
2 CROSSTALK The Journal of Defense Software Engineering December 1998

From the Publisher

Alan Reagan’s comments (Letter to the Editor, September
1998) prompt a reply. First, for the past nine years, I have been
a government contractor, involved in both the nuts and the
bolts of software development and in software process improve-
ment consulting. Second, I don’t think of myself as “the en-
emy,” but believe that the roots of the problem lie elsewhere.

Software developers generally are engineers interested in
building a working system that fills the customer’s needs. Their
goals (regardless of their CMM [Capability Maturity Model] or
their ISO [International Organization for Standardization]
status) are related to the so-called ilities: quality, reliability,
usability, etc. Program managers, though, are often more con-
cerned with budget and schedule issues: milestone achieve-
ment, acquisition reviews, etc. This does not imply that one set
of priorities is wrong and the other is right or even that one has
inherently more merit. It merely means that their priorities are
different.

My point: While project managers may understand the
factors and dynamics affecting their priorities, they often have
little background in the technical side of software development.
Rather than trying to make project managers into software
engineers, we could rely on an experienced developer to act as
guide (mentor?) through the swamp of software development.

And finally, if, as Reagan asserts, many of the independent
validation and verification (IV&V) team members he has dealt
with have fewer than five years experience, perhaps the request

No one disputes the problems associated with software. Over
the years, many solutions have been developed but applied
sparsely. We now have the Software Engineering Institute, the
Software Technology Support Center, and other organizations
that provide outstanding packages. We also have organizations
such as the Institute of Electrical and Electronics Engineers
Computer Society, the Association for Computing Machinery,
and the Institute for Certification of Computing Professionals
that provide leadership in moving software engineering into a
profession. Some of these efforts are directed toward the De-
partment of Defense (DoD) and related industries and others
toward process control or imbedded systems. I hope the devel-
opments will not be lost on the non-DoD business organiza-
tions, because software engineering is software engineering
regardless of where it is applied. In fact, we may need these
processes more here than in the areas for which they were de-
veloped. I also hope that the integration efforts, e.g., hardware,
software, and communication, will continue and become the
norm. We need total systems and not the finger pointing we
seem to have now.

Ed Mechler
Project Controls, Inc.

Penn Hills, Pa.

Experienced Developers as Mentors for Management?

Use It or Loose It

Letters to the Editor

When I was the man-
ager of a software devel-
opment team, I worked
for some difficult cus-
tomers. Our processes
were developing but in
fairly good shape; how-

ever, our customers were difficult to
service because they lacked discipline in
developing or managing their require-
ments. They did not know what they
needed or the priority of each require-
ment. Add to this that our software
product served several user communi-
ties—all of whom similarly lacked a
requirements management process—and
you can imagine our distress. This forced
us to assemble all user requests and as-
sign our own priority. We would then
work from the top down in hopes of
completing the work before the dead-

line. This chaotic requirements “process”
inevitably resulted in schedule and cost
overruns.

I would like to say that this is an
anomaly in defense software develop-
ment, but it is not. Requirements gen-
eration for software-intensive systems is
a widespread problem area. Requirements
are at the beginning of the lifecycle prod-
uct development and are therefore the
most expensive to change or fix.

I wonder if this problem has a cul-
tural basis. The American public has
been trained by a sales-intensive environ-
ment to not analyze needs before mak-
ing a major purchase. In a sense, we kick
the tires, examine the pretty red paint,
listen to a lot of evasive monthly pay-
ment jargon, then buy the car.

In making a sale, salespeople are
trained to get customers emotionally

committed to a product before filling in
the rational thinking. This technique
works because few buyers enter the store
knowing what they want. They depend
on the salesperson to essentially tell them
what they want. They want to be per-
suaded to make a purchase. If only they
did their homework ahead of time, they
could make a purchase more suited to
their needs, not to mention their budget.

This cultural bias appears to feed the
indecision and impulsive requirements
development in today’s defense acquisi-
tion community. With the need to con-
serve resources and stay battle ready, the
Department of Defense needs the disci-
pline of a requirements management
process for buyers as well as for develop-
ers. Mature software development pro-
cesses are highly effective, but they can-
not compensate for a lack of require-
ments management by the user. ◆

Don’t Just Kick the Tires
Reuel Alder

Publisher

for proposal for IV&V support should be rewritten to require
proven development experience.

Joe Saur
SOCOM, Keane FedSysDiv

Tampa, Fla.

CROSSTALK The Journal of Defense Software Engineering 3December 1998

Requirements Management

It has been known since as early as the 1950s that addressing requirements issues improves the chance of
systems development success. In fact, whole software development standards (such as MIL-STD-2167,
MIL-STD-2167A, MIL-STD-498, and IEEE/EIA 12207) were designed to enforce this behavior for
software-intensive systems. Relatively recently (sidebar) a new field of study, requirements engineering,
has begun to systematically and scientifically address barriers to the successful use of requirements in
systems development. Since 1992, the Software Technology Support Center (STSC) has been helping
organizations adopt new technologies. This article defines requirements engineering (RE) from the
viewpoint of technology adoption, discusses which RE technologies are most critical to mission success
and why and which are most difficult to adopt, and outlines successful adoption approaches.

Experiences in the Adoption of Requirements
Engineering Technologies

Jim Van Buren and David A. Cook
Software Technology Support Center

Requirements engineering as a
field addresses requirements
 issues in a holistic manner.

Understanding the interrelationships
between the various requirements ac-
tivities and how they support each
other is as important as understanding
the technical details of any one of the
individual activities. Contrast this to
the 1970s and 1980s, when the soft-
ware engineering community focused
essentially only on requirements analy-
sis, or the early 1990s, when require-
ments management was the fad. This
holistic approach is the great require-
ments insight of the 1990s. The under-
standing of requirements activities from
this view helps engineers build and
follow lifecycle models that account for
their project’s business goals, the at-
tributes of their requirements, and the
strengths and weaknesses of their re-
quirements technologies.

Challenging Old Assumptions
One must challenge the assumption that
a requirements specification is equivalent
to a development contract. For some
projects, blind adherence to this assump-
tion makes project success much more
difficult. Once this assumption is chal-
lenged on a project basis, this drives
what requirements are needed and for
what they are needed. Once it is recog-
nized that the project’s goals (such as
time to market or long-term maintain-
ability) and attributes (such as require-
ments volatility) should drive its lifecycle

development and requirements process,
it is fairly straightforward to build or
tailor, with appropriate emphasis on the
requirements specification, a require-
ments engineering process. This is over-
whelmingly the number one require-
ments engineering technology adoption
lesson learned (and the second great
requirements insight of the 1990s).

Today’s requirements research [1] is
focused on issues that come to light
when the “requirements are equivalent
to development contract” idea is dis-
carded. Research concerns include
• How are requirements prioritized?

Requirements prioritization be-
comes critical when fixed develop-

ment dates or fast development
(time-to-market) considerations
drive the development rather than
the need to meet all requirements.

• How does a project cope with in-
complete requirements?

• How can requirements engineering
support the commercial develop-
ment paradigm (where feature sets,
product sizing, and market window
are the focus rather than functional
requirements)?

• What is the interdependence of
requirements and design (for ex-
ample, a strong interdependence is
necessary when building commer-
cial-off-the-shelf-based systems)?

Papers as early as 1956 have discussed the importance of requirements
definition in software development, but it was not until 1976, at the Interna-
tional Conference on Software Engineering, that requirements engineering was
recognized as a subdiscipline of software engineering. In fact, at the 1968-69
NATO software engineering workshops (where the term “software engineer-
ing” was first coined), software engineering was explicitly decomposed into
only design, code, and test activities [2].

The first time we noticed the term “requirements engineering” was in con-
junction with the 1993 International Symposium on Requirements Engineer-
ing (RE ’93), the first conference devoted entirely to requirements topics. Be-
fore 1993, it seemed that requirements research was stovepiped into areas such
as “requirements management” or “requirements analysis.” Since 1993, the
term “requirements engineering” and its accompanying thesis of holistically
addressing all the requirements activities has become widespread. In addition
to the RE series of conferences [3], the IEEE’s International Conference on
Requirements Engineering [4] meets every other year. The IEEE has also pub-
lished a seminal collection of RE papers [5].

Requirements Engineering Background

4 CROSSTALK The Journal of Defense Software Engineering December 1998

In June 1994, the Federal Aviation Administration (FAA) canceled its 10-
year effort to modernize the nation’s air control system. About $1.3 billion was
written off [6]. In 10 years, the requirements elicitation phase had never come
to closure. A requirements specification with a height that could be measured
in yards was produced, but it was fundamentally incomplete. This is the most
expensive development failure due to a requirements failure of which we are
aware. One can argue that there were many other problems with the program,
but it was during the requirements process that the program failed.

Tom DeMarco produced a brilliant analysis of what went wrong [7]. He
knew he was on the right track when he could not find a keyboard mentioned
in the specification. This led to the observation that the customer, the FAA,
was unable to specify if the system was to be centralized (Washington office’s
desire) or decentralized (controllers’ and regional operating centers’ desire).
DeMarco has since lectured extensively that internal customer conflicts like
this must be resolved before a specification can be completed and that conflict
resolution is an overlooked arrow in a requirements engineer’s quiver.

Requirements elicitation can help identify internal customer conflict. But
the customer—not the requirements engineer—must resolve conflicts or the
system being built is doomed to fail.

Elements of Requirements
Engineering
Even if one breaks the link between
requirements specification and develop-
ment contract, this does not alter the
need to perform requirements activities.
They are merely performed with a dif-
ferent flavoring of objectives. Individual
requirements technologies are still best
viewed from the perspective of the
requirements objectives they address.
The caveat is that they must support
the chosen overall requirements engi-
neering process.

We divide requirements engineering
into the categories of elicitation, analy-
sis, management, validation and verifi-
cation, and documentation. This tax-
onomy helps one understand both the
requirements problems and the require-
ments technology adoption issues that
face our clients. Like the biological
taxonomy, ours is intended to be a
living entity, subject to slow change. As
we have learned more about RE and as
RE matures as a field, our taxonomy
has, in fact, changed.

Requirements Elicitation
This field addresses issues that revolve
around getting customers to state ex-
actly what their requirements are. Pro-

grams large and small still fail to reach
closure on this step, in spite of adequate
effort. Other programs reach closure
but do not capture all the requirements.
This is perhaps the area of requirements
engineering with the highest incidence
of malpractice. Software engineers all
agree that requirements elicitation is
important, yet they uniformly spend
too little time performing it.

Requirements elicitation is the only
requirements engineering field without
a definitive technical solution, yet good
informal solutions exist. The lack of
technical solutions is expected because
the elicitation problem is human in
nature. The issue is that customers
often cannot state what the require-
ments are because they either do not
know what they want, are not ready to
fully define what they want, or are
unable, due to outside influences, to
decide what they want. The FAA
sidebar above outlines the classic ex-
ample of this last behavior.

The biggest elicitation failings
(missed requirements and inability to
state requirements) manifest themselves
as omissions or inconsistencies, which
may not become apparent until require-
ments analysis or systems acceptance
testing or even systems use (see Ariane

Flight 501 sidebar). Customers must
understand that incomplete, inconsis-
tent, or ambiguous requirements, at best,
cost a lot of money. At worst, they guar-
antee failure of the entire system. Spend-
ing additional time “fleshing out” re-
quirements always results in an overall
cost saving.

Elicitation Mechanisms
During requirements elicitation, one
must derive the system requirements
from domain experts—people familiar
with their domain but not necessarily
with building software systems. The
system developers must therefore be
conversant in the terms and limitations
of the domain, since the domain ex-
perts are probably not conversant in the
terms and limitations of software engi-
neering. To help overcome this poten-
tial communication barrier, elicitation
mechanisms are needed to add formal-
ity to what could otherwise be a “seat of
the pants” methodology.

Informal elicitation mechanisms
(such as prototyping, Joint Application
Development, Quality Function De-
ployment, Planguage [8], or good old
structured brainstorming) address moti-
vated and able customers who do not
know how to express their needs. We
conjecture that the root cause of com-
munication barriers is that the term
“requirements” is used differently by
different parties. The “requirement” that
is the output of the elicitation process
has a specific meaning to a software or
systems engineer. It is a real need of the
customer, it is testable, and it may be
prioritized. The requirement can also be
validated by the customer.

To an uninformed customer, a re-
quirement is often simply only a state-
ment of need. Elicitation mechanisms
help overcome this communications
barrier by helping the customer under-
stand and state needs in an objective
manner. There are interesting side effects
of these mechanisms. Customers develop
an ownership in the outcome of the
development effort and better under-
stand the problem that is being solved.
The customer’s needs and desires (nice-
to-haves) are explicitly separated. Devel-
opers establish a working relationship

Bad Requirements Process Leads to
Development Failure

Requirements Management

CROSSTALK The Journal of Defense Software Engineering 5December 1998

with the customer and have an under-
standing of what the problem is and
where trade-offs can be made.

Despite the hype, formal methods
are not a complete solution. They are
not effective in involving the customer;
however, they are effective in gaining
greater understanding of constrained
parts of the problem domain. They can
assist an elicitation approach based on
informal techniques but cannot stand
on their own.

The adoption of elicitation tech-
nologies first requires the recognition
that elicitation can be a problem and
recognition that the term “requirement”
has different meanings to different
people. Once this occurs, the straight-
forward plan is to obtain training for
the organization’s elicitors in a variety
of elicitation techniques and interper-
sonal skills. Practicing elicitation on
real projects involves the use of a variety
of elicitation and validation techniques
that together increase the probability
that the customer has properly stated its
real requirements and that the develop-
ment organization understands them.
Organizations need to recognize that
elicitation is a skill learned through
practice. Practitioners generally are
proficient after training but not expert
until after several projects.

Requirements Analysis
Requirements analysis serves two pri-
mary purposes:
• It is used to make qualitative judg-

ments, i.e., consistency, feasibility,
about the systems requirements.

• It is a technical step in most systems
development lifecycles in which an
extremely high-level design of the
system is completed. This high-level
design consists of decomposing the
system into components and specify-
ing the component interfaces. The
critical output for most software
development requirements analysis
activities is the interface specification
for the decomposed components.
There are a number of well-under-

stood technical approaches to analysis,
i.e., OMT, Schlaer Mellor, Structured
Analysis, and UML. Most have good
commercial tool support. Organizations

do not have difficulty in finding experts,
in developing (through training,
mentoring, and experience) experts, or
in finding tools to support their analysis
efforts. Instead, technology problems
arise from both over- and underanalysis.
For example, well-funded programs tend
to overanalyze. They analyze everything
that can be analyzed without first deter-
mining what should be analyzed. Often,
detailed design occurs during this analy-
sis phase. Programs with cost constraints
suffer the opposite fate. They tend to
underanalyze, probably as a cost savings
measure.

Plenty of methods and tools support
analysis, and there are both tool-related
and training-related technology adop-
tion issues. Tool-related problems occur
when there are inconsistencies between a
tool’s implied development process and
the organization’s standard development
process. Tool vendors have come a long
way this decade in addressing this issue,
but it has not gone away. Tools become
“shelfware” if they impose their process
over the organization’s process, even if
the organization’s process is undefined
and ad hoc.

To adopt requirements analysis suc-
cessfully, pilot the analysis methods
manually, then identify what steps need
to be automated, then make a tool selec-
tion, then tailor the tools use, then use
the tool. Over time, the organization’s
process can gradually evolve.

We have observed that standard
training plans are often inadequate to
address new analysis methods. The
detailed training of how to apply a
method or a tool is necessary but not
sufficient. Education may also be
needed if the new method is radically
different—as object-oriented differs
from structured—from established
methods. In addition, mentoring on the
first pilot project is necessary for all but
a few individuals. When adopting new
analysis methods, always plan for edu-
cation, training, and mentoring.

Requirements Management
Requirements management addresses
aspects of controlling requirements enti-
ties. Requirements change during and
after development. The accepted require-

ments volatility metric is 1 percent of
requirements per month [10]. If it is
much less, one should ask oneself if the
system will be desirable to its intended
audience. If it is much more than 2
percent a month, development chaos is
all but assured.

Requirements management is the
requirements issue that most impacts
military software projects. In a 1993
report, Capers Jones found that 70
percent of all military software projects
are at programmatic risk because of
requirements volatility [10]. The root
causes (discussed below) of this volatil-
ity have not disappeared, so we believe
his finding is still true.

With one exception, requirements
volatility is uncontrollable. It will occur
as a byproduct of building a useful
product, and one’s development pro-
cesses needs to account for it. Software
systems do not exist in isolation. As a
new system is built, the system will
affect its environment, which will in
turn change its environmental require-
ments. This is inevitable and indicates
one is building the right system.

Most development efforts, and all
development efforts for which require-
ments management is important, take
time, sometimes on the order of years.
Over these periods, underlying tech-
nologies, user expectations, and even
laws change, to name just a few of the
many possible external interfaces. If one
is not getting requirements change
requests on large projects, one needs to
ask why. The one source of volatility
that can be controlled is the quality of
the initial requirements specification.
Good elicitation techniques can limit
rework as a cause of volatility.

Requirements Management
Technologies
Fortunately, the technologies needed to
address the requirements volatility issue
are relatively simple. The organization
needs a defined interface mechanism
with its customer by which require-
ments are changed, a mechanism (usu-
ally a configuration management sys-
tem or an RM tool) capable of defining
the current requirements baseline, and a
development approach, i.e., incremen-

Experiences in the Adoption of Requirements Engineering Technologies

6 CROSSTALK The Journal of Defense Software Engineering December 1998

tal lifecycle, that supports the antici-
pated requirements volatility. The pri-
mary adoption issues that must be
addressed are
• Building senior management recog-

nition that this defined mechanism
is necessary.

• Having the discipline to always
follow this change mechanism.
The old adage that “the customer is

always right” is not an absolute. When
customers ask for a requirements change,
they must be told the impacts of that
change, usually in terms of other prior
commitments, and then be allowed to
make the final decision. The software
development organization must never
unilaterally add a requirement.

