were learned during the last
decade of the C-130J software develop-
ment. Here are some key lessons:
• Objectives and requirements must be

nailed down specifically from the
beginning. It is never possible to get
the requirements right the first time if
the problem is of any significant
degree of complexity. Requirements
traceability and requirements grading
are required. Conduct software prod-
uct evaluations on requirements as
intensely as you would review the
code.

• You can never have too many simula-
tions or laboratory resources.

• Software engineering capability matu-
rity is not enough by itself to improve
the quality of an integrated system like
an aircraft. Systems engineering and
management capability maturity are
also required.

• Driving a product by schedule is
unavoidable. Be prepared to deal with
it and be prepared to adapt when the
schedule slips. Define all your process-
es and measure their performance.
Remember that the last process in the
sequence is not necessarily the source
of the problem when a schedule slips.

• Automate testing as much as possible.
Always plan on running a test again.
Always base test cases on requirements,
trace test cases to those requirements,
and employ automated tools to build
your test cases from your requirements
specifications when possible.

• Successful reuse requires a significant
up-front cost and an effective, com-
pelling producer/consumer model that

makes it economically viable.
Management must see reuse values
and accept the costs as well as the ben-
efits.

• Measurement comes with capability
maturity, but no measurements can
replace the in-depth, detailed knowl-
edge of the people on the development
line. Management must journey to the
(software) factory floor before they can
really understand the issues.u

References
1. Lockheed Martin. C-130J Hercules

Web site, <www.lmasc.com/c-130j/
index.htm>.

2. Bill Gates. Business @ The Speed of
Thought – Using a Digital Nervous
System, Warner Books, 1999,
<www.speed-of-thought.com>.

3. Sutton, James (Lockheed Martin), and
Carre, B.A. (Praxis Critical Systems).
Achieving High Integrity at Low Cost:
A Constructive Approach, ERA 1995
Conference, London, United King-
dom.

24 CROSSTALK The Journal of Defense Software Engineering September 2001

WEB SITES

Software Technology Support Center
www.stsc.hill.af.mil
The Software Technology Support Center is the command
focus for proactive application of software technology in
weapon, command and control, intelligence and mission-crit-
ical systems. It helps organizations identify, evaluate, and
adopt technologies that improve software product quality,
production efficiency, and predictability.

The Defense Advanced Research Projects Agency
www.arpa.mil
The Defense Advanced Research Projects Agency (DARPA)
is the central research and development organization for the
Department of Defense (DoD). It manages and directs
selected basic and applied research and development projects
for DoD, and pursues research and technology where risk
and payoff are both very high, and success may provide dra-
matic advances for traditional military roles and missions.

Avionics Engineering Center
webeecs.ent.ohiou.edu/avn/overview.htm
The Avionics Engineering Center (AEC) at Ohio University
is a unique research organization specializing in aviation
research. For more than 37 years, AEC has been active in
communications, navigation and landing systems, and sur-
veillance research for the Federal Aviation Administration,
NASA, and Department of Defense. The center specializes in
the research, development, and evaluation of electronic nav-
igational, communication, and surveillance systems. It also
undertakes mathematical modeling and the actual design,
development, implementation, testing, and improvement of
various electronic systems for aviation.

Federation of American Scientists
www.fas.org
The Federation of American Scientists conducts analysis and
advocacy on science, technology, and public policy, including
national security, nuclear weapons, arms sales, biological haz-
ards, secrecy, education technology, information technology,
energy, and the environment. FAS is a privately-funded non-
profit policy organization whose Board of Sponsors includes
58 of America’s Nobel laureates in the sciences.

National Aeronautics and Space Administration’s
Aerospace Technology Enterprise
www.aero-space.nasa.gov
National Aeronautics and Space Administration’s Aerospace
Technology Enterprise Web site outlines its goals and objec-
tives to providing direction for its Enterprise programs. This
includes new technologies, systems, and models for air and
space transportation operations. The agency’s goals are to rev-
olutionize aviation, advance space transportation, and pio-
neer technology innovation and commercial technology.

American Institute of Aeronautics and Astronautics
www.aiaa.org
Today, with more than 31,000 members, the American
Institute of Aeronautics and Astronautics (AIAA) is the
world’s largest professional society devoted to the progress of
engineering and science in aviation, space, and defense. The
Institute continues to be the principal voice, information
resource, and publisher for aerospace engineers, scientists,
managers, policy makers, students and educators.

Air Force Technology
www.airforce-technology.com
The Air Force Technology Web site provides international cov-
erage of bombers, fighters, surveillance and patrol aircraft,
training aircraft, attack, support, and naval helicopters. It
maintains a listing of Military Aerospace Products and
Services, an alphabetical listing of Military Aerospace
Contractors and Suppliers, and Defense Industry Exhibitions,
Conferences, and Events.