Tools and Adoption Technologies
Effective management usually implies
both exerting control over and knowing
the status of requirements. There is a
whole class of RM tools (such as Requi-
site Pro, DOORS, RTM, and Caliber-
RM) that automate the tracking of
requirements across lifecycle phases.
They also support many of the require-
ments baselining and requirements
documentation issues. They are particu-
larly useful for programs that wish to
follow a requirements-centric develop-
ment approach. Technology adoption
issues associated with these tools are the
standard issues for tools. Understand
what the tool will be used for, find a
tool that meets those needs, then build

a plan for adopting the tool, being
careful that the tool not be used for
purposes beyond identified needs.

The Software Capability Maturity
Model (SW-CMM) (and to some extent
the Systems Engineering and the Soft-
ware Acquisition CMMs) includes re-
quirements management as a Level 2 key
process area (KPA). Within this context,
the requirements management KPA only
applies to managing requirements
change. Other requirements manage-
ment tracking and status activities could
apply as part of the Level 3 SW-CMM
KPA, Software Product Engineering,
depending on the organization’s develop-
ment approach. When implementing a
CMM-based technology change pro-

Requirements Management

On June 4, 1996, the maiden flight of Europe’s Ariane 5
rocket ended in catastrophic failure with a complete destruc-
tion of the rocket and its payload [9]. The cause was a soft-
ware error, perhaps the most expensive software error on
record. The root cause of this error was a breakdown in the
requirements process—not in the software design or coding
processes—that was not caught by the developmental verifi-
cation and validation process. Within the requirements pro-
cess, there were problems with elicitation, analysis, and veri-
fication and validation.

At liftoff, plus 30 seconds, an operand exception was
generated in the Inertial Reference System (SRI) computer
during a conversion of a 64-bit floating entity into a 16-bit
signed integer. This caused the SRI to crash and output a
diagnostic bit pattern. The redundant backup SRI had also
crashed 72 milliseconds earlier for the same reason. Ariane
5’s on-board computer interpreted the SRI’s diagnostic bit
pattern as valid commands and ordered full nozzle deflec-
tions of both the solid boosters and the main engines. The
rocket was then destined to break up.

The official Inquiry Board found that the primary causes
of the crash were “… specification and design errors in the
software …” and “… reviews and tests … did not include
adequate analysis and testing.” The software requirements
were incomplete and neither the requirements analysis activi-
ties or the requirements verification and validation process
discovered this omission. They also found fault in exception
handing requirements, which basically were to log the error
and terminate. This arose from a faulty belief that random
hardware failures were the only reason for an exception and
that systematic software errors would never occur (systems
analysis failure).

The software and software requirements were essentially
reused from Ariane 4. An explicit decision had been made to
not include the Ariane 5 normal liftoff trajectory as part of
the software requirements (requirement elicitation failure).
When computing the alignment horizontal bias for the
Ariane 5 trajectory, the operand exception will always occur
at about liftoff, plus 30 seconds. The operand exception will
never occur for the Ariane 4 trajectory in the first 43 seconds
of flight. Had the trajectory been included as a requirement,
the official Inquiry Board believed that the developer’s analy-
sis and testing process would have observed this exception.

Exception handing had been turned off because of a
processor performance requirement (maximum 80 percent
processor utilization). The Ariane 4 analysis indicated that
horizontal bias would remain within the range of a 16-bit
signed integer with the Ariane 4 trajectory. This justification
analysis was not easily available to the Ariane 5 development
team (requirements process failure).

The reuse of the Ariane 4 software requirements was also
flawed. Ariane 4’s requirement to continue computing align-
ment (which includes the horizontal bias) for 50 seconds
after entering flight mode (liftoff is seven seconds into flight
mode) to support a late hold is not needed for Ariane 5. The
original requirement may even be a bit flawed, because the
alignment calculation is physically meaningless after liftoff
(systems analysis failure).

The Inquiry Board also took issue with the verification
and validation processes. Its primary finding was that these
processes did not identify the defect and were thus a “con-
tributory factor in the failure.” The explanation given for not
testing or analyzing the Ariane 5 trajectory was that it was
not a part of the requirements specification (requirements
verification and validation failure).

Ariane Flight 501
Bad Requirements Lead to Systems Failure

CROSSTALK The Journal of Defense Software Engineering 7December 1998

gram, remember that managing the
customer interface comes first. A second
step might be tracking the status of
requirements across the development
lifecycle and using that information to
manage the development.

Requirements Validation and
Verification
The requirements verification and vali-
dation (V&V) portion of RE addresses
how quality is built into the RE pro-
cess. Validation (“Are we building the
right system?”) addresses the issue of
building the system the customer
wants. This quality step should identify
missing and extra requirements. Valida-
tion activities always occur as part of
system acceptance testing and also typi-
cally, but not always, as part of the
elicitation process. There are several
orders of magnitude cost difference in
requirements misunderstandings that
are identified as part of elicitation,
before development resources have been
expended, vs. those that are found dur-
ing system acceptance testing. This
points out the critical need for the elici-
tation process to include validation.

Customer and domain expert input
are necessary for validation. In fact,
attempting to validate a system without
customer input is equivalent, in the
words of one of our customers, to de-
signing a “self-licking ice cream cone.”
The necessity of user input is another
reason formal methods are insufficient
for building systems—the customer
usually cannot understand and does not
want to learn how to validate using
formal mechanisms. Mechanisms that a
customer can easily understand (and
hence easily validate) are almost always
based on clear language and easily un-
derstandable pictures—input the cus-
tomer can already comprehend. If the
customer has to learn a new notation or
method to validate a system, a new
quality issue is introduced to the valida-
tion process: lack of a clear understand-
ing of the method. The focus needs to
be on the solution, not on the method.

Verification (“Did we build the sys-
tem right?”) addresses the issue of meet-
ing all the requirements. Typically, the
verification method and sometimes the

Adopting requirements documenta-
tion technology is fairly straightfor-
ward. One should choose a standard
that fits the lifecycle requirements of
the system, tailor that standard to fit
the system’s specific requirements, then
apply it. If one intends to use an RM or
a requirements analysis tool to auto-
mate a portion of the document genera-
tion, one should pilot the documenta-
tion process. Experience has always
shown this to be much more difficult
than originally envisioned.

Technology Adoption
A technology adoption process will
increase the probability of a successful
technology change. At the STSC, our
technology adoption process is based
on the IDEAL Model [11] (Figure 1).
We also use two other important adop-
tion principles:
• Small improvement steps.
• Address needs at all levels of the

organization.
We discuss the IDEAL Model here

not necessarily because it is the best
technology adoption model (although
we believe it is), but to demonstrate the
importance of picking an adoption
model, basing one’s adoption process
on that model, and improving one’s
model and process over time. The fol-
lowing is a synopsis of the five steps in
the IDEAL Model:
• Initiate – Obtain and maintain

sponsorship.
• Diagnose – Assess current practice.
• Establish – Produce plan to address

shortcomings.
• Act – Pilot and use the

technology(ies).
• Learn – Collect lessons learned,

next steps (such as rollout), cycle
back to diagnose.
Our RE field experience indicates

that organizations planning RE tech-
nology purchases or process changes
generally do not follow a process or a
model for technology adoption. If they
are not planning a purchase, they usu-
ally do not even realize that what they
are doing is technology adoption. This
differs from organizations interested in
process improvement, which tend to

verification level is included in the re-
quirements specification. Verification
methods include demonstration (observ-
able functional requirements), analysis
(collected and processed data), simula-
tion (use of a special tool or environ-
ment to simulate the real world), and
inspection (examination of source code
and documentation). Verification levels
depend on the intended development
environment. They specify the develop-
ment lifecycle stage at which the verifica-
tion will be performed, i.e., unit test,
integration test, system installation, or
flight test.

From a technology adoption per-
spective, requirements V&V is a ques-
tion of designing a development life-
cycle that meets the needs of the
product. Emphasis needs to be placed
on validation in the elicitation phase. It
should be considered software engineer-
ing malpractice if requirements V&V is
not also included during design and
coding phases. Validation and verifica-
tion must be performed after the sys-
tem has been built.

Requirements Documentation
There are a number of potential stan-
dards for structuring requirements
specifications. American National Stan-
dards Institute/Institute of Electrical
and Electronics Engineers-STD 830-
1993 specifically addresses require-
ments specifications. The lifecycle stan-
dards Electronic Industries Association
(EIA)/IEEE 12207 and the withdrawn
standards MIL-STD-2167A and MIL-
STD-498 specify another similar for-
mat. The basic contents of all these are
the same: They all include an overall
description, external interfaces, func-
tional requirements, performance re-
quirements, design constraints, and
quality attributes.

Another school of thought posits
that there should be a bare minimum of
requirements documentation. A con-
cept of operation document or a users
manual are all that are needed for a
requirements statement. This makes
sense for applications where time to
market is more important than long-
term maintainability.

Experiences in the Adoption of Requirements Engineering Technologies

8 CROSSTALK The Journal of Defense Software Engineering December 1998

Requirements Management

produce detailed technology adoption
plans based on models like IDEAL.

When a tool or a method is pur-
chased, the vendor is consulted regard-
ing its specific adoption recommenda-
tions. With one exception, an
SW-CMM Level 5 organization, we
have not seen any formal mechanisms
that use lessons learned from prior tech-
nology adoptions. Our advice is that
vendors’ recommendations become the
functional requirements for the adoption
plan and that the plan be driven by the
organization’s past adoption experiences.

Small Steps
To build adoption plans, two adoption
principles must be adhered to. First is
the principle of small steps. Many small
process improvement steps have a
greater chance of success than one giant
process improvement leap.

To build a requirements-centric
development process, one cannot jump
right to the final state. Instead, the first
step might be to get all one’s require-
ments changes under control. The sec-
ond step would be to pilot an RM tool
that reports the development status of
every requirement and produces re-
quirements documents. The final step
would be to use requirements status

information to manage one’s develop-
ment efforts.

Address All Organizational Levels
The second adoption principle is that
plans must address all levels of the orga-
nization: the individual, the project,
and the organization in its entirety. For
example, an adoption plan to meet the
objectives of the RM KPA of the SW-
CMM would involve all three levels in
different ways.

Senior management, representing the
organization, would need background
RM training (indoctrination) on why
controlling requirements is an important
issue. They will have to issue and enforce
an organizational policy. More impor-
tant, they may have to stand up to the
organization’s customers and tell them
that, unlike the old days, the customers
cannot change or add requirements in an
uncontrolled manner.

On the project level, a system, most
likely tools and processes, will be
needed to track requirements baselines.
Ultimately, individuals must have the
discipline to never allow requirements
to creep into the system outside of
standard channels.

In the prior example, the adoption
emphasis needs to be placed at the
organizational level. If that step suc-
ceeds, the others will generally follow.
But the level of emphasis differs de-
pending on the type of requirements
technology. For example, emphasis
should be placed on the individual
adoption issues when elicitation tech-
nologies are being adopted. Elicitation
is essentially an individual skill, border-
ing on art form.

Adoption Effort
Table 1 examines the technology adop-
tion issues for each of the requirements
technologies from the perspective of
various organizational levels. Although

Table 1. Requirements engineering technology adoption issues.

Figure 1. The IDEAL Model.

ygolonhceT leveLlanoitazinagrO

laudividnI tcejorP noitazinagrO

noitaticilE � gniniarT
� gnirotneM

� noitceleSeuqinhceT
� ygetartsV&VfogniroliaT

� margorPgniniarTtnetsisreP

sisylanA � noitacudE
� gniniarT
� gnirotneM

� noitceleSeuqinhceT
� ygetartsV&VfogniroliaT

� margorPgniniarTtnetsisreP

)lortnoc(tnemeganaM � wollofotenilpicsiD
ssecorpeht

� ssecorPderoliaT
�)yrassecenfi(noitpodAlooT

� yciloP
� ybtnemecrofneyciloP

noitazinagro � sevitucexes

)sutats(tnemeganaM � gniniarT � gnitoliPlooT � sdradnatSlanoitazinagrO

dnanoitadilaV
noitacifireV

� sweiver(gniniarT ,
snoitcepsni ,)sloottset

� hcaorppAderoliaT � tnemecrofnE

noitatnemucoD � gniniarT � hcaorppAderoliaT � sdradnatSlanoitazinagrO

CROSSTALK The Journal of Defense Software Engineering 9December 1998

all issues need to be addressed, those
that are bold italicized are the issues
critical to adoption success for each of
the technology areas.

Finally, there is the question of how
hard technologies are to adopt. Some
technologies require a lot of effort to
master. Analysis technologies are an
example of this. The elicitation tech-
nologies require a medium amount of
effort to become proficient but a lot to
master. The other requirements tech-
nologies all require relatively less
amount of effort to master.

Another view of the difficulty of
technology adoption is how difficult it
is to verify that the technology has been
adopted. Elicitation is extremely hard,
analysis is moderate, and the others are
easy. Table 2, summarizes the relative
difficulties of the various requirements
technologies. Note that the table only
captures relative differences between the
various RE technologies and only ad-
dresses adoption issues; it does not
address the relative difficulty of practic-
ing each of the requirements activities.

We have observed that organizations
usually succeed when adopting “easy”
technologies, even without outside assis-
tance. They usually fail when adopting
“hard” technologies, unless supported by
external consultants.

Summary
Requirements engineering is the sys-
tems development activity with the

highest return on investment payoff.
The cost savings that result from find-
ing errors during verification and vali-
dation of requirements can be as high
as 200-to-1 [12].

However, the requirements task is
inevitably always harder than it first
appears. If one were to presuppose that
the customers were motivated and able
to specify accurate and complete re-
quirements, that the requirements
would never change, and that there
were no cost or schedule constraints
placed on a development, there would
not be any requirements issues. Unfor-
tunately, none of these presuppositions
are true. RE is the technical field of
study that attempts to address and
balance these issues.

The requirements phase is the inter-
face between a customer’s needs and the
technical development process. The
skills needed to perform requirements
activities are a marriage of the people
skills necessary to interface with the
customer and the technical skills
needed to understand the development
process. At their heart, requirements
skills are human based. Tools and tech-
nologies can only support requirements
activities. When evaluating and adopt-
ing new RE technologies, focus on
those technologies and adoption issues
that support the human requirements
engineer. ◆

About the Authors
Jim Van Buren is on the
technical staff of
Charles Stark Draper
Laboratory, which he
joined in 1983, under
contract to the STSC.
He has supported the

STSC and the STSC’s customers since
1989 in requirements, design, object-
oriented technologies, and other tech-
nologies relating to the development of
software. He is an SEI-authorized Per-
sonal Software ProcessSM (PSP) instructor.
He currently serves as Draper’s technical
program manager at the STSC.

Software Technology Support Center
7278 Fourth Street
Hill AFB, UT 84056
Voice: 801-777-7085
Fax: 801-777-8069
E-mail: vanburej@software.hill.af.mil

David Cook is a princi-
pal member of the
technical staff, Charles
Stark Draper Labora-
tory, currently working
under contract to the
STSC. He has over 25

years experience in software development
and has lectured and published articles on
software engineering, requirements engi-
neering, Ada, and simulation. He has
been an associate professor of computer
science at the U.S. Air Force Academy,
deputy department head of the software
engineering department at the Air Force
Institute of Technology, and chairman of
the Ada Software Engineering Education
and Training Team. He has a doctorate in
computer science from Texas A&M Uni-
versity and is an SEI-authorized PSP
instructor.

Software Technology Support Center
7278 Fourth Street
Hill AFB, UT 84056
Voice: 801-775-3055
Fax: 801-777-8069
E-mail: cookd@software.hill.af.mil

References
1. Siddiqi, Jawed and M. Chandra

Shekaran, “Requirements Engineering:
The Emerging Wisdom,” IEEE Soft-
ware, March 1996, pp. 15-19.

2. Boehm, Barry, Proceedings of the 2nd
International Conference on Requirements
Engineering, 1996, p. 255.

Table 2. Relative difficulties of the various requirements technologies.

Experiences in the Adoption of Requirements Engineering Technologies

ygolonhceTER tpodAotderiuqeRtroffE tahTyfireVotderiuqeRtroffE
dekroWsaHnoitpodA

noitaticilE .noitacilppatneiciforprofetaredoM
.noitacilppatrepxerofdraH

.draH

sisylanA .draH .etaredoM

)lortnoC(tnemeganaM sitnemtimmocgnitteG(ysaE
).drahsemitemos

.ysaE

)sutatSgnikcarT(tnemeganaM .etaredoM .ysaE

noitatnemucoD .ysaE
sinoitatnemucodehtfi,etaredoM

.detarenegyllacitamotuaebot

.ysaE

noitadilaVdnanoitacifireV .ysaE .etaredoM

10 CROSSTALK The Journal of Defense Software Engineering December 1998

Call for Papers: The International Conference on
Practical Software Quality Techniques ’99

Dates and Locations: June 7-10, 1999, San Antonio,
Texas; Oct. 4-7, 1999, St. Paul, Minn.

Sponsor: The San Antonio Software Process Improve-
ment Network

Featuring: Watts Humphrey and James Bach
Topics of Interest: Inspections, Reviews, and Walk-

throughs, Testing, Software Process Assessment and
Improvement, Quality Management Issues, Measure-
ments and Benchmarking, ISO 9000 Certification,
Configuration Management and Version Control,
Change Tracking, Requirements Management, Year
2000 Process Quality Issues, and automated tools that
deal with any of these areas. Abstracts that deal with
other topics will also be considered. Presentations are
one hour and 15 minutes.

Abstract due date: Jan. 15, 1999
Send all submissions (MS Word or RTF format) via E-

mail to: Dr. Magdy S. Hanna
E-mail: mhanna@softdim.com
Internet: http://www.softdim.com.

NDSS ’99 Symposium
Dates: Feb. 3-5, 1999
Location: San Diego, Calif.
Topics: This sixth annual Network and Distributed Sys-

tem Security Symposium brings together researchers,
implementers, and users of network and distributed
system security technologies to discuss today’s impor-
tant security issues and challenges. The symposium
fosters the exchange of technical information and
encourages the Internet community to deploy avail-
able security technologies and develop new solutions
to unsolved problems.

Contact: Carla Rosenfeld
E-mail: carla@isoc.org
Internet: http://www.isoc.org/ndss99

WICSA1: First Working IFIP Conference on
Software Architecture

Dates: Feb. 22-24, 1999
Location: San Antonio, Texas
Sponsor: International Federation for Information Pro-

cessing (IFIP).
Topic: WICSA1 will provide a focused and dedicated

forum for the international software architecture
community to unify and coordinate their effort in
advancing the state of practice and research. An im-
portant goal of this working conference is to facilitate
information exchange between practicing software
architects and software architecture researchers. This
conference will serve as a kickoff event for a new IFIP
Technical Committee 2 working group on software
architecture and will shape the focus and tasks of the
working group for the initial period.

Contact: Paul Clements
E-Mail: pclement@sei.cmu.edu
Internet: http://www.bell-labs.com/usr/dep/prof/wicsa1

Third Symposium on Operating Systems Design
and Implementation (OSDI ’99)

Dates: Feb. 22-25, 1999
Location: New Orleans, La.
Topic: Continuing in the tradition of the OSDI sympo-

sium, the third OSDI will continue to focus on prac-
tical issues related to modern operating systems.
OSDI brings together professionals from academic
and industrial backgrounds and has become the per-
fect forum for issues concerning the design and
implementation of operating systems for modern
computing platforms such as workstations, parallel
architectures, mobile computers, and high-speed
networks.

Internet: http://www.usenix.org/events/osdi99

Coming Events

3. International Symposium on Require-
ments Engineering (RE) ’92, RE ’94,
and RE ’96.

4. International Conference on Require-
ments Engineering (ICRE), 1994,
1996, and 1998.

5. Thayer, R.H. and M. Dorfman, eds.,
System and Software Requirements Engi-
neering, 2nd ed., IEEE Computer Soci-
ety Press, Los Alamitos, Calif., 1996.

6. Barlas, Stephen, “FAA Shifts Focus to
Sealed-Back DSR,” IEEE Software,
March 1996, p. 110.

7. DeMarco, Tom, International Confer-
ence on Requirements Engineering,
Tutorial, March 1998.

8. Gilb, Tom, “Requirements-Driven Man-
agement: A Planning Language,”
CROSSTALK, Software Technology Support
Center, Hill Air Force Base, Utah, June
1997, p. 18. Language description is
available at http://www.stsc.hill.af.mil/
SWTesting/gilb.html.

9. “Ariane 5, Flight 501 Failure,” Report
by the Inquiry Board, July 19, 1996,
http://www.esrin.esa.it/htdocs/tidc/
Press/Press96/ariane5rep.html.

10. Jones, Capers, Assessment and Control of
Software Risks, Prentice-Hall, Englewood
Cliffs, N.J., 1994.

11. Gremba, Jennifer and Chuck Myers,
“The IDEAL Model: A Practical Guide
for Improvement,” Bridge, Software
Engineering Institute, Issue 3, 1997.
Also available at http://
www.sei.cmu.edu/ideal/
ideal.bridge.html.

12. Davis, A., Software Requirements, Ob-
jects, Functions, and States, Prentice-
Hall, Englewood Cliffs, N.J., 1993.

Requirements Management

CROSSTALK The Journal of Defense Software Engineering 11December 1998

Several authors have noted that
maintenance of software systems
intended for a long operational life

pose special management problems [1-
3]. The Software Engineering Institute
believes that organizational processes are
a major factor in the predictability and
quality of software [4]. J. Arthur and K.
Stevens explain that descriptiveness,
completeness, and readability of software
documentation are key factors affecting
system maintainability [5]. Additionally,
M. Hariza, et al., B. Curtis, and C. Yuen
all conclude that programmer experience
is at least as important as code attributes
in determining the complexity associated
with software maintenance [3,6,7]. Re-
search by the Standish Group and W.
Wayt Gibbs indicates that a low software
success rate results from poor require-
ments and poor risk management [8, 9].
Therefore, software maintenance plan-
ning and management should be formal-
ized and quantified.

Requirements are the foundation of
the software release process. They pro-
vide the basis to develop budgets, sched-
ules, and design and testing specifica-
tions. In the maintenance environment,
requirements are gathered through
change requests from a variety of people
including decision makers, system opera-
tors, developers, and external interface
teams. These people have different back-
grounds and different levels of under-
standing of computers and system opera-
tions. This diversity often leads to
misinterpretation of the intent of the
change description, which can change
the scope of the requirement.

Furthermore, throughout the release
process, requirements often change.

An Examination of the Effects of Requirements
Changes on Software Releases

George Stark, IBM Global Services
Al Skillicorn, The MITRE Corporation

1st Lt. Ryan Ameele, U.S. Air Force

Requirements are the foundation of the software release process. They provide the basis to develop budgets, sched-
ules, and design and testing specifications. Changing requirements during a software release process impacts the
cost, schedule, and quality of the product that results. We have collected data on 40 software releases in our
environment to understand the source, magnitude, and effects of changing requirements on software maintenance
releases. The benefits received include better management of releases and improved customer communications.

During release planning, requirements
analysis, design, and test reviews, new
priorities are established, and changes to
the release content are requested in the
form of change requests being added or
deleted from the release. This require-
ments volatility makes it difficult to
develop dependable release schedules
and budgets. B. Curtis, H. Krasner, and
N. Iscoe conclude that accurate problem
domain knowledge is critical to the
success of a project, and requirements
volatility causes major difficulties during
development [10]. Although these con-
clusions confirm most people’s intuitions
concerning requirements volatility, they
are not precise enough to help managers
take effective action on their projects. M.
Lubars, C. Potts, and C. Richter went
further by interviewing 23 project teams
and recommending organizational solu-
tions rather than technological solutions
to the requirements analysis issue [11].
In no case did they find a coherent rela-
tionship between requirements analysis
and project planning.

This article therefore has two major
goals: first, to present an organization’s
data regarding the source, timing, and
impact of requirements volatility on the
project planning process; and second, to
describe opportunities for management
action in the project planning process.

Organizational Data on
Requirements Volatility and
Project Planning

The Organization and the Data
Collected
In 1994, the Missile Warning and Space
Surveillance Sensors (MWSSS) Program

Management Office was assigned re-
sponsibility for the maintenance of seven
products executing in 10 locations
worldwide. Combined, the products
contained 8 million source lines of code
written in 22 languages. Some of the
systems were more than 30 years old,
and the newest system became opera-
tional in 1992. They all operated in hard
real-time environments and had a small
set of users. To support the management
of these products, we instituted the
measurement program defined in [12].

In this project environment, a re-
quirement was defined as an approved
change request. The customer and sup-
plier agreed to a set of requirements and
a project plan to deliver a new version of
a product. A requirements change was
either an added change request, a deleted
change request, or a change in scope to
an agreed-on change request in the ver-
sion content. Because requirements
management was a primary factor in our
success, we collected data on
• Type of requirement.
• Planned and actual effort days for

each requirement.
• Planned and actual number of calen-

dar days for a version.
• Requirements changes made to the

version after plan approval—type of
change, requesting group, and im-
pact.

Who, How Often, and What Kind of
Requirements Changes
To better understand our environment
and how to improve it, we needed to
answer the following questions.
• Who requests requirements changes?

12 CROSSTALK The Journal of Defense Software Engineering December 1998

• How often do our releases experience
requirements changes?

• What kind of changes are most com-
mon?

• How much effort is associated with
individual requirements?
Four groups contributed to the re-

lease process: contractor development
team, acquisition management team,
user management, and site analysts.
Each of these groups contributed to the
requirements changes associated with a
release. Figure 1 shows the percent of
changes made by each group.

Requirements volatility comes in
three types: additions to the delivery

content, deletions from the delivery
content, and changes in scope to an
agreed-on requirement. A total of 108
requirements changes were made during
40 software releases since 1994. Figure 2
shows the distribution of these changes
by type. Additions to the release content
were the most common form of change,
followed by deletions, with scope change
being relatively rare.

Figure 3 shows the requirements
volatility for each of the 40 deliveries.
Fourteen of the 40 deliveries (35 per-
cent) had no requirements change. Of
the 14 deliveries, six were made on or
ahead of schedule, four were within 15
percent of the original scheduled date,
and four were more than 15 percent late.
Twenty-six of the 40 (65 percent) had
requirements change, with eight of them
having greater than 50 percent change.
Of the 26 releases that experienced re-
quirements change, 16 had requirements
added, 15 had deletions, and four had
scope changes. Seven releases had a com-
bination of adds, deletes, or changes.

To understand how much effort was
associated with individual changes, we
developed the software change tax-
onomy shown in Table 1. It includes 10
types of changes and root causes for each
change type.

We categorized the changes delivered
in eight releases using this taxonomy,
which consisted of 104 modification
changes (43 percent) and 139 fix
changes (57 percent). Figure 4 is a Pareto
diagram of this change data. The left
vertical axis shows the number of
changes attributed to each class, and the
right vertical axis represents the cumula-

Table 1. Software change taxonomy.

Figure 3. Requirements volatility for 40 deliveries.

tive percentage of defects and is a conve-
nient scale from which to read the line
graph. The line graph connects the cu-
mulative percents (and counts) at each
category.

Figure 1. Requirements changes by source.

Figure 2. Requirements changes by type.

Requirements Management

epyTegnahC esuaCtooR
lanoitatupmoC .noitauqenidnarepotcerrocnI

.sesehtnerapfoesutcerrocnI
.noitauqeetaruccanirotcerrocnI

.rorrenoitacnurtrognidnuoR
cigoL lacigolnidnarepotcerrocnI

.noisserpxe
.ecneuqesfotuocigoL

.dekcehcgniebelbairavgnorW
.tsetnoitidnocrocigolgnissiM

forebmuntcerrocnidetaretipooL
.semit

tupnI .tamroftcerrocnI
.noitacoltcerrocnimorfdaertupnI
deretnuocnerognissimelif-fo-dnE

.ylerutamerp
ataD

gnildnaH
.elbaliavatonelifataD

.sdnuob-fo-tuodecnereferataD
.noitazilaitiniataD

galfsadesuelbairaV , tonxedniro
.ylreporptes

rodenifedylreporptonataD
.denoisnemid

.rorregnitpircsbuS
tuptuO .noitacoltnereffidotnettirwataD

.tamroftcerrocnI
.tuptuognissimroetelpmocnI
.gnidaelsimrodelbragtuptuO

ecafretnI .ecafretnierawdrahdnaerawtfoS
.ecafretniresudnaerawtfoS

.ecafretniesabataddnaerawtfoS
.ecafretnierawtfosdnaerawtfoS

snoitarepO .egnahcerawtfosSTOGroSTOC
.lortnocnoitarugifnoC

ecnamrofreP .dedeecxetimilemiT
.dedeecxetimilegarotS

.tneiciffeningisedroedoC
.ycneiciffekrowteN

noitacificepS ecafretnimetsys-ot-metsyS
.etauqedanirotcerrocninoitacificeps
rotcerrocninoitacificepslanoitcnuF

.etauqedani
.etauqedanigniniartrolaunamresU

tnemevorpmI .noitcnufgnitsixeevorpmI
.ecafretnievorpmI

CROSSTALK The Journal of Defense Software Engineering 13December 1998

the amount of scope changes was a major factor in the delivery
schedule, which illustrates two important points: general distri-
bution should only be used as a planning guide, and releases
should be managed as stand-alone projects.

Requirements Changes by Source
Requirements changes could be initiated by the customer
(analysts or management personnel) or the development team,
i.e., the contractor or the MWSSS Program Management
Office. Figure 8 shows the distribution of changes by source
for this release. This chart shows that the changes were distrib-
uted as 55 percent driven by the development team and 45
percent by the customer. The analyst personnel and the devel-

Figure 5. Staff-days of effort by category.

Figure 6. Requirements changes by month for one release.

Figure 4. Software maintenance changes by type.

An Examination of the Effects of Requirements Changes on Software Releases

Figure 4 indicates that logic changes to the software are
most common (45 changes or 19 percent of the total). (Al-
though not shown in Figure 4, the majority root cause is miss-
ing logic or condition tests for error handling.) Using this
information, we have our design and code reviews to specifi-
cally look for these logic problems. Only two of the 243
changes involved data input problems.

Figure 5 is a Pareto diagram of the effort required to make
each change. It shows that although changes based on specifi-
cation changes only ranked fourth in number of changes
with 26, they accounted for 20 percent of the total effort at
591 staff-days. Logic changes fall to sixth when viewed in
this manner.

The information from this analysis helped maintenance
engineers make better requirements cost estimates. By review-
ing change requests and accurately assigning them to the
change taxonomy, they could estimate the staff-days required
to design, code, and test changes. For example, the average
staff-days of effort required for changes to interface require-
ments are 24 staff-days with a standard deviation of 50 staff-
days, whereas the average for functional specification changes
is 23 staff-days with a standard deviation of 29 staff-days.
Next, the actual was tracked against the estimate, and the tax-
onomy and cost information was updated as each release was
completed.

Although the current information is highly variable for
each root cause, the effort data is expected to converge around
a reasonable mean as more data is collected. This will increase
our confidence in the estimates. Sudden changes could indi-
cate a need to re-examine our processes or a need to change the
staff that implements the requirement. Even with the current
variability, using historical data is the best method to estimate
individual change effort.

A Microview of Requirements Changes on One
Release
The Configuration Control Board approved a release plan to
deliver 17 requirements in nine months at a cost of approxi-
mately $490,000. Figure 6 shows the requirements changes
over time for this release. These changes were processed both
formally (through the Configuration Control Board) and
informally (agreement between users and developers). The
figure also shows that a total of 20 changes were made to the
release content in the 14 months since project plan approval.
The two spikes for February and October occurred after design
reviews where major scope changes occurred with some of the
requirements. Nine of the changes occurred in the last five
months of the effort, and only six of the delivered require-
ments were a part of the original approved plan. This greatly
impacted the implementation effort.

Requirements Changes by Type
Figure 7 shows a significantly different distribution of changes
by type than the overall distribution of Figure 3. In Figure 7,
scope changes account for 26 percent of the changes to the
release compared with 8 percent for all releases. The increase in

14 CROSSTALK The Journal of Defense Software Engineering December 1998

Observations and
Recommendations
Requirements must be more clearly
explained and understood by the devel-
opment team, and change agreements
must be more formally managed by the
management team responsible for the
software releases. Accordingly, we
changed our process to include a rigor-
ous requirements review meeting with
the customer prior to presenting the
release plan for Configuration Control
Board approval. We also have biweekly
meetings with the MWSSS management
where the project requirements status
and other project issues are briefed.

A Macromodel to Forecast the
Effects of Requirements
Changes on Releases
To help release teams better manage the
requirements volatility and get a handle
on the impact of changes to their
project, we began to develop models
based on the historical release data. Table
2 shows the percent of planned schedule
achieved (100 means the plan was met,
greater than 100 means late, less than
100 means delivered early), the square
root of the percent of requirements vola-
tility (the sum of all changes), and the
productivity risk associated with the 20
releases. The square root transformation
was used to spread out the numbers
close to zero and condense the numbers
greater than one. Risk is defined as
changes closed per effort days available.

Figures 10 and 11 are scatter plots of
the percent of planned schedule vs. the
other two descriptive variables in Table
2. Individually, these plots have little
correlation, but used together, these
variables can provide insight to project
managers to help them understand the
schedule impact of requirements
changes.

A linear regression analysis was per-
formed on the data to develop a model
to predict schedule impact based on
requirements volatility and risk with the
following results:

Y = 0.97 + 0.41*X1/2 + 0.23*Z (1)
where

Y = Percent Schedule Change
X = Requirements Volatility
Z = Risk

The proportion of variance explained
by this model (R2) is 0.72, and the stan-
dard error of the estimate is 0.17. Notice
that the schedule change goes up regard-
less of whether the requirements changes
were an addition or deletion because the
input to the model is percent of require-
ments changes. This is a topic of debate
in the organization: Some argue that
removing requirements involves effort to
change the design and test procedures,
whereas others argue that a reduction in
requirements means less work for the
team and earlier completion of the
project.

Figure 12 shows the results of apply-
ing the model to all 40 releases executed
by our organization. From this figure, it
can be seen that the model performs
much better in the 115 percent to 130
percent of planned schedule range and
yields more optimistic results as predic-
tions get larger, i.e., greater than 150
percent of plan. This may indicate theFigure 8. Requirements changes by source.

Table 2. Schedule, requirements volatility, and
risk data for 20 software maintenance versions.

noisreV
tnetnoC

fotnecreP
dennalP
eludehcS

TRQS
fotnecreP(

stnemeriuqeR
)egnahC

egnahC(ksiR
repstseuqeR

)yaD-ffatS

1 801 33 41.0

2 401 23 51.0

3 861 851 05.0

4 231 67 81.0

5 511 0 80.0

6 511 84 72.0

7 811 54 61.0

8 931 001 10.0

9 912 851 91.0

01 921 05 70.0

11 001 78 70.0

21 111 0 10.0

31 201 81 21.0

41 321 55 70.0

51 29 0 02.0

61 871 542 10.0

71 401 0 20.0

81 011 32 80.0

91 001 13 21.0

02 49 0 30.0

Requirements Management

opment contractor accounted for 80
percent of the changes (16 out of 20).

Schedule, Cost, and Quality Impact
of Changes
Figure 9 shows the predicted version
operational date over time for the
project. The first slip (three and one-half
months) was reported at the design
review held three months after project
start. A second slip (three weeks) was
announced eight months into the
project. Finally, another completion
date, this one four and one-half months
later, was announced one year after
project start. These announced schedule
slips correspond to the major jumps in
the requirements changes graph (Figure
6). Two defects that required rework and
more testing were reported during op-
erational testing of this release. The
release was delivered a month later, mak-
ing the total schedule 10 months (more
than double the original project plan)
and the cost $100,000 (22 percent over
budget). Of course, requirement volatil-
ity was not the only reason for the
schedule and cost overrun, but it was the
major factor.