September 2001 www.stsc.hill.af.mil 25

This article discusses a set of integrat-
ed, performance measurement tech-

niques that increased Northrop
Grumman Corporation’s software suc-
cess. These techniques can enable excel-
lent project management in the following
ways:
• Defining effective metrics for sizing

the project and measuring progress.
• Using Earned Value Management

(EVM) as the key, integrating tool for
control.

• Defining quality goals in terms of
project milestones and metrics.

• Planning for incremental releases and
rework.

• Revising the plan for deferred func-
tionality and requirements volatility.

• Focusing on requirements, not
defects, during rework.

• Using testable requirements as an
overarching progress indicator.

These techniques are based on the follow-
ing industry and professional standards:
• CMU/SEI-92-TR-19, Software Mea-

surement of Department of Defense
Systems.

• “A Guide to the Project Management
Body of Knowledge (PMBOK),”
Project Management Institute,
December 2000.

• Practical Software and Systems Mea-
surement: A Foundation for Objective
Project Management (PSM) [1].

• (ANSI/EIA)-748-98, EVM Systems
Standard (Standard), American Na-
tional Standards Institute/ Electronics
Industry Association.
The techniques evolved from lessons

learned and continuous process improve-
ment during development of embedded
weapons system software for the U.S. Air
Force B-2 Stealth Bomber and other pro-
grams at Northrop Grumman Corpora-
tion’s Air Combat Systems (ACS), a busi-
ness area of the company’s Integrated
Systems Sector. The ACS software organ-
ization achieved Level 4 using the
Software Engineering Institute’s (SEI)
Capability Maturity Model® (CMM) in
1998 and has a goal of achieving Level 5
in 2001.

The essence of EVM, per the
Standard, is that at some level of detail
appropriate for the degree of technical,
schedule, and cost risk or uncertainty
associated with the program, a target
value (i.e., budget) is established for each
scheduled element of work. As these ele-
ments of work are completed, their target
values are earned. As such, work progress
is quantified and the earned value
becomes a metric against which to meas-

ure both what was spent to perform the
work and what was scheduled to have
been accomplished. The combination of
advance planning, baseline maintenance,
and earned value analysis yields earlier
and better visibility into program per-
formance than is provided by non-inte-
grated methods of planning and control.

Improvements in
Opportunities
Despite being at SEI CMM Level 3 since
1995 and having a validated EVM sys-
tem, the software development organiza-
tion was not consistently achieving its
objectives and customer expectations.
More importantly, the management con-
trol system was failing to accurately
report project performance. These issues
were identified and disclosed in the qual-
ity audits of the EVM organization. In

1996, an audit defined the following
issues and goals:

“The process for managing soft-
ware projects with regard to base-
line planning, determination of
schedule milestones, and earned
value could be improved to pro-
vide better milestones and metrics
for interim performance measure-
ment during development, testing,
and rework … actual progress
against the total technical require-
ments is not displayed on a sched-
ule in relation to a plan, a project-
ed or actual software release on a
schedule may not reflect comple-
tion of all effort originally
planned, and earned value does
not necessarily represent the per-
centage of completion of the total
statement of work.

It is recommended that the
Software Engineering Process
Group (SEPG) be empowered to
develop a better process for meas-
uring and reporting progress on
software projects. It is recom-
mended that the following topics
be addressed:
• Criteria for determining which

planned requirements are sig-
nificant for tracking progress.

• Criteria for milestone defini-
tions.

• Earned value and internal re-
planning for deferred require-
ments or functionality.

• Earned value and internal re-
planning for revised require-
ments.

• Planning and measuring pro-
gress during rework phase.”

Existing Measure
Shortcomings
A team was formed to review existing
measures and processes. It found that,
although they adhered to company poli-
cies and relevant quality standards,
including the SEI core set of software
measures (size, effort, schedule, and qual-

Practical Software Measurement,
Performance-Based Earned Value

Paul Solomon
Northrop Grumman Corporation

Successful software project management can be achieved by focusing on requirements, selecting the most effective soft-
ware metrics, and using Earned Value Management. Best practices and lessons learned by the Northrop Grumman
team in developing weapons system software for the B-2 Stealth Bomber are discussed.

“The essence of EVM
... is that at some level
of detail appropriate

for the degree of
technical, schedule,

and cost risk or
uncertainty associated
with the program, a

target value ... is
established.”

Best Practices

Best Practices

26 CROSSTALK The Journal of Defense Software Engineering September 2001

ity), the measures used were not effective
for technical progress.