Figure 7. Requirements changes by type.

CROSSTALK The Journal of Defense Software Engineering 15December 1998

need for another explanatory variable as major changes occur
to releases.

Macromodel Use and Benefits
We have used this equation to explain the expected impact of
changes to the delivery plan as they arise. For example, one
version contained 15 planned requirements scheduled for
delivery in 91 calendar days—the customer wanted to drop
two of the requirements and change the scope of a third at
preliminary design. Managers estimated the risk to version
delivery to change from 0.14 (15 changes in 108 staff-days) to
0.1 (13 changes in 130 staff-days). Using the model, managers
forecasted the overall schedule impact to be [0.97 +
0.41*(0.2)1/2 + 0.23*(0.1)] = 1.18 or an 18 percent schedule
slip. An 18 percent slip is equivalent to 16 days added to the
91-day schedule. These 16 days would have cost the customer
an additional $60,000.

During discussion about the model and the prediction, the
customer decided that this schedule slip was not acceptable to
the overall mission of the version; therefore, they decided not
to pursue the changes but to incorporate the scope change in
the next release. The metrics-based model facilitated objective
communication with the customer concerning version release
plans and status.

The model forecasted a $50,000 cost impact and a 12-day
schedule slip from a second customer request to change the
release content. The additional cost was not acceptable to the
customer, so they decided to incorporate the changes in the
next release. Thus, the overall cost avoidance because of quan-
titative schedule impact analysis was $110,000.

Conclusion
Requirements management involves establishing and main-
taining an agreement between the customer and the supplier
on the specific number and technical content of the perfor-
mance and functionality that will be included in a software
release. This agreement forms the basis to estimate, plan, per-
form, and track the project’s activities. We believe other organi-
zations can benefit from our experience.

Acknowledgments
We thank Dieter Rombach for his suggestions and for provid-
ing references for this article. We also thank the many referees
for their excellent reviews. ◆

About the Authors
George Stark is a programming consultant with the IBM Corpo-
ration in Austin, Texas. Previously, he was a principal scientist
with The MITRE Corporation, where he supported the software
efforts of the MWSSS Program Management Office. His techni-
cal interests include software metrics and reliability for manage-
ment decision making. He has been involved in software reliabil-
ity measurement for 15 years and was the vice chairman of the
American Institute of Aeronautics and Astronautics blue-ribbon
panel on software reliability. He has been the manager of software
testing and reliability for a local loop fiber-optic telephone sys-
tem. He received the Johnson Space Center Quality Partnership
Award and the MITRE General Manager’s Award for contribu-
tions to software measurement. He has a bachelor’s degree in
statistics from Colorado State University and a master’s degree in
mathematics from the University of Houston.

Figure 9. Predicted version operational date by month.

Figure 10. Percent of planned schedule vs. square root (requirements
volatility) for 20 versions.

Figure 11. Percent of planned schedule vs. delivery risk.

Figure 12. Actual vs. predicted schedule using linear model for all 40
releases.

An Examination of the Effects of Requirements Changes on Software Releases

16 CROSSTALK The Journal of Defense Software Engineering December 1998

Do You Acquire Software but Need More Expertise?

• Technical Documentation Inspection Services
• Independent Documentation Audit
• J-STD-016-1995 Training

Paul Hewitt
Voice: 801-775-5742 DSN 775-5742
E-mail: hewittp@software.hill.af.mil

The STSC Provides These Services and More

Reed Sorensen
Voice: 801-775-5738 DSN 775-5738
E-mail: sorenser@software.hill.af.mil

Because of all the cutbacks, you are not alone. Without under-
standing the delivered software and documentation, you can-
not assure the taxpayer of a good purchase. At the Software
Technology Support Center (STSC), we have helped organiza-
tions at numerous Air Force, Army, and Navy locations make

more technically informed buys. Available on a just-in-time
basis, we will help your organization strengthen its position.
Whether your acquisition involves embedded or information
management systems, call us for an exploratory discussion of
how the right expertise can provide peace of mind.

IBM Global Services
11400 Burnet Road, MD 3901
Austin, TX 78759
Voice: 512-823-8515
Fax: 512-823-3385
E-Mail: gstark@us.ibm.com

Al Skillicorn is a member of the technical
staff of The MITRE Corporation. He
supports the software maintenance of the
early warning radar systems. Among his
other responsibilities are the Year 2000
problem and future software architectures.
He has a bachelor’s degree in engineering
from the U.S. Military Academy at West
Point. Previous work included communi-
cations modeling and analysis for the
Regency Net Communication System and
for the Theatre Nuclear Forces Communi-
cations System in Europe.

The MITRE Corporation
1150 Academy Park Loop #212
Colorado Springs, CO 80910
Voice: 719-556-2565
E-mail: skilliad@cisf.af.mil

1st Lt. Ryan Ameele is the software pro-
cess manager for the MWSSS Program
Management Office. Previously, he was
the Cargo System Software Development
Team leader for the Air Mobility Com-
mand Computer System Squadron at
Scott Air Force Base, Ill. He has a

bachelor’s degree in engineering from
Clarkson University in New York. He was
recently selected for promotion to captain.

SSSG/SDWSE
1050 E. Stewart Avenue
Peterson AFB, CO 80914-2902
Voice: 719-556-9906
E-mail: ameeler1@cisf.af.mil

References
1. Card, D.N., D.V. Cotnoir, and C.E.

Goorevich, “Managing SW Mainte-
nance Cost and Quality,” Proceedings of
the International Conference on Software
Maintenance, September 1987.

2. Chapin, N., “The Software Maintenance
Life-Cycle,” Proceedings of the Interna-
tional Conference on Software Mainte-
nance, 1988.

3. Hariza, M., J.F. Voidrot, E. Minor, L.
Pofelski, and S. Blazy, “Software Mainte-
nance: An Analysis of Industrial Needs
and Constraints,” Proceedings of the
International Conference on Software
Maintenance, Orlando, Fla., 1992.

4. Software Engineering Institute, “Soft-
ware Process Maturity Questionnaire
Capability Maturity Model, Version
1.1,” Carnegie Mellon University, Pitts-
burgh, Pa., 1994.

5. Arthur, J. and K. Stevens, “Assessing the
Adequacy of Documentation Through
Document Quality Indicators,” Proceed-

ings of the International Conference on
Software Maintenance, 1989.

6. Curtis, B., “Conceptual Issues in Soft-
ware Metrics,” Proceedings of the IEEE
International Conference on System Sci-
ences, 1986.

7. Yuen, C., “An empirical Approach to the
Study of Errors in Large Software Under
Maintenance,” Proceedings of the Interna-
tional Conference on Software Mainte-
nance, 1985, pp. 96-105.

8. The Standish Group, “The Scope of
Software Development Project Failures,”
Dennis, Mass., 1995.

9. Gibbs, W. Wayt, “Software’s Chronic
Crisis,” Scientific American, September
1994, pp. 72-81.

10. Curtis, B., H. Krasner, and N. Iscoe, “A
Field Study of the Software Design
Process for Large Systems,” Communica-
tions of the ACM, Vol. 31, No. 11, 1988,
pp. 1268-1287.

11. Lubars, M., C. Potts, and C. Richter, “A
Review of the Practice in Requirements
Modeling,” Proceedings of the Interna-
tional Symposium on Requirements Engi-
neering, 1996, pp. 2-14.

12. Stark, G.E., “Measurements for Manag-
ing Software Maintenance,” Proceedings
of the International Conference on Soft-
ware Maintenance, Monterey, Calif.,
November 1996, pp. 152-161.

Requirements Management

CROSSTALK The Journal of Defense Software Engineering 17December 1998

Requirements analysis includes
both the gathering of functional

and system requirements and
the organization of those requirements
into a logical, traceable, and understand-
able form. It is one of the most discussed
and least well-implemented parts of the
software engineering process. As a result,
poor requirements analysis is a leading
cause of failure in systems development
[1]. To address this situation, use case-
based requirements definition is becom-
ing popular for systems analysis in gen-
eral and object-oriented development in
particular.

Although use cases are well accepted
in principal, the form a use case should
take, the level of granularity it should
encompass, and even the specific defini-
tion of the term “use case” are still mat-
ters of dispute in the industry. As a re-
sult, most Department of Defense
(DoD) contracting officials still prefer to
see traditional structured methods and
good old-fashioned “shall” statements
for requirements definition. This article
introduces how to “find” use cases and
what it takes to elaborate use cases into
effective tools for user validation, opera-
tional metrics, and system design. Inter-
estingly, use case can be implemented
without throwing away the value of the
traditional shall statements and without
tossing mission-based structured decom-
position out the window.

Use Case Definition
A use case is a sequence of events, per-
formed through a system, that yields an
observable result of value for a particular
actor.1 The key issue for requirements
management in this definition is the
words “observable result of value.” The
primary goal of requirements definition

should be the provision of value. Because
use cases, by definition, fit that goal,
they are used as the primary organiza-
tional structure for requirements defini-
tion. The additional components needed
of a fully elaborated use case are
• Actors that collaborate in the use

case.
• Events (and associated business rules)

in which the actors collaborate.
• Information that is passed and re-

turned in the course of each collabo-
ration.

• Context (environment) in which the
use case takes place.
Context can best be defined in terms

of additional requirements that affect the
use case in terms of inputs, controls,
outputs, and mechanisms.2 Input de-
scriptions are requirements associated
with what input is available and in what
form it can or should be provided. Con-
trols impose algorithmic restrictions on
how and when the use case must be
performed by prescribing rule sets and
regulations that are mandatory. Output
descriptions add specific formatting and
content requirements to the basic use
case product. Finally, mechanism pre-
scriptions are associated with architec-
tural requirements in the sense of logical
interfaces to current or planned systems.
Enabling collaborations with actors
beyond the primary actor that will or
must interface in the prescribed use case
are also identified.3

Four Ways to Create Use Cases
There are essentially four ways to create
use cases in sufficient detail to be in-
cluded in formal requirements in a form
suitable to generate implementable sys-
tems design and test specifications:

• Mission decomposition – a form of
traditional hierarchical structured
analysis.

• Unstructured aggregation – collect
and classify traditional shall state-
ments.

• Scenario story-driven discovery –
use cases are discovered by analyzing
written descriptions of day-to-day
activity or desired activity.

• Actor or responsibility discovery –
first define the actors and roles, then
define their collaborations and re-
sponsibilities.
Mission decomposition begins with a

particular mission goal. The goal must
be a clear statement. It may not, in and
of itself, have clear metrics for its
achievement. If so, the goal must be
decomposed into components in a fash-
ion analogous to use of the goal, ques-
tion, metric (GQM) paradigm that is
often advocated to discover software
metrics [3]. Beginning with mission
defined in terms of a goal, question what
accomplishments (products, services,
etc.) are required to reach the goal. De-
composition continues until all of the
lowest-level accomplishments can be
described in terms of a measurable result
for a specific user in support of the top-
level mission. In other words, decompo-
sition continues until each “leaf node”
accomplishment contains the basic out-
put specification for a use case. These
output specifications then become the
definition around which use case elabo-
ration takes place. Elaboration includes
identifying the events, actors, informa-
tion structures, business rules, and non-
functional requirements that apply to
the particular mission component.

Unstructured aggregation is used to
collect and classify requirements col-

Four Roads to Use Case Discovery
There Is a Use (and a Case) for Each One

Gary A. Ham
Battelle Memorial Institute

Use case-based requirements definition is a hot topic, particularly in object-oriented
software engineering circles. Appropriate content is achieved by looking at potential
use cases from four different views. Each view provides unique advantages. Together
they offer the information needed to develop the fully elaborated use cases that facili-
tate clearly defined, understandable, measurable, and testable design.

18 CROSSTALK The Journal of Defense Software Engineering December 1998

lected from various venues in the form
of shall statements and business rules.4

Any active voice shall statement that
describes an individually measurable
product or service that must be provided
for a particular actor becomes a candi-
date use case. All other requirements are
reviewed for their applicability to the use
cases discovered. Generally, these addi-
tional requirements are applicable in a
descriptive sense as input, output, con-
trol, and mechanism requirements de-
pending on how they will affect the
further development of the candidate
use cases.

A scenario story is a detailed descrip-
tion of all the interactions by one or
more users with the system in a set of
related events. The story should include
details that describe user interaction with
the system in a detailed, concretely
specified and verifiable form. The sce-
nario story is used for both requirements
elicitation and user validation. When
written properly, scenario story para-
graphs form potential use cases, and
sentences within those paragraphs de-
scribe the events involved in performing
the use case.

Actor, responsibility, and collabora-
tion discovery is a traditional object-
oriented analysis technique that begins
with finding roles that actors play, what
responsibilities they have for task accom-
plishment, and what other actors they
must collaborate with to accomplish
those tasks.5 Use cases are discovered by
identifying productive task results.
Subtasks leading to those results become
events within an identified use case.

So, which approach to use case dis-
covery is best? Each approach offers
advantages. GQM-based mission de-
composition offers measurable results
and a focus on mission rather than fluff
and “nice to have.” Shall statements
allow formal integration of nonfunc-
tional and architectural concerns into
analysis and provide specific reference to
requirements, e.g., performance response
times, that may apply to multiple use
cases. Scenario stories offer a complete-
ness of detail and an effective user vali-
dation viewpoint that is difficult to
achieve with other approaches. Scenarios
are also of great value in obtaining even-

tual user acceptance of new or changing
systems. Finally, no matter which use
cases are identified, they cannot be put
together until the actors and collabora-
tors in events are identified.

Each approach also has limitations. It
is sometimes difficult to obtain mission
focus from untrained subject matter
experts, even in facilitated workshops.
Merely getting consensus on the mission
can be an interesting task in some envi-
ronments. It is much easier to ask,
“What do you do each day?” Theoreti-
cally, shall statements are individually
verifiable and can be clearly written, at
least in the microsense. However, be-
cause of their “atomic” nature, this is
usually not the case. Most of the time,
shall statements are poorly organized,
ambiguously stated, and difficult to
implement or test. They are often redun-
dant and overlapping, yet designers
often find large gaps when basic modules
are built. Scenarios tend to focus on
current process and change based on
current process. This makes it harder to
think outside of the box. Beginning with
scenarios also tends to add requirements
that benefit particular users rather than
benefit the mission to be accom-
plished—fluff happens. Finally, the
purely bottom-up actor and responsibil-
ity approach raises completeness ques-
tions and a concern that generated use
cases might reflect individuals’ require-
ments ahead of organizational mission
needs. There also are questions about the
effectiveness of role and class abstraction
in a bottom-up “find the nouns” type of
environment.6

Since each approach has both ben-
efits and limitations, the question of
where to start becomes one of basic
expediency. Start with whichever entry
point offers the most initial return in
information. You can begin with what is
most comfortable for the organization
under analysis or for the team doing the
analysis. You can also reuse existing
documentation. If initial scenario stories
are available, use them. If prior business
process reengineering work has left clear
mission descriptions, or defined organi-
zational role and responsibilities defini-
tions, use them. If all you have are large
documents filled with poorly structured

(or well structured) shall statements, use
them, too. The rest of the analysis infor-
mation can be added at any point, as
long as the use case structure to which it
is added remains consistent.

Use cases are not requirements in and
of themselves. Instead, use cases provide
a showcase in which requirements are
precisely organized and illustrated for
user validation, system design, and test
script development. To be effective, a use
case needs the following:
• A measurable contribution to a de-

fined mission in support of a primary
actor.

• A clear definition of input, output,
control, and mechanism-related
requirements and business rules.

• A presentation format that facilitates
functional user validation and change
elicitation.

• An understandable presentation of
roles and collaborations by event in a
sequence as a basis to assign and find
class operations.
Each of the above needs is best

served by a different one of the four
approaches. So, achieving a high level of
effectiveness implies that all four ap-
proaches are eventually needed for com-
plete analysis. Leaving one out will re-
duce the value of that use case as system
design or test script development docu-
mentation. As long as a defined process
to maintain traceability and coordina-
tion between approaches is maintained,
the particular initial approach is not
material. The measure of success will be
the clearly defined, understandable,
testable designs that result from fully
elaborated use cases.

Disclaimer and Acknowledgments
The views expressed in this article are
my own (as the author) and do not
formally represent those of the DoD or
Battelle Memorial Institute. They repre-
sent my distillation of collective team
member experience in support of the
Computer-Based Patient Record
Interoperability using Object-Oriented
Technology project for the Office of the
Assistant Secretary of Defense for Health
Affairs. Csaba Eghazy, Scott Eyestone,
Carol Fogelsong, Don Heim, and Janet

Requirements Management

CROSSTALK The Journal of Defense Software Engineering 19December 1998

Martino provided valuable insight that is
reflected in some form in this article. u

About the Author
Gary A. Ham is a se-
nior research scientist
for Battelle Memorial
Institute, National
Security Division, In-
formation Systems
Engineering and Pro-

cess Modernization Department in Ar-
lington, Va. A former Marine Corps
comptroller and Naval Academy com-
puter science instructor, he currently
researches value metrics definition pro-
cesses to support object-oriented require-
ments analysis and design of DoD sys-
tems. He has a bachelor’s degree in
economics from Whitman College in
Walla Walla, Wash. and a master’s degree
(with distinction) in information sys-
tems management from the Naval Post-
graduate School in Monterey, Calif. He
is currently a doctoral candidate in infor-
mation technology at George Mason
University in Fairfax, Va.

Principal Research Scientist
Battelle Memorial Institute
2101 Wilson Blvd., Suite 800
Arlington, VA 22201-3008
Voice: 703-575-2118
Fax: 703-671-9180
E-mail: ham@battelle.org

References
1. Research Report, “Chaos,” The Standish

Group, 1995, http://
www.standishgroup.com/chaos.html.

2. Jacobson, Ivar, Martin Griss, and Patrick
Jonsson, Software Reuse: Architecture,

Process, and Organization for Business
Success, ACM Press, New York, N.Y.,
1997.

3. Fenton, Norman E., Software Metrics, a
Rigorous Approach, Chapman and Hall,
London, 1994.

Notes
1. Ivar Jacobson’s basic definition differs

slightly: “A use case is a sequence of
transactions performed by a system,
which yields an observable result of value
for a particular actor” [2]. For our pur-
poses, an actor is defined as a participant
in a use case event, as an instigator, a
provider of service or product, or as a
recipient of that service or product.

2. If this sounds a little like Integration
Definition for Function Modeling
(IDEF0), it should. IDEF0, with a
difference in focus from functional
decomposition to product or service
identification, can effectively be used to
identify mission-focused use cases. The
required change in mindset may be
difficult for traditional IDEF0 modelers.
It was for me. If you can make the transi-
tion, however, a whole new approach to
software metrics based on activity-based
costing becomes available.

3. The particular form that a use case
should take is less important than the
content. The only requirement is a con-
sistent presentation of use case contents
that provides clear understandability by
subject matter experts. The use of formal
notation languages, e.g., Unified Model-
ing Language and predicate logic, should
be left out unless the user community is
fully conversant in the notation pre-
sented. We use a standard format for our

use cases. This “standard” has, however,
been adjusted in each analysis iteration to
better meet the understandability needs
of our validating users.

4. Business rules are defined to be require-
ments that contain a conditional phrase,
e.g., “if,” or “then.” Business rules are
designed to govern the actions of an
event or events, either singly or grouped
in a rule base. In some references,
nonconditional rules are referred to as
business rules. My current project merely
calls such rules requirements. We feel the
distinction is important because business
rule sets can be used within rule engines
to process events depending on condi-
tion. Straight requirements act regardless
of condition.

5. Although analogous, this is not the same
as the class, responsibility, and collabora-
tion approach. We are defining roles that
will probably (but may not) be assigned
to classes as part of the design process.
We do not try for class definition in
analysis use case development. We save
that for design, when architectural de-
pendency issues are more completely
specified.

6. Yet, we have used this approach exten-
sively for project management. All of our
task statement development and project
work breakdown structures are based on
the definition of responsibilities and
collaborations between project teams
where project teams are recognized as
actors or classes in the object-oriented
sense. Project management is object
management to the extent that Gantt
charts are defined by a composition of
sequence diagrams developed from the
original collaboration diagrams.

The Air Mobility Command (AMC) Computer Sys-
tems Squadron (CSS), Scott Air Force Base, Ill. received a
Level 3 rating during a Software Engineering Institute
(SEI) Capability Maturity Model (CMM) assessment. The
CSS currently has over 450 employees dedicated to devel-
oping, maintaining, and enhancing transportation and
command and control software systems for AMC. The
assessment culminated 17 months of dedicated hard work.

AMC CSS Achieves CMM Level 3
One requirement to achieve Level 3 was to develop and

maintain a usable set of software process assets that improve
performance across all projects and provide a basis for cumu-
lative, long-term organizational benefit. They developed a
process asset library (PAL) located on the Web at http://
cpssweb.safb.af.mil:81/pal/pal_home.htm. The AMC CSS
PAL is accessible to everyone within the military and gov-
ernment Internet domains.

Four Roads to Use Case Discovery: There Is a Use (and a Case) for Each One

20 CROSSTALK The Journal of Defense Software Engineering December 1998

It is generally accepted that re-
quirements are the foundation
upon which the entire system is

built. Also accepted is that require-
ments verification and validation is
needed to assure that the functionality
specified in the requirements has been
delivered. However, all too often, re-
quirements are not satisfied, which
means you fix what you can and accept
that certain functionality will not be
there. A better approach is to get the
requirements right the first time. Com-
plete, concise, and clear requirements
will give the implementer a precise
blueprint with which to build the sys-
tem. Getting the requirements right is
not done by magic but through the
application of tools and metric analysis
techniques in requirements specifica-
tion, requirements verification, and
requirements management.

Because both parties must under-
stand the requirements that the acquirer
expects the provider to contractually
satisfy, specifications are usually written
in natural language. The use of natural
language to prescribe complex, dynamic
systems has at least two severe prob-
lems: ambiguity and inaccuracy. Many
words and phrases have dual meanings
that can be altered by the context in
which they are used. To define a large,
multidimensional capability within the
limitations imposed by the linear, two-
dimensional structure of a document
can obscure the relationships between
individual groups of requirements. The
first part of this article looks at types of
requirements-specification terminology,

some of which can contribute to ambi-
guity and misinterpretation.

Requirements-based testing is criti-
cal to the implementation of software
systems. Automated tools, if properly
used, open the door to assess the scope
and potential effectiveness of the test
program. A wealth of information can
be obtained through proper implemen-
tation of a database that tracks require-
ments at each level of decomposition
and the tests associated with the verifi-
cation of these requirements. From this
database, the project can gain impor-
tant insight into the relationship be-
tween the test and requirements. The
second part of this article outlines some
of the important insights into NASA
project test programs developed from
analyses of this type.

Requirements management is a
volatile, dynamic process. The skill with
which project workers maintain, keep
current, track, and trace the project’s set
of requirements affects every phase of
the project’s software development
lifecycle—including maintenance.
Months or years before project comple-
tion, effectively managed requirements
determine how, when, and how expen-
sively completion will take place.

Before processing requirements, the
schema for the requirements manage-
ment database must be developed. The
final portion of this article describes
some critical issues identified by the
SATC that are needed to effectively
manage requirements databases. It also
discusses lessons learned on how to
effectively design and maintain require-
ments databases.

Development Environment
To demonstrate how metrics can pro-
vide the insight needed to get the re-
quirements right, data from a large
NASA project, Project X, will be used.
This anonymous project implements a
large system in three main incremental
builds.1 The development of these
builds is overlapping, design and cod-
ing of the second and third builds start-
ing before the completion of the first
build. Each build adds new functional-
ity to the previous build and satisfies a
further set of requirements.

NASA defines requirements in four
levels of detail. “Mission-Level Require-
ments” for the spacecraft and ground
system are System Level 1; they are the
highest level and rarely, if ever, change.
Level 1 requirements then undergo
decomposition to produce “Allocated
Requirements,” called Level 2; these
also are high level, and change should
be minimal. Level 2 requirements are
then divided into subsystems, and a
further level is derived in greater detail,
hence, “Level 3: Derived Require-
ments.” Generally, contracts are bid
using this level of requirements detail.
Each requirement in Level 2 traces
bidirectionally to one or more require-
ments in Level 3. “Detailed Require-
ments” are found in Level 4; these are
used to design and code the system.
There also is bidirectional tracing be-
tween Level 3 requirements and Level 4
requirements. To verify the require-
ments, two stages of testing are used.
System tests are designed to verify the
Level 4 requirements, then acceptance
tests are used to verify the Level 3 re-
quirements.

Doing Requirements Right the First Time
Theodore F. Hammer, Goddard Space Flight Center

Leonore L. Huffman and Linda H. Rosenberg, Unisys Federal Systems

The criticality of correct, complete, testable requirements is a fundamental tenet of software
engineering. The success of a project, both functionally and financially, is directly affected by
the quality of the requirements. Also critical is the complete requirements-based testing of the
final product. This article addresses three critical aspects of requirements: definition, verifica-
tion, and management. Project data collected from NASA Goddard Space Flight Center
(GSFC) by the Software Assurance Technology Center (SATC) will be used to demonstrate
these concepts and explain how any project, large or small, can apply this information.

CROSSTALK The Journal of Defense Software Engineering 21December 1998

Requirements Specification
The importance of correctly document-
ing requirements has caused the soft-
ware industry to produce a significant
number of aids [1] to create and man-
age requirements specification docu-
ments and individual specifications
statements; however, few of these aids
help evaluate the quality of the require-
ments document or the individual
specification statements. The SATC has
developed a tool to parse requirements
documents. The Automated Require-
ments Measurement (ARM) software
was developed to scan a file that con-
tains the text of the requirements speci-
fication. The software searches each line
of text for specific words and phrases
that are indicated by the SATC’s studies
to be an indicator of the document’s
requirements specification quality.
ARM has been applied to 56 NASA
requirements documents, and seven
measures have been developed.
• Lines of Text – Physical lines of text

as a measure of document size.
• Imperatives – Words and phrases

that command that something must
be done or provided, e.g., shall,
must, will, should, is required to,
are applicable, and responsible for.
The number of imperatives is used
as a base requirements count.

• Continuances – Phrases that follow
an imperative and introduce the
requirements specification at a lower
level for a supplemental requirements
count, e.g., as follows, following,
listed, in particular, and support.

• Directives – References provided to
figures, tables, or notes, e.g., figure,
table, for example, and note.

• Weak Phrases – Clauses that are apt
to cause uncertainty and leave room
for multiple interpretations or a
measure of ambiguity, e.g., ad-
equate, as applicable, as appropriate,
as a minimum, be able to, be ca-
pable, easy, effective, not limited to,
and if practical.

• Incomplete – Statements within the
document that have “TBD” (to be
determined) or “TBS” (to be sup-
plied).

• Options – Words that seem to give
the developer latitude to satisfy the

specifications but that can be am-
biguous, e.g., can, may, and option-
ally.
It must be emphasized that the tool

does not attempt to assess the correct-
ness of the requirements specified. It
assesses individual specification state-
ments and the vocabulary used to state
the requirements and also has the capa-
bility to assess the structure of the re-
quirements document.2

To see how this tool would be used
to assess the quality of a requirements
document, the Project X Level 3 re-
quirements document was analyzed
using the ARM tool. Table 1 shows the
results in contrast to statistics from the
56 previous documents.

From this analysis, several things
become clear. First, the document
shows some strengths: There appear to
be a good number of imperatives, and
the number of weak phrases is low
compared to the family of NASA docu-
ments processed through the ARM tool
to date; however, the document shows
some significant weaknesses. The docu-
ment has a large amount of text given
the number of imperatives. This indica-
tes a wordy document, which can ob-
scure the requirements and prevent
them from being clear and concise. The
document also has a large number of
incomplete requirements that contain
TBDs and TBSs—on this point alone,
the document can be judged not ready
for use. Also, this document has a large
number of options, which increases the
uncertainty about what is required of
the system to be developed. Options

leave decisions about the system to the
implementers, many times without
sufficient direction or instruction about
option selection criteria. As a result, the
implementation varies widely, from
some of the options to none.

Engineers have always wanted to get
the requirements right in the specifica-
tion, but there has been little available in
terms of analysis tools to allow them to
visualize the quality of the documenta-
tion. Now, with the ARM tool, the qual-
ity aspects of the documentation can be
visualized, and necessary action can be
taken to improve the documentation.

Requirements Volatility
Requirements testing is vital to getting
the requirements right. Many times it is
overlooked in favor of testing code, but
if the software does not conform to the
requirements, it is just as defective as if
it were full of bugs. Good requirements
testing relies on a good verification
program, which in turn must rest on an
analysis of requirements volatility and
linkage. An effective verification pro-
gram comprises a test profile made after
linkage of requirements is analyzed and
after considering requirements volatil-
ity. Again, data from Project X will
demonstrate the utility of metrics in
requirements verification.

Requirements stability impacts the
verification effort because testing can-
not be planned or designed when the
requirements are continually in a state
of flux. Figure 1 shows how metrics
provide insight into requirements sta-
bility while also demonstrating the

Table 1. Requirements specification analysis example.

muminiM 341 52 51 0 0 0 0

naideM 562,2 283 381 12 73 7 72

egarevA 4, 277 286 324 94 07 52 36

mumixaM 82 , 954 3, 698 811 422 4 23 031

dradnatS
noitaiveD

957 651 99 21 12 02 93

XtcejorP 43 , 466 1, 671 417 378 31 084 781

Lin
es

 of
 Te

xt

Im
pe

ra
tiv

es

Co
nt

in
ua

nc
es

Di
re

cti
ve

s

W
ea

k
Ph

ra
se

s

In
co

m
pl

ete

Op
tio

ns

56
 N

AS
A

Do
cu

m
en

ts

Doing Requirements Right the First Time

22 CROSSTALK The Journal of Defense Software Engineering December 1998

importance of examining an issue from more than one angle.
According to the graph on the left side of the figure, the total
number of requirements has stabilized in time for the Critical
Design Review (CDR); however, the graph on the right
shows that the requirements are not stable—modifications
and deletions are still taking place. This almost constant
change in the requirements will endanger the verification
program.

Requirements stability can also be viewed in terms of the
completeness of requirements traceability. Requirements
traceability is the linkage of the requirements at one level to
the requirements at the next lower level. Missing linkage may
indicate missing requirements. Figure 2 shows the linkage of
Level 3 requirements to Level 4 requirements. In all cases,
there is missing linkage (white bar of graph) between Level 3
and Level 4 requirements, indicating that the Level 4 require-
ments may be incomplete for a CDR held for any one of
these builds.

Requirements Verification
The objective of an effective verification program is to ensure
that every requirement is tested, the implication being that if
the system passes the test, the requirement’s functionality is
included in the delivered system [1, 2]. The traceability of
the requirements to test cases therefore needs to be assessed.
It is expected that a requirement will be linked to a test case

and may well be linked to more than one test case, as shown
in Figure 3 [3, 4].

The important aspect of this analysis is to determine
which requirements have not been linked to any test cases.

Figure 4 shows the traceability of requirements to test
cases for Project X around the CDR time frame for Build 2.
The profiles show several problems. First, the poor traceabil-
ity between the requirements and test cases for Build 1 indi-
cates that the requirements management tool was not used
effectively early in the project lifecycle. Second, there seems
to be a mix-up in the test priorities by the implementer. The

Figure 1. Requirements stabilization—volatility. Combination of both views indicates risk area: Requirements are not yet stable.

Figure 2. Requirements traceability.

Figure 3. Requirements verification – trace to test linkage.

test program for Build 3 is farther along than that for Build
2, even though Build 2 will be developed and tested before
Build 3. Resources may have been inappropriately allocated
to the development of the test program for Build 2. Last, the
test program for the Level 4 requirements is behind that for
the test program for the Level 3 requirements. Again, this is
backward. The first tests to be executed should be those for
the Level 4 requirements—the system tests—and after that,
tests for the Level 3 requirements—the acceptance tests—
should be executed.

Requirements Test Cases
Not only is it important to understand whether all the re-
quirements are linked to test cases, the character of the test
program also needs to be understood. This can be done by
looking at the profile and relationship of requirements to test
cases. Figure 5 shows an expected profile of unique require-
ments per test case based on data from NASA projects [5].

This profile shows the expectation that there will be a
large number of requirements tested by only one test case and
that there will be some requirements that will be tested by

Requirements Management

CROSSTALK The Journal of Defense Software Engineering 23December 1998

Figure 4. Requirements verification trace to test.

Figure 5. Test program characterization tests per requirement. Some
requirements will be tested only once or can be group tested. Complex
requirements need multiple tests.

Figure 6. Test program characterization tests per requirement.

multiple test cases. It is expected that the upper bound of
multiple test cases will range in the double-digits because
more complicated requirements may require different test
cases to thoroughly verify all aspects of the requirements.
However, there is a logistical limit on the number of test

cases that can be performed; as the number of test cases in-
creases, the difficulty in verifying the requirements increases
due to the complication in data analysis, understanding the
results of the multiple tests cases, and understanding the
impact of multiple test case results on the verification of the
requirements. Figure 6 shows the requirements-to-test-case
profile for Project X. There is a good indication that a large

number of requirements are covered by just one test, which
makes for a simple, easy-to-evaluate test program for a sig-
nificant part of the system requirements. However, in several
instances for both Build 2 and Build 3, there are several tests
for unique requirements. Notice that for Build 2, one re-
quirement has been linked to 25 test cases, and in Build 3,
that same requirement is linked to 51 test cases. This large
number of test cases may well make it impossible to verify
that these requirements have been implemented.

Requirements Management Tools
The use of tools to aid in requirements management has be-
come an important aspect of system engineering and design
because of the size and complexity of development efforts. The
tools that requirements managers use for automating the re-
quirements engineering process have reduced the drudgery in
maintaining a project’s requirements set and added the benefit
of significant error reduction. Tools also provide capabilities far
beyond those obtained from text-based maintenance and pro-
cessing of requirements. Requirements management tools are
sophisticated and complex—the nature of the material for
which they are responsible is finely detailed, time-sensitive,
highly internally dependent, and can be continuously chang-
ing. Tools that simplify complex tasks require skill and a thor-
ough understanding of their capabilities if they are to perform
effectively over the lifetime of a project [6].

Doing Requirements Right the First Time

24 CROSSTALK The Journal of Defense Software Engineering December 1998

Table 2. Requirement repository metric capabilities.

droW
rossecorP teehsdaerpS

lanoitaleR
esabataD

tnemeriuqeR
looT

eziStnemucoD X

segnahCcimanyD
emiTrevO X

eziSesaeleR X X X X

tnemeriuqeR
eliforPnoisnapxE X X

sepyTtnemeriuqeR X X X X

tnemeriuqeR
noitacifireV X X

ytilitaloVtnemeriuqeR X X X X

egarevoCtseT X X

napStseT X X

sepyTtseT X X X X

There are many requirements management tools from
which to choose. These range from simple word processors to
spreadsheets to relational databases to tools designed specifi-
cally for the management of requirements, such as DOORS
(Quality Systems & Software, Mount Arlington, N.J.) or
RTM: Requirements Traceability Management (Integrated
Chipware, Inc., Reston, Va.). The key to selecting the appro-
priate tool is the functionality provided and the capability to
develop metrics from the data.

The metric capability of the tool is important. It should be
noted that most of the metrics presented in this article were
developed from the data contained in a requirements manage-
ment tool. Table 2 shows a comparison of the metric capability
associated with the various tools. Clearly, the relational data-
base and requirements management tool provide the capabili-
ties needed to effectively support requirements management.

Tool selection is only part of the equation. A thorough
understanding of the tool’s capabilities and the management
processes that will use the tool also is necessary. The tool
should not be plugged into the management processes with
no thought to the impact on the tool’s capabilities. Adjust-
ments may be needed in the management processes and em-
ployment of the tool to bring about an efficient requirements
management process. Briefly, Project X had the following
problems with the requirements management tool.