The first finding was that during the
initial coding phase, the most common
sizing measure was source lines of code
(SLOC). SLOC was utilized as a sizing
measure as the basis for budgets and for
earned value using a percent of comple-
tion method. However, the analysis con-
cluded that there is usually a significant
error in estimating SLOC. Consequently,
any progress metric based on SLOC,
including EV, was highly volatile. For
example, all projects reviewed had soft-
ware components that experienced multi-
ple, significant increases in estimated
SLOC. When the new estimate was first
used as a denominator for percent com-
plete, then negative progress and earned
value were reported.

Second, while the schedule metrics
and procedure discussed completion mile-
stones, the milestone definitions and
completion criteria lacked quantifiable
objectives. Normally, an incremental
build is released despite not incorporating
all the planned functional requirements.
It had been practice to display a complet-
ed milestone on the schedule and to take
all of the earned value that was budgeted
for that milestone without disclosing that
not all the base-lined requirements or
functionality had been achieved.

Third, the process review disclosed a
deficiency regarding product quality
measures such as defects found and
closed. A manager normally uses a burn-
down curve of defects or trouble reports
and tends to focus on eliminating defects
rather than attaining requirements.
Earned value had been based on the burn-
down plan. However, because the pres-
ence of defects indicates the failure to
meet requirements, measures of defects
are not the best measures of progress.
Also, any measure of progress based on
defects is unstable because the number of
defects discovered during reviews and
testing is always different than planned,
and removal of one defect often results in
detection of new ones. There were no
metrics to track progress toward meeting
all system requirements. As a result,
progress measured as the ratio of defects
removed to total estimated defects was a
more volatile measure than the percent of
SLOC completed. Also, there was no
budget to enable earned value for the
remaining work.

Fourth, the schedule and performance
measurement baseline had been predicat-
ed on a discrete number of software builds
but completion of the project often
required many additional builds.

However, earned value was taken as origi-
nally budgeted when builds were com-
pleted. As a result, there was no remaining
budget for the additional builds and the
cost performance reports overstated
schedule status.

Practical Software and
Systems Measurement
A good source of metrics is the Practical
Software and Systems Measurement
(PSM) guide. PSM provides project and
technical managers with the quantitative
information required to make informed
decisions that impact project cost, sched-
ule, and technical performance objectives.
PSM is applicable to the overall planning,
requirement analysis, design, implemen-
tation, and integration of systems and
software activities. It provides a process to
collect and analyze data at a level of detail
sufficient to identify and isolate problems.
This data includes estimates, plans,
changes to plans, and counts of actual
activities, products, and expenditures.
The unit level (as defined by the product
component structure or system architec-
ture) is the most commonly used level of
detail.

Resultant Process
Improvements
The set of process improvements had five
components:
• Developing the Performance Measure-

ment Baseline (PMB).
• Requirements decomposition and

traceability.
• Planning for defects and rework.
• Selection and use of software metrics.
• Performance-Based Earned Value.
• Revisions to plan for deferred func-

tionality.

Performance Measurement
Baseline
EVM begins with defining the project’s
product and management objectives.
These technical, schedule, and cost objec-
tives are transformed into a PMB sched-
ule and budget baseline (also commonly
called a Work Breakdown Structure). The
team developed standard templates for
the PMB. The templates ensured knowl-
edge transfer and inclusion of common
project components such as key schedule
constraints, subcontractor control mile-
stones, and systems engineering activities.

Requirements
During the requirements phase, high-level
requirements are defined and decom-

posed to the levels needed to govern the
design, implementation and integration,
and test phases. Establishing a time-
phased requirements baseline against
which progress can be consistently meas-
ured is the most important EVM step. It
drives the project sizing, the resource
forecast (budget), and the schedule. The
technical requirements also establish the
criteria for completing tasks. The output
of the requirements phase defines the cri-
teria or attributes for completing signifi-
cant milestones, or taking earned value in
all subsequent levels and stages of devel-
opment. Of equal importance are a disci-
plined requirements traceability process
and a requirements traceability data base.

To ensure the acceptance of the end
product and enable consistent perform-
ance measurement, allocated require-
ments should be testable and traced to
detailed specifications, software compo-
nents, and test specifications. Per PSM,
some requirements may not be testable
until late in the testing process, others are
not directly testable, and some may be
verified by inspection.

Dr. Peter Wilson, of Mosaic, Inc., dis-
cusses the utility of testable requirements
[2]. Per Dr. Wilson, a testable require-
ment is one that is precisely and unam-
biguously defined, and one for which
someone must be able to write a test case
that would validate whether or not the
requirement has or has not been imple-
mented correctly. The number of testable
requirements may be very different from
the number of test cases. There are a
number of reasons for this:
• A testable requirement may require

more than one test case to validate it.
• Some test cases may be designed to

validate more than one testable
requirement.