Project X’s focus on establishing a requirements manage-
ment process was influenced by project organization. The
way the project chose to use the tool appeared reasonable
on the surface but was fraught with flaws stemming from
inexperience, and ultimately it worked against clear man-
agement. Specifically, many classes (tables or relations)
mirrored organizational structure instead of a single class
existing for each development phase. With a multiple test
class and requirements class approach, there was a natural
tendency for the organizations to “improve” the data
schema definitions assigned to them. The result was losses
in data integrity and restricted access to important informa-
tion about the requirements. Some information that should
have been available to all project organizations became
specific to a particular organization [6].

Because multiple classes were implemented at the test-by-
build level, fields were duplicated to each of the test classes;
common information then became self-contained within
each class. However, confusion developed between the test
organizations as to which one was responsible for populating
common data, all of which lead to inconsistent data entries
and prevented effective data mining [7]. Also, due to the
multiple-class approach, links that traced requirements to
tests also became extensive and conflicting. Because the
project decided to organize the database schema along the
lines of the organization, it was necessary to provide the
traceability of requirements to requirements and test case to
requirements by connections between many classes. This
resulted in a complex, undocumentable traceability relation-
ship between the system test cases and the two levels of re-
quirements. Most requirements tools are designed to use

minimal classes and effect decomposition within a class, not
between classes [6].

Conclusion
To do requirements right the first time, the following compo-
nents must be present: quality documentation, a complete
and appropriately structured verification program, and effec-
tive requirements management. Quality documentation is
complete, clear, and concise—concepts that used to be con-
sidered ethereal and difficult to measure or visualize. Now,
with the advent of tools like ARM, metrics can be developed
to show the strengths and weaknesses of the requirements
documentation. The completeness of the verification pro-
gram used to be the only aspect that was easily understood.
Now, through the use of metrics, project workers not only
can gain insight into the completeness of the test program
but also can understand the overall characteristics of the
verification program. Effective requirements management
now demands the appropriate use of management tools or
databases or both through the development lifecycle.
Through their use, the development of metrics to gain in-
sight into the nature of the requirements is enabled. Metrics
provide a powerful tool to gain insight into each of these
areas and give the project the ability to get the requirements
right the first time. It is no longer a dream but a reality. ◆

About the Authors
Theodore F. Hammer is the NASA manager for the SATC at
NASA’s GSFC. He is responsible for managing software quality
assurance activities for selected spacecraft implementation
projects. Prior to this position, he was a member of the Assur-

Requirements Management

CROSSTALK The Journal of Defense Software Engineering 25December 1998

ance Management Office, where he was
responsible for managing the overall
quality assurance activities for specific
ground system implementation projects,
with special emphasis on software quality
assurance. He has more than 22 years
experience in software development and
assurance. He joined NASA GSFC in
1989, where he supported NASA Head-
quarters Software Management Assurance
Program and participated in the review of
the early versions of the military software
development standard, MIL-STD-498, as
well as NASA software development and
assurance standards and guidebooks. He
has a bachelor’s degree in electrical engi-
neering from the University of Maryland
and is a member of the American Society
for Quality.

Goddard Space Flight Center
Code 302
Greenbelt, MD 20771
Voice: 301-286-7475
Fax: 301-286-1701
E-mail: thammer@pop300.gsfc.nasa.gov

Lenore L. Huffman is a principal engi-
neer with SATC. She has more than 14
years software engineering and quality
assurance experience. She is expert in the
design, implementation, and execution of
data collection, database structures, and
metrics reporting and analysis. She also is
expert in the design and use of state-of-
the-art database reporting systems. She
has extensive experience automating
configuration management and problem
reporting systems and adapting their
capabilities to satisfy unique project
requirements. She has successfully
planned, designed, and implemented
software quality assurance projects. Prior
to joining the SATC, she developed met-

rics for software at the Space Telescope
Institute, and while working at a chemi-
cal research center, was awarded several
U.S. patents. She has a master’s degree in
business administration.

Goddard Space Flight Center
Code 300.1, Building 6
Greenbelt, MD 20771
Voice: 301-286-0099
E-mail: Lenore.L.Huffman.1@gsfc.nasa.gov

Linda H. Rosenberg is an engineering
section head at Unisys Government Sys-
tems in Lanham, Md. She is contracted
to manage the SATC through the System
Reliability and Safety Office in the Flight
Assurance Division at NASA GSFC. She
is responsible for risk management train-
ing at all NASA centers, and the initia-
tion of software risk management at
NASA GSFC. As part of the SATC out-
reach program, she has presented metrics
and quality assurance papers and tutorials
at GSFC, the Institute of Electrical and
Electronic Engineers (IEEE), and the
Association for Computing Machinery
(ACM) local and international confer-
ences. She also reviews for ACM, IEEE,
and military conferences and journals.
She holds a doctorate in computer sci-
ence from the University of Maryland, a
Master’s of Engineering Science in com-
puter science from Loyola College, and a
bachelor’s degree in mathematics from
Towson State University. She is a member
of IEEE, the IEEE Computer Society,
ACM, and Upsilon Pi Epsilon.

Goddard Space Flight Center
Code 300.1, Building 6
Greenbelt, MD 20771
Voice: 301-286-0087
E-mail: Linda.H.Rosenberg.1@gsfc.nasa.gov

References
1. Brooks Jr., Frederick P., “No Silver

Bullet: Essence and Accidents of Soft-
ware Engineering,” IEEE Computer,
Vol. 15, No. 1, April 1987, pp. 10-18.

2. Hammer, T., L. Huffman, L.
Rosenberg, W. Wilson, L. Hyatt, “Re-
quirements Metrics for Risk Identifica-
tion,” Software Engineering Laboratory
Workshop, Goddard Space Flight Cen-
ter, December 1996.

3. NASA, Software Assurance Guidebook,
NASA Goddard Space Flight Center
Office of Safety, Reliability, Maintain-
ability, and Quality Assurance, Septem-
ber 1989.

4. Wilson, W., L. Rosenberg, and L.
Hyatt, “Automated Analysis of Require-
ments Specifications,” Fourteenth
Annual Pacific Northwest Software
Quality Conference, October 1996.

5. Hammer, T., “Measuring Requirements
Testing,” Eighteenth International
Conference on Software Engineering,
May 1997.

6. Hammer, T., “Automated Requirements
Management – Beware How You Use
Tools,” Nineteenth International Con-
ference on Software Engineering, April
1998.

7. Chen, M., J. Han, and P. Yu, “Data
Mining: An Overview from a Database
Perspective,” IEEE Transactions on
Knowledge and Data Engineering, Vol. 8,
No. 6, December 1996.

Notes
1. Various names are used—deliveries,

releases, builds—but the term build is
used in this article.

2. This tool is available at no cost from the
SATC Web site http://satc.gsfc.nasa.gov.

Doing Requirements Right the First Time

26 CROSSTALK The Journal of Defense Software Engineering December 1998

Impact Estimation (IE) tables allow you to analyze any
technical or organizational idea in relation to require-
ments and costs. It is a method I have developed over the

last 20 years, and it works! To give one example, shortly after
we taught the idea to a manufacturing group, they declared it
was worth a million dollars. Using IE for the first time, they
presented a bid for project money to management and got the
full budget they requested—$1 million more than they had
expected!

Aims of IE
IE can be used for a wide variety of purposes [1]. Its most
important uses include
• Comparing alternative design ideas.
• Estimating the state of the overall design architecture.
• Planning and controlling evolutionary project delivery

steps.
• Analyzing risk.

I use IE tables when evaluating projects to help answer my
“Twelve Tough Questions.”
• Why is the improvement not quantified?
• What is the degree of the risk or uncertainty and why?
• Are you sure? If not, why not?
• Where did you get that information? How can I check

it out?
• How does your idea measurably affect my goals?
• Did we forget anything critical to survival?
• How do you know it works that way? Did it before?
• Have we got a complete solution? Are all objectives

satisfied?
• Are we planning to do the “profitable things” first?
• Who is responsible for failure or success?
• How can we be sure the plan is working during the

project—early?
• Is it “no cure, no pay” in a contract? Why not?

A More Quantitative Approach
The basic IE idea is simple: Estimate quantitatively how much
your design ideas impact all critical requirements. As simple as
this is, software engineers do not normally do it. We judge too
narrowly. We only treat the costs, e.g., development costs and
operational costs, quantitatively. The qualities, e.g., usability,
system availability, and system flexibility, tend to be handled
subjectively. There are two important underlying issues here.
First, we need to express our requirements in a quantitative
manner. Second, we need to gather objective data about our
technologies. We can make a start by making use of practical
experience data.

How to Quantify and Document the Relationship
Between Requirements and Design
First, I will show how to express the relationships between the
system requirements and your new design ideas using IE.
Later, I will show how this analysis and presentation discipline
can be used to analyze many design ideas (the overall system
architecture) in relation to all system requirements.

IE focuses on the system qualities and costs. It is a question
of how a design idea impacts all the critical qualities, e.g., per-
formance, usability, and reliability, and how it impacts all the
costs (money, time, people, and space) to build, deliver, and
maintain the design idea. A design idea is “effective” to the
degree it satisfies specified requirement levels of qualities. A
design idea is cost-effective (“efficient”) to the degree it is effec-
tive in relation to all costs.

Note: IE does not consider functions. The quality and cost
requirements for the system are the prime considerations.
Design ideas are evaluated as to how “good” and cost-effective
they will be at delivering the qualities required. For example,
when considering how to transport a person from point A to
point B, it is the quality and cost requirements (such as flex-
ibility of travel times, safety, reliability, comfort, and price) that
select the best design idea (such as airplane, foot, rocket, or
ambulance).

A Simple Relationship Between Requirements
and Design Ideas
I will start simple and expand scope later. Assume I have a
requirement (a constraint) that my budget not exceed
$100,000. Also assume that I have a design idea—I will call it

Impact Estimation Tables
Understanding Complex Technology Quantitatively

Tom Gilb
Independent Consultant

How good is your design suggestion? Does anybody else understand why you think the technol-
ogy you suggest is such a great idea? Would you like to know how to shoot down those dumb
ideas that consultants and your colleagues use to entice your managers? Would you like a great
approach to prove your technical expertise to the world? We may have it right here.

Table 1. A simple IE table.

Software Engineering Technology

:aedIngiseD aedIgiB tcapmIlaeR TCAPMI%

ytilibaileR=ytilauQ
1=nalP , 9991rebmeceDfodneybFBTMsruoh000

1, sruoh000
FBTM

tnecrep001

tegduBtnempoleveD=tsoC
=nalP $ 001 , 9991rebmeceDfodneotpu000

$ 01 , 000 tnecrep01

CROSSTALK The Journal of Defense Software Engineering 27December 1998

Big Idea—that I estimate will cost
$10,000 (10 percent of my budget).

I also have a quality requirement—I
will call it Reliability—which is to reach
mean time between failures (MTBF) of
1,000 hours by the end of December
1999. If I believe that Big Idea will reach
1,000 hours MTBF within the time
scales, it satisfies my requirement for
Reliability completely (100 percent).
You can express this with a simple IE
table (Table 1).

Further Improvements to
Specifying the
Relationship
There are a number of
improvements to this
basic idea, which make it
more communicative and

credible. Following is a brief summary of
them.

Impact Relative to a Defined
Baseline
For all qualities, it is essential to define a
baseline. Usually, the current value
achieved by the “old” system is used. For
example, if “900 hours MTBF” was the
level for reliability of our previous sys-
tem, we could use that as a reference
base. This can be stated using Planguage,
my Requirements Planning Language
[1], as PAST [September 1997] 900
hours MTBF. It is the minimum level or
0 percent level because only when the
system’s MTBF is higher than 900 hours
will any progress have been made on
improving reliability.

The planned level by December
1999 is 1,000 hours MTBF. Using
Planguage, this is expressed as PLAN
[December 1999] 1,000 hours MTBF.
This is the 100 percent level. When we
have improved the MTBF to this level,
we shall have completely met our reli-
ability requirement. (Exceeding a re-
quirement is fine as long as we have not
incurred additional costs or failed to
divert resources that could have been
expended on achieving other require-
ments.)

If the impact of Big Idea was esti-
mated at 900 hours, we would be mak-
ing no forward progress toward our
planned level. In other words, the per-
centage impact of Big Idea (from base to
plan) is 0 percent. It is unlikely that
anyone needs a new idea to get to where
they are already.

However, if the impact of Big Idea
was estimated at 950 hours MTBF, it is
a much more interesting design idea. Its
percentage impact is 50 percent, half-
way between the base of 900 hours (0
percent) and the goal of 1,000 hours
(100 percent).

Note, the percentage impact on plan
(%IMPACT) can only be estimated if
there is both a baseline and a planned

tsaP:tnemeriuqeR Þ nalP noetamitsE(tcapmIlaeR
)aedIgiBrofelacslaer

nalpotevitaleR
)etamitseesabdna(

ytniatrecnU
etamitsE

ecnedivE ecruoS ytilibiderC

009:ytilibaileR Þ 1, FBTMsruoh000 059 tnecrep05 %01-/+ FBTMsruoh049AtcejorP 710-RT 6.0

Table 2. An example of how credibility ratings
can be assigned.

Table 3. Example: The set of data for a single-cell estimate of the impact of Big Idea on reliability.

Impact Estimation Tables: Understanding Complex Technology Quantitatively

ytilibiderC
gnitaR

gninaeM

0.0 sseugdliW , .ytilibidercon

1.0 enodneebsahtiwonkeW
.erehwemos

2.0 tnemerusaemenoevaheW
.erehwemos

3.0 nistnemerusaemlareveseraerehT
.egnardetamitseeht

4.0 ruoottnavelererastnemerusaemehT
.esac

5.0 sitnemerusaemfodohtemehT
.elbailerderedisnoc

6.0 .esuoh-nidohtemehtdesuevaheW

7.0 -nistnemerusaemelbailerevaheW
.esuoh

8.0 stnemerusaemesuoh-nielbaileR
lanretxetnednepedniotetalerroc

.stnemerusaem

9.0 sihtnoaediehtdesuevaheW
.tiderusaemdnatcejorp

0.1 ytilibiderctcefreP , diloskcorevahew ,
deetnaraug-tcartnoc , mret-gnol ,

noaedisihthtiwecneirepxeelbiderc
tcejorpsiht , erastluserehtdna

.raeppasidotylekilnu

level. %IMPACT is useful because it
enables us to “add” the percentage im-
pacts from different scales-of-measure, as
will be explained later.

Uncertainty of Impact
All estimates are uncertain. It is useful to
estimate how uncertain they are. This
helps you understand the risk of not
meeting desired goals. So if the uncer-
tainty for the estimate of 950 hours
MTBF was plus or minus 10 hours, our
estimate of 950 hours becomes 950+/-
10, which could be expressed alterna-
tively as a percentage impact of 50 +/-
10 percent. The negative number (-10
percent) can be used to modify estimates
to discover the worst-case situation.

Evidence for Impact Assertion. If
you want any credibility for your asser-
tions, you should be prepared to supply
facts to back them up. Instead of waiting
to be asked, dig up the facts and docu-
ment them in advance. This shocks
people—they are not accustomed to
being offered facts. For example, “Big
Idea was used for 10 projects last year in
our company, and the range of MTBF
attributed to it was 940 to 960 hours
MTBF, average 950.”

Source of Evidence for Impact As-
sertion. Of course, some skeptics might
like to verify your assertion and evi-
dence, so you should give them a source
reference, e.g., “Company Research
Report TR-017, pp. 23-24.”

Credibility Rating of the Impact
Assertion
We have found it extremely useful (it
was a key part of getting the $1 million
mentioned earlier) to establish a numeric
credibility for an estimate, based on the
credibility of the evidence and the
source. We use a scale of 0.0 to 1.0 be-
cause it can then be used later to modify
estimates in a conservative direction. See
Table 2 for an example of how credibil-
ity ratings can be assigned.

28 CROSSTALK The Journal of Defense Software Engineering December 1998

The credibility rating is useful because it forces you to
analyze, gather data, and raise the credibility to an acceptable
level. Normally, people make no effort here.

Further Analysis of the IE Data
Now assume you have numerous critical qualities and that you
have completed an IE table using several design ideas. There
are now a number of calculations using the %Impact estimates
you can do to help understand the robustness of your proposed
solution.

I stress that these are only rough, practical calculations.
Adding impacts of different independent estimates for differ-
ent design ideas that are part of the same overall architecture is
dubious in terms of accuracy. But as long as this is understood,
you will find them extremely powerful when considering such
matters as whether a specific quality goal is likely to be met or
which is the most effective design idea. The insights gained are
frequently of use in generating new design ideas.

I add an additional cautionary note: I expect this informa-
tion to only be used as a rough indicator to help designers spot
potential problems or select design ideas. Any real estimation
of the impact of many design ideas needs to be made by real
tests; ideally, by measuring the results of early evolutionary
steps in the field.

Impact on Quality
For each individual quality or cost, sum all the percentage
impacts for the different design ideas. This gives us an under-
standing of whether you are likely to make the planned level
for each quality or cost. Extremely small quality impact sums
like 4 percent indicate high risk that the architecture is prob-
ably not capable of meeting the goals. Large numbers like 400
percent indicate you might have enough design or even a
“safety margin.”

Impact of a Design Idea
For each individual design idea, sum all the percentage impacts
it achieves across all the qualities to get an estimate of its over-
all effectiveness in delivering the qualities. The resulting esti-
mates can be used to help select among the design ideas. It is a
case of selecting the design idea with the highest estimate value

Figure 1. A 3-D representation of an IE table. “Benefit” shows the summed total
of all the %Impacts for the qualities. Note: The design idea (Documentation
Process) that contributes most toward meeting the requirements is shown to not be
the most cost-effective. Note also, the summed total for each of the objectives, i.e.,
the totals if all the design ideas were implemented, has not been calculated.