• Testable requirements appear to have
the granularity and flexibility to make
earned value a practical tool for soft-
ware developers.
To redirect management focus on

meeting requirements, a Systems Eng-
ineering (SE) process improvement team
rewrote the SE procedures. The new pro-
cedures mandated requirements traceabil-
ity and the use of technical performance
measures (TPM). Per the procedure,
“TPMs are used to plan and track key
technical parameters throughout a devel-
opment program,” and “to the maximum
extent practical, earned value, both
planned budget and earned value taken,
should be based on those TPMs that best
indicate progress towards meeting the
system requirements.” The procedure also
requires verification of the testability of

Practical Software Measurement, Performance–Based Earned Value

September 2001 www.stsc.hill.af.mil 27

requirements.
The time-phased plan for each project

phase and each build should include mile-
stones that objectively define the func-
tional content to be achieved at that
point. The milestones should be defined
in terms of incremental functionality,
both the number of testable requirements
and the functional capabilities to be
achieved. An incremental milestone is
normally defined as 100 percent of the
requirements needed to achieve a func-
tional capability. However, for earned
value purposes, it can also be targeted as a
lesser percentage. The functionality tar-
gets should be documented as part of the
criteria for completing the milestone and
taking objective earned value. The per-
centage target is normally related to the
targeted quality, as measured by defects.

Planning for Defects and Rework
In planning for incremental builds, the
Statement of Work for all builds subse-
quent to the first should include an esti-
mate for rework of requirements or code
to fix defects that were found in previous
builds but will be fixed in subsequent
builds. To ensure adequate budget and
period of performance, the planning
assumptions should include a planned
rate or number of defects to be found in
each build, and a plan to fix these defects
within the rework Statement Of Work of
each build. Furthermore, rework should
be planned in separate work packages.
Failure to establish a baseline plan for
rework and to accurately measure rework
progress caused many projects to get out
of control.

The team’s remedy was to change the
EVM procedure. The procedure requires
that rework is planned in separate work
packages from the initial development
effort and that objective metrics for
rework are used for earned value.

Selection and Use of Software
Metrics
For tracking progress against a plan using
EVM, the most effective measures are
those that address the issues, product size
and stability, and schedule and progress.
Three measurement categories are
mapped to these issues: functional size
and stability, work unit progress, and
incremental capability.

The specific measures to be discussed
are requirements, requirements status,
component status, test status, increment
content-components, and increment
content-functions.
Issue: Product Size and Stability.
(Category: Functional Size and Stability)

The requirements measure counts the
number of requirements in the system or
product specification. It also counts the
number of requirements that are added,
modified, or deleted and provides infor-
mation about the total number of
requirements and the risk due to growth
and/or volatility in requirements.

When incremental builds are
planned, this measure is also the basic
component of the measure, increment
content-function, as discussed below.
Issue: Schedule and Progress. (Category:
Work Unit Progress.) The recommended
measures for Work Unit Progress are
requirements status, component status,
test status, increment content-compo-
nents, and increment content-functions.
• Requirements Status: The require-

ments status measure counts the
number of requirements that have
been defined and allocated to soft-
ware components, allocated to test
cases, and successfully tested. When
used to measure test status, the meas-
ure is used to evaluate whether the
required functionality has been suc-
cessfully demonstrated against the
specified requirements. Some require-
ments may not be testable until late in
the testing process. Others are not
directly testable or may be verified by
inspection.

This measure is ideal for EVM
because it is objective. The budget
allocated to requirements may be
equally distributed or weighted
according to the estimated effort for
those requirements. Consequently,
requirements-based EVM, as the inte-
grating tool for technical, schedule,
and cost objectives, provides
Northrop Grumman’s best measure of
project status, progress, and remain-
ing effort. Since implementing
requirements-based EVM, program
progress has never been significantly
overstated and the management con-
trol system has provided more reliable
data and earlier warning of program
problems (see Table 1, page 28).
Tables 1 through 5 (see page 28) are

abstracts of measures that are fully
described in PSM. Per PSM, there are
three aggregation structures to accu-
mulate measurement data. Tables 1
and 2 are component-based and func-
tional-based aggregation structures.

Component-based aggregation
structures are derived from the rela-
tionship of the system components
within a particular architecture or
design. For projects that implement
an incremental development

approach, lower-level components
(such as units and configuration
items) are usually mapped to the
incremental delivery products as part
of the aggregation structure.

Functional-based aggregation struc-
tures define the functional decompo-
sition of system requirements. They
are often mapped to the system
design components. If they are
mapped to design components, then
measures of the requirements (such as
the number of requirements tested)
can be aggregated and evaluated for a
particular function.

The data collection level describes
the lowest level at which data is col-
lected to allow problems to be isolat-
ed and understood. It can then be
rolled up using the aggregation struc-
ture.

• Component Status: The component
status measure counts the number of
software components that complete a
specific activity. An increase in the
planned number of components may
indicate unplanned growth and cost
impacts. However, the number of
components, although not constant,
is the perpetual denominator for
measuring percent complete.

In the initial design phase for
EVM, a unit of measurement should
be selected based on the design stan-
dards and practices employed for each
build. This may be modules, pack-
ages, pages, or another appropriate
component.

Completion of components during
the design and implementation phas-
es should be based on component
reviews, inspections, walkthroughs or
specified tests, as appropriate (see
Table 2 page 28).

• Test Status: The test status measures
count the number of tests attempted,
executed to completion, or completed
successfully. It can be applied for each
unique test sequence, such as compo-
nent, integration, system, and regres-
sion test and is a good basis for earned
value (see Table 3, page 28).

Issue: Schedule and Progress. (Category:
Incremental Capability.) Incremental
capability measures count the cumulative
functions or product components with a
product at a given time. An increment is
a predefined group of work units, func-
tions, or product components delivered
to the next phase of development. These
measures determine whether the capabil-
ity is being developed as scheduled or
delayed to future deliveries. There are two
measures of increment content.

Best Practices

28 CROSSTALK The Journal of Defense Software Engineering September 2001

• Increment Content-Components: The
increment content-components meas-
ure identifies the components that are
included and assembled into incre-
ments. Increment content is often
deferred to preserve the scheduled
delivery date. When this occurs, it is

essential to quantify the deferred con-
tent in terms of earned value and to
annotate the schedule to indicate that
the true status and the expected com-
pletion date of the base-lined work
(see Table 4).

• Increment Content-Functions: The

increment content-functions measure
is preferred for schedule progress and
for earned value because it directly
maps to the number of functional
requirements. It requires a formal,
detailed list of functions and require-
ments by increment, as documented
in the Requirements Traceability data-
base (see Table 5).

The completion criteria for both incre-
ment measures are successful integration
and successful testing, as described in
Tables 4 and 5.

Performance-Based Earned Value
The recommended software metrics for
schedule and progress are also the basis
for performance-based earned value
(PBEV). PBEV is a lean, cost-effective
means of implementing EVM to mini-
mize administrative costs and to focus on
the big picture. It results in less work
packages to track, more emphasis on
objective measures of technical perform-
ance related to achieving requirements,
and less emphasis on tracking support
activities. PBEV has the following char-
acteristics:
• Emphasize key performance metrics

and project progress relative to plan
(schedule and budget), system
requirements, and TPMs that support
requirements.

• Maximize budget to key technical
activities.

• Measure products and product com-
ponents, not tasks and inch-stones.

• Use no EV for reviews, meetings, and
recurring reports.

• Manage costs, not schedule of support
tasks.

• Budget for support, from the level of
effort tasks can be allocated, to dis-
crete tasks to maximize focus on tech-
nical progress.

Plan for Deferred Functionality
To prevent the overstatement of progress
and the premature consumption of budg-
et, it is recommended that the increment
content-functions measure is the primary
basis for earned value during the design
and integration and test phases.

To illustrate how deferred functional-
ity should be quantified at the work pack-
age level, assume that a work package for
implementation of code has release of a
build as its completion milestone with a
budget of 500 hours. Also, assume the
build includes 100 testable requirements
that are budgeted to require five hours
each to implement. If the build was
released with 90 requirements integrated,

Issue: SCHEDULE AND PROGRESS Table 5
Aggregation Structure: FUNCTION
Category: INCREMENTAL CAPABILITY
Measure: INCREMENT CONTENT – FUNCTIONS
Typically Collected for Each: FUNCTION OR EQUIVALENT

DATA ITEM COMPLETION CRITERIA
• # of Functional Requirements
• # of Functional

Requirements Successfully
Implemented

• Successful Integration
• Successful Testing

Issue: SCHEDULE AND PROGRESS Table 4
Aggregation Structure: COMPONENT
Category: INCREMENTAL CAPABILITY
Measure: INCREMENT CONTENT – COMPONENTS
Typically Collected for Each: CONFIGURATION ITEM (CI) OR EQUIVALENT

DATA ITEM COMPLETION CRITERIA
• # of Components
• # of Components

Successfully Integrated

• Successful Integration
• Successful Testing

Tables 1-5: Abstracts of Measures Fully Described in PSM
Issue: SCHEDULE AND PROGRESS Table 1
Aggregation Structure: FUNCTION
Category: WORK UNIT PROGRESS
Measure: REQUIREMENTS STATUS
Typically Collected for Each: REQUIREMENTS SPECIFICATION