Table 4. Example: Adding the percentage impacts for a set of design ideas on
a single quality or cost can give some impression of how the designs are
contributing overall to the project goals. Note: Design Ideas A, B, and C are
independent and complementary.

Software Engineering Technology

and the best fit across all the critical quality requirements. If
the design ideas are complementary, the aim is to choose
which design idea(s) to implement first. If the design ideas
are alternatives, you are merely looking to determine which
one to pick.

These estimates are something like universal currency. Each
estimate tells how well you are moving toward your goals. It
allows you to get some impression of the overall impact of a
single design idea. For example, if a design idea has 50 percent
impact on each of the different goals, I might console myself
by rationalizing that I have designed enough to get halfway to
my goals.

In addition to looking at the effectiveness of the individual
design ideas in impacting the qualities, the cost of the indi-
vidual design ideas also needs to be considered, as will be
shown in the next section.

Quality-to-Cost Ratio
For each individual design idea, calculate the quality-to-cost
ratio, also known as the benefit-to-cost ratio. For quality, use
the estimate calculated in the previous section. For cost, use
the percentage drain on the overall budget of the design idea or
use the actual cost.

The overall cost figure used should take into account both
the cost to develop or acquire the design idea and the cost of
operationally running the design idea over the chosen time
scale. Sometimes, specific aspects of resource utilization also
need to be taken into account. For example, maybe staff utili-
zation is a critical factor; therefore, a design idea that does not
use scarce programming skills becomes much more attractive.

My experience is that a comparison of the impact vs. the
cost of design ideas often wakes people up dramatically to ideas
they have previously undervalued or overvalued.

ytilauQ tsaP Þ nalP aedIgiB

ytilibaileR 009 Þ 1, FBTMsruoh000 %01-/+%05

ytilibaniatniaM xifot.nim01 Þ xifot.nim5 %05-/+%001

fotceffefoetamitsE
slaogllanoaedIgiB %06-/+%051

etamitsEdegarevA %03-/+%57

CROSSTALK The Journal of Defense Software Engineering 29December 1998

Average Credibility and Risk
Analysis
Once you have all credibility data, i.e.,
the credibilities for all the estimates of
the impacts of all the design ideas on all
the qualities, you can calculate the aver-
age credibility of each design idea and
the average credibility of achieving each
quality. This information is powerful
because it helps you understand the risk
involved; for example, “the average cred-
ibility, quality controlled, for this alter-
native design idea is 0.8.” Sounds good.
This approach also saves meeting time
for those who hold the purse strings.

As long as you do not get carried
away and attempt too many calculations,
it can help your understanding of the
risks involved if you modify your esti-
mates using the worst-case error or cred-
ibility ratings. Altering an estimate to its
worst-case value is a matter of subtract-
ing or adding the worst-case error cor-
rection to the estimate. To modify an
estimate to take into account its credibil-
ity, multiply the estimate by its credibil-
ity rating. Multiplying a worst-case
estimate by its credibility rating will give
you the most pessimistic value. Once
you have reworked the estimates, you
can then recalculate the totals.

Conclusion
If you want to move software engineer-
ing toward “real” engineering and to-
ward better control over your results,
introduce systematic and fact-based
thinking into software development.

Selective use of IE tables by project man-
agement would greatly assist communi-
cation with senior management and
improve risk control.

Acknowledgments
I thank Barry Boehm of the University
of Southern California, who at the 1974
International Federation of Information
Processing Societies Conference in
Stockholm showed me his Require-
ments/Properties Matrix, a precursor to
Quality Function Deployment, which
challenged me to provide the quantifica-
tion aspects of IE tables. He has always
provided an appreciative audience to my
evolution of the method and is an inspi-
ration to us all. I also thank Steve
McConnell for his initial suggestion,
help, and comments on this article and
Lindsey Brodie for editing this article. ◆

About the Author
Tom Gilb immigrated
from California to Eu-
rope in 1956. In 1958,
he began working for
IBM in Norway, and
five years later became a

Table 5. A measure of the effectiveness of Big Idea can be found by adding together its percentage
impacts across all the qualities.

National Software Quality Experiment
A Lesson in Measurement: 1992-1997

Don O’Neill, Independent Consultant

The nation’s prosperity is dependent on software. The National Software Quality Experiment is riveting attention on software
product quality and revealing the patterns of neglect in the nation’s software infrastructure. In 1992, the Department of Defen se
Software Technology Strategy set the objective to reduce software problem rates by a factor of 10 by the year 2000. The Nationa l
Software Quality Experiment is being conducted to benchmark the state of software product quality and to measure progress toward
the national objective. Motivation for the experiment, methods used to collect data, and an analysis of the findings are presented.

This article can be found in its entirety on the Software Technology Support Center Web site at http://
www.stsc.hill.af.mil/CrossTalk/crostalk.html. Go to the “Web Addition” section of the table of contents.

Impact Estimation Tables: Understanding Complex Technology Quantitatively

freelance consultant. He is author of sev-
eral books, including Software Metrics
(1976-77), Software Inspection (1993), and
Principles of Software Engineering Manage-
ment (1998). He spends about half his
time working in the United States and half
in Europe.

Internet: http://www.result-planning.com
E-mail: Gilb@ACM.org

Reference
1. Gilb, Tom, “Requirements-Driven Man-

agement Using Planguage,” http://
www.stsc.hill.af.mil/SWTesting/
gilb.html, http://www.result-
planning.com, 1995-1996.

Recommended Reading
1. Akao, Yoji, ed., Quality Function Deploy-

ment: Integrating Customer Requirements
into Product Design, Productivity Press,
Cambridge, Mass., 1990.

2. Gilb, Tom, EVO: The Evolutionary
Project Manager’s Handbook, http://
www.result-planning.com.

3. Gilb, Tom, Principles of Software Engi-
neering Management, Addison-Wesley
Longman, Boston, Mass., 1988.

AaedIngiseD BaedIngiseD CaedIngiseD fomuS
stcapmI

muS
ytniatrecnU

009ytilibaileR Þ
1, FBTMsruoh000

%01-/+0 %02-/+01 %04-/+05 %06 %07-/+

Web Addition

30 CROSSTALK The Journal of Defense Software Engineering December 1998

Early in 1996, the National Re-
search Council’s Computer Sci-
ence and Telecommunications

Board (CSTB), began to search for com-
mittee members to serve on a committee
chartered to perform a “Review of the
Past and Present Contexts for using Ada
within the Department of Defense.”
Twelve people were selected: Barry
Boehm (committee chairman), Theodore
Baker, Wesley Embry, Joseph Fox, Paul
Hilfinger, Maretta Holden, J. Eliot, B.
Moss, Walker Royce, William L.
Scherlis, S. Tucker Taft, Anthony
Wasserman, and me. Paul Semenza,
National Research Council (NRC), was
assigned to guide the committee, provide
administrative support, and to serve as
interface between the committee and
DoD. This article outlines the delibera-
tions of the committee, the final recom-
mendations, and comments on what has
happened since publication of the final
report, entitled Ada and Beyond: Software
Policies for the Department of Defense
[1]. It represents my impressions and
thoughts and is not an official opinion
of the NRC, the committee members,
or DoD.

The committee met in a three-day
group session four times during April
1996 to October 1996: twice in Wash-
ington, D.C., once in Denver, and once
in Los Angeles. Significant work was
accomplished between meetings, and the
committee constantly communicated
electronically. During the first session,
the committee agreed that the issue was
far larger than just a “language decision”
and needed to be taken in the larger
context of DoD software engineering. It
was also determined that the committee
needed to hear from the software devel-
opment community outside DoD. The
committee discovered, through DoD

speakers, that support for the Ada Joint
Program Office (AJPO) was being
dropped—a major concern that resulted
in a finding that was considered critical
to the future of the language.

Findings and
Recommendations
The majority of information in this
section was taken from the final report
[1]. I provide editorial comments after
each rationale to add to background,
better understanding of the issues, or
some of the influences that were present.

Finding 1: Ada Competitive
Advantage
• Finding: Ada provides DoD with a

competitive advantage for war-fight-
ing software applications, including
weapons control, electronic warfare,
performance-critical surveillance, and
battle management.

• Recommendation: Continue vigor-
ous promotion of Ada in war-fighting
application areas.

• Rationale: Available project data and
analyses of programming language
features indicate that compared with
other programming languages, Ada
provides DoD with higher-quality
war-fighting software at a lower life-
cycle cost. DoD can create a further
competitive advantage by strengthen-
ing its Ada-based production factors
(involving software tools, technology,
and personnel) for war-fighting soft-
ware.
It was understood that there was no

clear definition of “war-fighting” soft-
ware. Clearly, some systems are, e.g.,
embedded weapons systems, such as
cruise missile or AEGIS guidance, and
others are arguable, e.g., personnel and
logistics, in a support role. Essentially,

there can never be a concise definition of
war-fighting software. If ample commer-
cial-off-the-shelf (COTS) products exist
that can provide the needed functional-
ity, the system under development is
probably not “war fighting” in the con-
text of this report. Likewise, if the system
requires software quality and reliability
attributes higher than supportable by
commercial products, the system may be
categorized as war fighting.

Finding 2: Applicability of Policy to
DoD Domains
• Finding: DoD’s current requirement

for use of Ada is overly broad in its
application to all DoD-maintained
software.

• Recommendation: Focus the Ada
requirement on war-fighting applica-
tions, particularly critical, real-time
applications in which Ada has dem-
onstrated success. For commercially
dominated applications, such as
office and management support,
routine operations support, asset
monitoring, logistics, and medicine,
the option of using Ada should be
analyzed but should not be assumed
to be preferable.

• Rationale: For war-fighting software,
supporting Ada-based production
factors (involving software tools,
technology, and personnel) gives
DoD a competitive advantage. In this
domain, eliminating the use of Ada
would both compromise this advan-
tage and diminish the capabilities for
maintaining DoD’s existing 50 mil-
lion lines of Ada. In commercially
dominated areas, pushing applica-
tions toward Ada would create a
competitive disadvantage for DoD.
Early in the deliberations, the com-

mittee discussed extensively the total

The Ada Recommendation – Was It Heard?
Rayford B. Vaughn Jr.

Mississippi State University

In January 1997, the National Research Council published a report to the Department of Defense
(DoD) entitled Ada and Beyond, Software Policies for the Department of Defense. The author was
a member of the committee that produced the report. This article looks at the original recommendations
of the report, the process used to produce it, and comments on both intended and unintended results.

Open Forum

CROSSTALK The Journal of Defense Software Engineering 31December 1998

elimination of the mandate, particularly
if DoD was intent on dropping all sup-
port for the AJPO. There were many
instances of overapplication of the man-
date within DoD where COTS products
were bypassed in favor of more expensive
Ada development for no reason other
than the mandate. Subsystems were
rarely considered in the context of the
Ada mandate. Given that DoD would
continue its support for the AJPO and
that there is a stronger Ada production
base here in the United States, the com-
mittee felt that an advantage accrued if
war-fighting software continued to be
developed in Ada.

Finding 3: Scope of Policy
• Finding: DoD’s current requirement

for the use of Ada overemphasizes
programming language consider-
ations.

• Recommendation: Broaden the cur-
rent policy to integrate choice of
programming language with other
key software engineering concerns,
such as software requirements, archi-
tecture, process, and quality factors.

• Rationale: The current policy isolates
the Ada requirement and waiver
process from other software engineer-
ing processes, causing programs to
make premature or nonoptimal deci-
sions. DoD has already taken steps to
broaden the policy focus in its draft
revision of its programming language
policy (DoD Directive 3405.1).
The committee was given a draft

DoD Directive 3405.1 that moved closer
to a software engineering focus vs. a
language-only focus. This draft was then
modified by the committee and provides
an appendix to the final report.

Finding 4: Policy Implementation
• Finding: DoD’s current Ada require-

ment and the related waiver process
have been weakly implemented.
Many programs have simply ignored
the waiver process. Other programs
make programming-language deci-
sions at the system level, but often a
mix of Ada and non-Ada subsystems
is more appropriate.

• Recommendation: Integrate the Ada
decision process with an overall Soft-

ware Engineering Plan Review
(SEPR) process. To pass such a review
should be a requirement to enter the
system acquisition Milestone I and II
reviews covered by DoD Instruction
5000.2. It should also be required for
systems not covered in DoD Instruc-
tion 5000.2 and recommended by
DoD for DoD-directed software
development and maintenance of all
kinds.

• Rationale: The SEPR concept is
based on the highly successful com-
mercial architecture review board
practice. The SEPR process involves
peer-reviewing not only the software
and system development plans but
also the software and system architec-
ture (building plan) and its ability to
satisfy mission requirements, opera-
tional concepts, conformance with
architectural frameworks, and budget
and schedule constraints; the process
also involves reviewing other key
decisions such as choice of program-
ming language.
A key concern here was the “ability”

of DoD to put individuals with good
software engineering backgrounds on the
review boards. The review can be a pow-
erful tool and can enforce architectural
frameworks developed by the services or
DoD if staffed with the right people.
They can also be the “common sense”
sounding board that a program manager
needs when trying to make good techni-
cal and cost-effective decisions.

Finding 5: Investment in Ada
• Finding: In order for Ada to remain

the strongest programming language
for war-fighting software, DoD must
provide technology and infrastructure
support.

• Recommendation: Invest in a signifi-
cant level of support for Ada or drop
the Ada requirement. The strategy
developed by the committee recom-
mends an investment level of ap-
proximately $15 million per year.

• Rationale: With investment, DoD
can create a significant Ada-based
complex of production factors (in-
volving software tools, technology,
and personnel) for war-fighting ap-
plication domains. Without such

support, Ada will become a second-
tier niche language such as Jovial or
CMS-2.
There was strong concern voiced by

all committee members when it was
discovered that DoD planned to drop
support for Ada. Essentially, it was felt
that Ada was not strong enough to stand
on its own today and that the support
was fundamental to its success. Great
improvement had been made over the
years in Ada and its support environ-
ment, and this investment would be
placed at risk without continued DoD
support.

Finding 6: Software Metrics Data
• Finding: DoD’s incomplete and

incommensurable base of software
metrics data weakens its ability to
make effective software policy, man-
agement, and technical decisions.

• Recommendation: Establish a sus-
tained commitment to collect and
analyze consistent software metrics
data.

• Rationale: The five sets of findings
and recommendations above are
based on a mix of incomplete and
incommensurable data, anecdotal
evidence, and expert judgment. For
this study, the patterns of consistency
in these sources of evidence provide
reasonable support for the results but
not as much as could be provided by
quantitative analysis based on solid
data. A few organizations within
DoD have benefited significantly
from efforts to provide a sound basis
for software metrics; a DoD-wide
data collection effort would magnify
the net benefits.
The committee found it extremely

hard to find data to support any of the
testimony to which we were exposed. In
fact, it seems to be a systemic problem
within DoD that metrics are not heavily
supported and collected for review at
service level or DoD level.

Reaction and Response
Although the majority of conversation
and interest in the committee’s recom-
mendations has centered on whether Ada
should be mandated for all system devel-
opment, the report clearly goes beyond

The Ada Recommendation – Was It Heard?

32 CROSSTALK The Journal of Defense Software Engineering December 1998

the question of Ada and proposes that
the programming language should not
be the focus of concern, but software
engineering practices should be. Addi-
tionally, DoD may have, over the past
year, undermined the intent and recom-
mendation of the committee in multiple
areas that could put the language at risk
as well as the significant investment that
has been made over many years by DoD
and the commercial community.

The competitive advantage that Ada
gave the war-fighting community (Find-
ing 1) was explained within the report in
great detail. A key component of main-
taining this advantage was continued
support from a policy and financial
standpoint. DoD has chosen not to
invest in Ada through continued support
of the AJPO (Finding 5) and not to
support Finding 2, which mandated Ada
for war-fighting software. The lack of
support for these two essential findings
thus results in an indirect lack of support
for Finding 1 and its associated recom-
mendation.

DoD’s failure to support Finding 2—
to mandate Ada for war-fighting software
but not for commercially dominated
software domains—has created concern
within the Ada community; in some
cases, the NRC report is incorrectly cited
as the catalyst for this decision, though it
clearly did not recommend such an ac-
tion for reasons cited in Chapter 3 of [1].

Finding 3 appears to have been par-
tially accepted (in principal), and DoD
seems to be moving toward a process
that adopts more focus on software engi-
neering decisions vs. language decisions.
Little consideration, however, is being
given to changes in the system review
process and the adoption of the recom-
mended software plan review. This par-
ticular finding was important; its adop-
tion would bring DoD more in line with
current accepted commercial practice.

Finding 4 is essentially moot with the
dropping of the Ada mandate. Its associ-
ated recommendation, however, con-
tained a description of a commercial
architecture review board process that
was deemed necessary by committee

members. It appears that this recommen-
dation will not be adopted by DoD.

Finding 5 was critical to the future of
Ada in DoD and required strong finan-
cial backing and support for the AJPO.
This finding and its associated recom-
mendation met with strong internal
opposition within DoD and in particu-
lar, disagreement between the Defense
Information Systems Agency (DISA) and
the Office of the Assistant Secretary of
Defense for Command, Control, Com-
munications, and Intelligence (OASD
C3I). OASD C3I directed that DISA
comply with the recommendation but
did not seek any additional funding for
DISA to do so. DISA, in a letter to the
committee, outlined its position that
“the AJPO was created to do a job; it has
succeeded, and is no longer necessary.”
The disagreement between these two
agencies was never resolved, the AJPO
funding was not substantially increased,
the AJPO director position was not
filled, and the office’s ability to support
the Ada program became severely im-
paired. This course of events was consis-
tent with the stated position of DISA in
which the committee was told, “We have
not determined a final date for the clos-
ing of the AJPO. We selected a date in
late third quarter of fiscal 1997 as a
target for planning purposes.”

Finding 6 continues to be an issue
today but has not been acted on in a way
that makes the situation then any differ-
ent today. Metrics gathering and report-
ing is still a problem within DoD and
needs to be addressed.