DATA ITEM COMPLETION CRITERIA
Requirements Traced to:
• Detailed

Specifications
• Software

Components
• Test Specifications
• Tested Successfully

• Completion of Specification Review
• Baselining of Specifications
• Baselining Requirements Traceability

Matrix
• Successful Completion of all Tests, in

Appropriate Test Sequence

Issue: SCHEDULE AND PROGRESS Table 2
Aggregation Structure: COMPONENT
Category: WORK UNIT PROGRESS
Measure: COMPONENT STATUS
Typically Collected for Each: CONFIGURATION ITEM (CI) OR EQUIVALENT

DATA ITEM COMPLETION CRITERIA
• Total # of Components
• # of Components Completed

Successfully by Activity:
• Preliminary Design
• Detailed Design
• Implementation
• Component Test
• CI Test

• Component Reviews, Inspections,
Walkthroughs

• Successful Completion of Specified Test
• Released to Configuration Management
• Resolution of Action Items

Issue: SCHEDULE AND PROGRESS Table 3
Aggregation Structure: SOFTWARE ACTIVITY
Category: WORK UNIT PROGRESS
Measure: TEST STATUS
Typically Collected for Each: CONFIGURATION ITEM

DATA ITEM COMPLETION CRITERIA
• Total # Test Cases
• # of Test Cases

Attempted
• # of Test Cases Passed

• Successful Completion of Each Test Case in
Appropriate Sequence

September 2001 www.stsc.hill.af.mil 29

Practical Software Measurement, Performance–Based Earned Value

then earned value would be 450 hours.
The event of releasing the build short of
its targeted functionality is cause to close
the work package and replan the remain-
ing work. In this case, transfer the
deferred requirements and the residual
budget of 50 hours to the work package
for the next planned build. Place the
budget in the first month of the receiving
work package to preserve the schedule
variance. If no planned builds remain,
establish them through the normal inter-
nal replan process by closing the last work
package and opening a new one for the
next build with the unused budget.

Process Improvement Ups
Customer Satisfaction
These practices have improved our man-
agement effectiveness and increased cus-
tomer satisfaction. The Air Force
Acquisition Newsletter cited our success as
follows:

“The B-2 Spirit Stealth Bomber
Program implemented several
innovative process improvements
using EVM. These include inte-
grating earned value with systems
engineering processes, defining
improved software engineering
metrics to support EVM, and
developing a leaner, more effective
methodology called performance-
based earned value (PBEV).

These changes paid off during
upgrades of the B-2 weapon sys-
tem. One of those upgrades was
the development of the Joint
Standoff Weapon/Generic Weap-
on Interface System (JSOW/
GWIS), a software intensive
effort. The new metrics helped to
make it a very successful program.
The PBEV methodology was used
to ensure that the warfighter
received the most functionality
from software development
efforts. On JSOW, we provided 85
percent more capability than orig-
inally planned, on schedule and
under budget [3].”

The most important business objec-
tives of a best practice are increased cor-
porate profit and customer satisfaction.
Evidence of achieving these objectives is
in the Air Force quarterly assessment
report of the B-2 software maintenance
contract. We received excellent award fee
ratings for the year ended April 2001 in
all categories: technical, program man-
agement, scheduling, and cost.

Conclusion
Using earned value to plan and manage
software projects can prevent expensive
failures. Earned value should be based on
testable requirements and selected soft-
ware measures that best underlay the plan
and progress to achieve all project objec-
tives. We are now revising our systems
engineering process to incorporate les-
sons learned and improved processes
from software development.u

References
1. Practical Software and Systems

Measurement: A Foundation for
Objective Project Management. U.S.
Department of Defense and U.S.
Army. October 2000, Version 4.0b,
available at <www.psmsc.com>.

2. P. B. Wilson. “Sizing Software with
Testable Requirements.” Journal of
Systems Development Management.
August 2000, reprint available at
<www.testablerequirements.com>.

3. “Aerospace Acquisition 2000.” Air
Force Acquisition Reform Newsletter.
Jan./Feb. 2000, Vol. 3, Number 1.

About the Author
Paul J. Solomon is the
director, Earned Value
Management Service
on the B-2 Stealth
Bomber program for
Northrop Grumman

Corporation’s Air Combat Systems, a
business area of the company’s
Integrated Systems Sector. He is on
the board of the National Defense
Industrial Association, Program
Management Systems Subcommittee
that authored ANSI/EIA-748. He
was a member of the team that
received the 1998 David Packard
Excellence in Acquisition Award. He
presented the concepts in this article
at the 2001 Software Technology
Conference and the 2001 SEPG
Conference in India. Solomon holds
MBA and BA degrees from
Dartmouth College and is a Project
Management Professional.

Northrop Grumman Corporation
3520 E. Ave. M, TD21/4B
Palmdale, CA 93550
Phone: (661) 540-0618
E-mail: solompa@mail.northgrum.com

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:_____________________________

RANK/GRADE:_____________________

POSITION/TITLE:___________________

ORGANIZATION:_____________________

ADDRESS:__________________________

BASE/CITY:________________________

STATE:_________ ZIP:________________

PHONE:(_____)_____________________

FAX:(_____)________________________

E-MAIL:________________@___________

CHECK BOX(ES) TO REQUEST BACK ISSUES:

JAN2000 c LESSONS LEARNED

FEB2000 c RISK MANAGEMENT

APR2000 c COST ESTIMATION

MAY2000 c THE F-22

JUN2000 c PSP & TSP

JAN2001 c MODELINGAND SIMULATION

FEB2001 c SOFTWAREMEASUREMENT

APR2001 c WEB-BASED APPS

MAY2001 c SOFTWARE ODYSSEY

JUL2001 c TESTING AND CM

C a l l f o r E x h i b i t o r s

• Endorsed by the Department of
Defense as the premier software
technology conference

• Interact with over 2,500 leaders and
decision makers in the Department
of Defense, Government, and
Industry

• 60% of Trade Show hours through-
out the conference week dedicated
to exhibits only

• Informal Social held in exhibit hall

• All conference breaks served in the
exhibit hall during open show
hours

• 150-word organization description
and logo listed on conference
Web site

• Web site links

• Exhibit track presentations

• Literature kiosks located by show
entrance

• One-day trade show guest passes
for your distribution

• Pre-registered and post-conference
participant lists

• Two evenings available for hosting
hospitality events - prime hotel
space available

• Discounted conference
registration for badged exhibitors

• Full-service media room on-site

“[STC] continues to bring in top quality attendees
involved in IT purchasing decisions”

— STC 2001 Exhibitor

Software Technology Conference • 28 April - 2 May 2002

M A R K E T I N G A N D
N E T W O R K I N G

O P P O R T U N I T I E S

EXHIBITOR REGISTRATION
OPEN 1 AUGUST 2001

EXHIB IT SPACE IS ASSIGNED ON

A FIRST-COME , F IRST-SERVE

BASIS. SUBMIT YOUR

REGISTRATION FORM TODAY!

To become a STC 2002 Exhibi tor, v is i t

www.stc-online.org
• Online exhibit space registration

• Downloadable exhibit space registration form

• Complete trade show rules and regulations

• Current exhibit hall layout & exhibitor listings

• Online housing reservation system

• All other conference information

Q u e s t i o n s ?
Contact Trade Show Management at:
Phone: 435-797-0047
Fax: 435-797-0861
Email: stcexhibits@ext.usu.edu

September 2001 www.stsc.hill.af.mil 31

Igrew up an Air Force brat living in
nine different houses before I turned

18. Some kids might feel that this con-
stant changing of houses and schools
was bad – but I loved it! Back in 1966,
my dad was wrapping up a 2-½ year
tour in Istanbul, Turkey. We had
shipped a car over to Turkey with us, but
sold it prior to Dad’s transferring back to
Sheppard Air Force Base. So
before leaving, he ordered a car
from Chevrolet (nothing
online back then – catalogs,
phone calls, and telegrams took
care of it). We flew back to the
United States in late December
1966. On Christmas Eve, Dad
went down to the local Chevy
dealer and picked up our 1967
Chevrolet BelAir. It was bright
white, huge, and ours. I was 11
years old at the time, and I
grew up with that car. I named
it Cynthia.

I first learned to drive in
Dad’s Chevy. It had a manual
transmission with the stick
shift on the column. It also
had an overdrive lever under
the dash. It had a 283 cubic-
inch engine and an oversized
clutch. I not only learned to
drive in that car, but being a one-car
family, it was the car for my early (and
very limited) adventures in dating.

Eventually, I moved out, joined the
Air Force myself, and after 23 years
retired from one career and moved on to
another. I now live in Utah.

A few years ago my mom and dad
decided it was time to sell the Chevy.
They had become a two-car family in
the 1980s, but by the mid-1990s didn’t
need two cars any more. My mom and
dad asked if I was interested in owning
the Chevy – I thought long and hard
about it. I had always loved that car, and
every time I visited my parents in
Orlando, I would help Dad wash and
wax Cynthia, and then take her for a
test drive. Every so often, I would cruise
in it up to Daytona Beach. I even knew
just how to tune-up the engine.
(Remember actual tune-ups with
tachometers and dwell meters, points
and a rotor to replace? Heck, the engine

compartment was so big you could
stand in it.) The car was indestructible
on the outside – it even survived me
learning to parallel park! I’m pretty sure
that Mom and Dad would have given
me a great price on Cynthia (in fact, had
I asked, I am pretty sure I could have
just talked them out of it). After almost
30-plus years of waiting, I could own a

classic ‘67 Chevy BelAir, complete with
antique license plates.

But, I decided to pass. I guess I was
both older and wiser, even though the
car was a classic – a 30-year old classic
with no air conditioning, no power any-
thing (brakes, steering, or windows),
rear-wheel drive, and no air bags or
shoulder belts. I would have had to
drive it from Orlando to Kaysville, Utah
– more than 2,300 miles. And once I
had gotten it here, well, a rear-wheel
drive car with no weight in the back is
probably not the best vehicle to own
during winter in the state with the “Best
Snow on Earth.” Not to mention the
problems with trying to get parts for a
30 year-old car. So Mom and Dad sold
the car to a friend in Alabama, where I
am sure that Cynthia is still in action.

What in the world does that have to
do with a column for CrossTalk?
This issue is about avionics moderniza-
tion. Well, we have B-52 airplanes cur-
rently flying that first entered the

Department of Defense (DoD) invento-
ry back in 1955 – a life span so far of 46
years, and current engineering analyzes
show the B-52’s life span to extend
beyond the year 20451. Now put into
perspective that the Wright Brothers
first flew in 1903. Out of the 98 years
that the world has known powered
flight, B-52s have been flying for almost

50 percent of that time! If the
B-52 flies until 2045, as pro-
jected, it will have been
deployed for 90 years, almost
65 percent of flight’s history.

We sometimes forget the
life span of the hardware that
our software drives. If you’re
working on avionics software
now, can you imagine some-
body trying to update (and
debug) your software in the
year 2091?

Face it, it takes a long time
to write and update the soft-
ware for avionics applications.
In fact, one recent avionics
system calculated that they
averaged only about 0.4 lines
of code per hour. That’s one
reason commercial off-the-
shelf (COTS) and government
off-the-shelf (GOTS) software

are important nowadays. They are a lot
better then purchasing one million lines
of pre-written code and then only hav-
ing to write 100,000 lines of “software
glue” to make the COTS/GOTS work.
You just saved more than 2 million per-
son hours at 0.4 lines of code per hour.
In addition, the advantages of extending
the life span of existing aircraft can save
the DoD billions of dollars.

So the next time you’re driving a
four- or five-year-old car and you feel
that it’s getting old, and you’re itching
for a new car, remember that the aircraft
you supply software for might have a
projected life span of 50-plus years. Sort
of puts things in perspective, huh?

By the way, what did the 1967
Chevy BelAir have to with software or
avionics? Not much – but it sure was
fun reminiscing.

– David A. Cook, STSC
david.cook@hill.af.mil

BackTalk

1. http://www.af.mil/news/factsheets/B_52_Stratofortress.html

Aircraft, Software, COTS, GOTS,
and a 1967 Chevy BelAir

CrossTalk / TISE
5851 F Ave.
Bldg. 849, Rm B04
Hill AFB, UT 84056-5713

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Sponsored by the
Computer Resources
Support Improvement

Program (CRSIP)Before you even pick up your pencil, call us.
We will support your software development
organization so you get it right the first time.

Bringing the Software Technology Support Center in at
the beginning of your project, adds a system engineering
perspective to your software project. Our support contin-
ues beyond design and carries through the entire product
life cycle, including maintenance.

STSC services benefit program managers in any
phase of software systems development. We provide the
systems engineering focus that supports the “big picture”

view for software systems.
Our services include a requirements engineering

workshop, a systems engineering workshop, testing, qual-
ity reviews, facilitating between client and customer, and
providing language support to learn new languages. We
also provide workshops and consulting on Risk
Management and Configuration Management.

Whether your organization is big or small, just start-
ing a project, or embattled in difficulties, we can help.
Just call us. From prior planning to salvaging solutions,
we help you ensure quality and improve your process.

S Y S T E M S
ENGINEERING

s t a r t t o
F I N I S H ,
s y s t e m s
e n g i n e e r i n g

OO-ALC/TISE • 7278 4th Street • Hill AFB, UT 84056 • 801 775 5555 • FAX 801 777 8069 • www.stsc.hill.af.mil

	Cover
	Index
	From the Publisher
	The Air Force Develops an Inititive to Manage Change in Avionics Systems
	Integrated Road Maps Route the Migration to Avionics Open Systems
	Customizing the Software Process to Support Avionics Systems Enhancements
	Coming Events
	The Challenges of Software Certification
	Call for Articles
	Avionics Modernization and the C-130J Software Factory
	WebSites
	Practical Software Measurement, Performance-Based Earned Value
	STC 2002 Call for Exhibitors
	BackTalk
	Back Cover