Summary
It should be clear that a year after the
report was released, most of the recom-
mendations and findings have not been
followed. There are earlier reports that
indicate DoD adopted all but one rec-
ommendation, e.g., [3], but as can be
seen from the above, little was adopted.
The process changes recommended by
the report seem to be under careful study
by the Office of the Secretary of De-
fense, but the overall intention of the
report was not accepted. The recommen-
dations were meant to work together as a

holistic approach to improve the software
development process in DoD. A piece-
meal adoption may do more harm than
good. As a war-fighting language and a
national competitive advantage, Ada
would have to be considered in jeopardy
at the current time. ◆

About the Author
Rayford B. Vaughn Jr.
spent 26 years in the
U.S. Army as a soft-
ware engineer. His key
assignments included
commander of the
Army’s Information

Systems Software Center headquartered
at Fort Belvoir, Va. and the first director
of the Pentagon Single Agency Manager
for Information Technology Services.
Upon retirement as a colonel in May
1995, he joined Electronic Data Sys-
tems (EDS) Military Systems where he
served as vice president of DISA Inte-
gration Services. While with EDS, he
was responsible for all EDS contracts
issued by DISA. In October 1997, he
accepted a position as associate profes-
sor of computer science at Mississippi
State University.

Department of Computer Science
P.O. Box 9637
Mississippi State, MS 39762
Voice: 601-325-7450
Fax: 601-325-8997
E-mail: vaughn@cs.msstate.edu
Internet: http://www.cs.msstate.edu

References
1. Computer Science and Telecommuni-

cations Board, National Research
Council, Ada and Beyond, Software
Policies for the Department of Defense,
National Academy Press, Washington,
D.C., 1997.

2. Vaughn, Rayford, “The National Re-
search Council’s Ada Mandate Study:
Insights and Recommendations,” Pro-
ceedings of the DoD Software Technology
Conference, 1997.

3. Hamilton, J.A., “Why Programming
Languages Matter,” CROSSTALK, Soft-
ware Technology Support Center, Hill
Air Force Base, Utah, Vol. 10, No. 12,
December 1997.

Open Forum

CROSSTALK The Journal of Defense Software Engineering 33December 1998

James Bach’s article “The Micro-
dynamics of Process Evolution” [1]
moved me to write a response to the

entire collection of methodological argu-
ments it exemplifies. Along with other
like-minded arguments, Bach’s article
promotes heroism as a substitute for
process. My goal here is to point out an
inherent biological limit to dependence
on heroes.

Mountaineers who climb high
mountains, like Mount Everest, experi-
ence an insidious debilitation called
hypoxia that impairs judgment—even
the ability to detect the impairment.
Software managers and developers expe-
rience a common problem that is similar
in some ways to hypoxia. It limits what
heroes can be expected to do.

When managers take away process
standards as development tools, they
take away the very tools that developers
need to cope with the problem.

Hypoxia and Stress
I have been reading a lot about Mount
Everest in the last year, including Jon
Krakauer’s Into Thin Air, a tragic story
about the death of five people near the
summit in 1996 [2]. Two of them were
widely admired, professional mountain-
eers and guides. All of them were fit and
well trained. Their exceptional drive and
focus pushed them through miserable
conditions all the way to the top of the
highest mountain on earth. Their behav-
ior during the climb is what most of us
mean by the word heroic.

Krakauer reports that a major factor
in the deaths of these five heroic people

was hypoxia (lack of oxygen). High on
Mount Everest, in the death zone above
25,000 feet, the amount of oxygen in
the air drops to only one third of what it
is at sea level. When the human body is
deprived of oxygen to this extent, it
always breaks down. Even Sherpas in
Nepal, for example, live well below the
altitudes of the camp sites on the way to
the summit. Everyone who goes to the
summit of Mount Everest becomes seri-
ously hypoxic.

Hypoxic people not only do not
think well, they also do not know that
they do not think well. Anticipating this
problem in 1996, the guides set strict
rules for how and when their group
members would make their summit
attempts. In effect, the rules were in-
tended to replace judgment at the most
dangerous part of the climb near the
summit. One of the rules was to turn
around and head back down the moun-
tain at 2 p.m. on summit day, no matter
how close to the summit anyone might
be at that time.

In the everyday world, there is a
common medical condition—stress—
that is similar in some ways to hypoxia.
Heavy stress impairs our thinking and
judgment. We find that we cannot iden-
tify and weigh alternatives like we can
when we are calm. As with hypoxia,
under heavy stress, we often simplify our
options into black-or-white problems
with an obvious solution. Then, we
quickly seize the solution so we can get
on to the next problem. It feels right,
and we feel like efficient problem solvers.

But from past experience, we all
know that this approach to decision-
making is seductive and defective.

Lists Are an Antidote
There is a popular antidote for poor
decision-making under stress: lists. All

kinds of lists can help, from grocery lists
to to-do lists. Project managers use
checklists to estimate and control
projects. Pilots use checklists to prepare
for flight. Scuba divers use checklists
before going into the water.

Everyone uses lists for the same basic
reason. We all recognize that when we
are preoccupied, under pressure, or dis-
tracted, we forget things and make errors
in judgment. Lists are like the rules that
the Mount Everest climbers imposed
before their climb. We need them to
simulate good judgment at certain criti-
cal times.

Many modern software engineering
standards, like ISO/IEC 12207 (Infor-
mation Technology – Software Life
Cycle Processes), MIL-STD-498 (Soft-
ware Development and Documenta-
tion), quality standards such as the ISO
9000 series, and process documents like
the CMM, are just lists. Speaking as one
of the designers of MIL-STD-498 and
IEEE/EIA 12207, I can report that these
standards were designed to be checklists
of tasks to consider during software
project planning.

We instinctively use lists for survival.
The motivation for using standards is
not just good form—not just being the
best. We need standards and other lists
to avoid disaster (although they may be
useful for more than that).

Process Standards
In a development situation, you or I
might choose not to do some task in a
standard because it might not be appro-
priate for the project or organization. In
many modern standards, the only man-
datory activity is tailoring the standard
to your particular needs.

Modern process standards are not
designed to replace professional skill or
experience in software development.

No Hypoxic Heroes, Please!
Biological Limits on Cowboy Programmers

Lewis Gray
Abelia Corporation

What do you say when someone rejects IEEE/IEA 12207, the Software Engineering Institute
Capability Maturity ModelSM (CMM)®, and every other process standard? Here is a response.

An earlier version of this article, “Gray Rebuts Bach:
No Cowboy Programmers!” appeared in IEEE’s
Computer (April 1998), pp. 102-103, 105.

Capability Maturity Model is a service mark of
Carnegie Mellon University. CMM is registered
in the U.S. Patent and Trademark Office.

34 CROSSTALK The Journal of Defense Software Engineering December 1998

Pilots know how to fly before they are
hired by airlines. They do not use check-
lists as do-it-yourself flying manuals. No
one should expect standards like IEEE/
EIA 12207 to be do-it-yourself software
development manuals for novices. For
the software professional, process stan-
dards are “pilot checklists” to get soft-
ware development off the ground. The
value of putting the tasks in a standard is
it forces standard users to at least ac-
knowledge, and better yet, to attempt to
understand the possible negative conse-
quences of not doing the tasks in the
standard on their projects. This is the
heart of the tailoring process. It is a criti-
cal part of successful project planning.

Modern process standards like IEEE/
EIA 12207 are more useful today than
their predecessor standards such as
DOD-STD-2167A and DOD-STD-
1679A. The earlier standards did not
reflect current thinking that process
standards can be standard checklists.

Why use a standard when you can
develop your own personal checklist? One
reason is that hundreds or thousands of
software professionals have contributed
tens of thousands of comments designed
to polish a standard like MIL-STD-498.
It does not seem sensible to many people
to completely ignore these insights and
start a list from scratch based only on
personal, necessarily more-limited experi-
ences. It is sensible to start your own list
with a good standard.

Compliance with Standards
So what about a hard-hearted auditor
who objects to any deletion of any re-
quirement in a standard such as the ISO
9000 series or the CMM? Perhaps the
auditor will not let you tailor the stan-
dard even though you feel that some
requirements are inappropriate to your
particular project.

Does not the audit refute the claim
that modern process standards are de-
signed to be checklists for use as me-
mory aids by skilled software profession-
als? Does not the audit show that the
standards are full of requirements that
must be satisfied even when it does not
make sense to do so, that they are really

employed to substitute the standard
writer’s judgment for the judgment of
real people on the project?

Actually, it does not. The audit is
imposed (directly or indirectly) by buy-
ers, who are customers. A company
might voluntarily submit to an audit—
an ISO 9000 audit, for example—to
certify or register a quality system, but it
would only do so with the expectation
that the audit results would favorably
impress potential customers. Foolish
buyers or foolish auditors might insist
that developers do foolish things, and
they might be more of a nuisance wield-
ing a standard than they would be with-
out it. But buyers and auditors are not
under the control of the standard.

The only rule for many modern
process standards is to tailor them to suit
your development conditions. Now, let
us say that someone does this poorly—
should we blame the authors of the stan-
dard?

Hypoxic Heroes Are Vulnerable
When people argue that all process stan-
dards hinder software development, as
Bach does, they are promoting a “cow-
boy” approach that glorifies heroic indi-
viduals. According to his logic, you
cannot be a hero using a process stan-
dard. There are no heroes without risk.
In fact, the bigger the risk, the bigger the
hero and the more the stress.

Without process standards to nag
them at times of stress, when they
need them the most, cowboy develop-
ers will push past their biological lim-
its with no help in sight. It is like put-
ting climbers into the death zone on
Mount Everest with no rules for what
to do on summit day.

Stress will cut away their compe-
tence. They will not notice. And because
they rely only on themselves, they will
make bad decisions. Now, some of us
resolve, instinctively, to follow a com-
mon rule, to check off our mental lists
before we act. If I read Krakauer cor-
rectly, a big part of the reason that the
climbers died on Mount Everest in May
1996 was that, tragically, in their im-
paired, hypoxic state, they broke their
own rules.

The lesson I see for software develop-
ment is that organizations and projects
need process standards the most when
their employees are most under pressure
and have little time for thought. That is
when everyone hits a biological limit and
when it is most dangerous to let heroes
run free without rules or guidelines.

Acknowledgments
Thanks to James Bach for the spirited,
good-natured E-mail debate that helped
me to identify the most important objec-
tions to my arguments and for his gener-
osity in publishing my original rebuttal
in his column. Thanks to Kirk L. Kroe-
ker and the other editors at Computer for
tightening and smoothing my original
language. ◆

About the Author
Lewis Gray is president
of Abelia Corporation.
He is also a software
process improvement
coach and long-time
teacher of software
development standards.

He has 17 years experience developing
software systems for government, industry,
and academia. He was a leader in the
development of MIL-STD-498 and in the
development of IEEE/EIA 12207. He is
the author of many technical papers on
process improvement and software engi-
neering. He is the only instructor outside
the Software Engineering Institute who is
authorized to teach the TXM model of
technology introduction. He holds a doc-
torate in the philosophy of science from
Indiana University.

Abelia Corporation
12224 Grassy Hill Court
Fairfax, VA 22033-2819
Voice: 703-591-5247
Fax: 703-591-5005
E-mail: lewis@abelia.com
Internet: http://www.abelia.com

References
1. Bach, James, “Microdynamics of Process

Evolution,” Computer, February 1998,
pp. 111-113.

2. Krakauer, Jon, Into Thin Air, Villard,
New York, 1997.

Open Forum

CROSSTALK The Journal of Defense Software Engineering 35December 1998

BACKTALK

Got an idea for BACKTALK? Send an E-mail to backtalk@stsc1.hill.af.mil

Sponsor Lt. Col. Joe Jarzombek
801-777-2435 DSN 777-2435
jarzombj@software.hill.af.mil

Publisher Reuel S. Alder
801-777-2550 DSN 777-2550
publisher@stsc1.hill.af.mil

Managing Editor Forrest Brown
801-777-9239 DSN 777-9239
managing_editor@stsc1.hill.af.mil

Senior Editor Sandi Gaskin
801-777-9722 DSN 777-9722
senior_editor@stsc1.hill.af.mil

Graphics and Design Kent Hepworth
801-775-5798
graphics@stsc1.hill.af.mil

Associate Editor Lorin J. May
801-775-5799
backtalk@stsc1.hill.af.mil

Editorial Assistant Bonnie May
801-777-8045
editorial_assistant@stsc1.hill.af.mil

Features Coordinator Denise Sagel
801-775-5555
features@stsc1.hill.af.mil

Customer Service 801-775-5555
custserv@software.hill.af.mil

Fax 801-777-8069 DSN 777-8069

STSC On-Line http://www.stsc.hill.af.mil
CROSSTALK On-Line http://www.stsc.hill.af.mil/

Crosstalk/crostalk.html
ESIP On-Line http://www.esip.hill.af.mil

Subscriptions: Send correspondence concerning subscriptions and changes
of address to the following address:

Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205

E-mail: custserv@software.hill.af.mil
Voice: 801-775-5555
Fax: 801-777-8069 DSN 777-8069

Editorial Matters: Correspondence concerning Letters to the Editor or other
editorial matters should be sent to the same address listed above to the atten-
tion of CROSSTALK Editor or send directly to the senior editor via the E-mail
address also listed above.

Article Submissions: We welcome articles of interest to the defense software
community. Articles must be approved by the CROSSTALK editorial board prior to
publication. Please follow the Guidelines for CROSSTALK Authors, available upon re-
quest. We do not pay for submissions. Articles published in CROSSTALK remain the
property of the authors and may be submitted to other publications.

Reprints and Permissions: Requests for reprints must be requested from the
author or the copyright holder. Please coordinate your request with CROSSTALK.

Trademarks and Endorsements: All product names referenced in this issue
are trademarks of their companies. The mention of a product or business in
CROSSTALK does not constitute an endorsement by the Software Technology
Support Center (STSC), the Department of Defense, or any other govern-
ment agency. The opinions expressed represent the viewpoints of the authors
and are not necessarily those of the Department of Defense.

Coming Events: We often list conferences, seminars, symposiums, etc., that are
of interest to our readers. There is no fee for this service, but we must receive
the information at least 90 days before registration. Send an announcement to
the CROSSTALK Editorial Department.

STSC On-Line Services: STSC On-Line Services can be reached on the Inter-
net. World Wide Web access is at http://www.stsc.hill.af.mil.
Call 801-777-7026 or DSN 777-7026 for assistance, or E-mail to
schreifr@software.hill.af.mil.

Publications Available: The STSC provides various publications at no charge
to the defense software community. Fill out the Request for STSC Services
card in the center of this issue and mail or fax it to us. If the card is missing, call
Customer Service at the numbers shown above, and we will send you a form
or take your request by phone. The STSC sometimes has extra paper copies of
back issues of CROSSTALK free of charge. If you would like a copy of the printed
edition of this or another issue of CROSSTALK, or would like to subscribe, please
contact the customer service address listed above.

The Software Technology Support Center was established at Ogden Air
Logistics Center (AFMC) by Headquarters U.S. Air Force to help Air Force
software organizations identify, evaluate, and adopt technologies that will im-
prove the quality of their software products, their efficiency in producing them,
and their ability to accurately predict the cost and schedule of their delivery.
CROSSTALK is assembled, printed, and distributed by the Defense Automated Printing
Service, Hill AFB, UT 84056. CROSSTALK is distributed without charge to individu-
als actively involved in the defense software development process.

Big-name consultants often say that buggy or late software is usually not the
fault of coders and program managers, but the fault of upper-level managers. But
how could people no more involved in the day-to-day affairs of software engi-
neering than the average turnip be responsible for sabotaging software projects?
There’s no need to ask a high-priced software consultant: Ask a cab driver.
SoftSoftSoftSoftSoftwarwarwarwarware e e e e ExecutiveExecutiveExecutiveExecutiveExecutive (stepping into cab at 4:50): Driver,,,,, I have a meeting at my hotel at 5:00. Step on it!
CrustCrustCrustCrustCrusty y y y y Big-CitBig-CitBig-CitBig-CitBig-City y y y y Cabbie:Cabbie:Cabbie:Cabbie:Cabbie: Where are ya stayin’’’’’,,,,, pal?
E: E: E: E: E: Room 420. The bed’’’’’s nice,,,,, but the shower controls are confusing. Nice convention facilities, though. Go!
C:C:C:C:C: Right. We’’’’’ll head off in any old direction ’’’’’till we see the hotel with the funny shower knobs. But maybe I
can get you there faster if you give me some more information,,,,, like the color of your bedspread.
E:E:E:E:E: This is no time for jokes. Start working on that 5:00 deadline and we’’’’’ll work out the “““““where””””” as we go.
CCCCC (pulling away)::::: Wait a minute ... you gotta hard deadline and no useful directions for me–that’’’’’d make
you a software executive,,,,, right? Your convention’’’’’s at the Marriott. I can’’’’’t get you there ’’’’’till maybe 5:15.
E: E: E: E: E: Unacceptable! But with my help we’’’’’ll easily cut out those extra 15 minutes. First,,,,, we’’’’’ll eliminate any
nonvalue-added elements from your driving process–
CCCCC: : : : : It’’’’’s rush hour,,,,, pal,,,,, and this cab ain’’’’’t no #@!% helicopter. We ain’’’’’t goin’’’’’ five miles in 10 minutes.
E:E:E:E:E: As if you had any data to back that up. Ten minutes requires a net speed of only 30 miles per hour,,,,, and
the speed limit on this road is 35. I’’’’’m calling my client on my cell phone to tell her we’’’’’ll be early.
CCCCC::::: Yeah,,,,, and while you’’’’’re at it,,,,, you can tell her your cab driver is the Easter Bunny.
(one minute later)
E:E:E:E:E: Driver! Why are we sitting still? I’’’’’m not seeing any visible signs of progress!
C:C:C:C:C: It’’’’’s called a red light,,,,, buddy. Whenever I see one,,,,, I just gotta stop and admire it.
E:E:E:E:E: Work harder! This is an unproductive activity! Hit the gas! Move! Move!
C:C:C:C:C: Right,,,,, pal. We’’’’’ll just drive over the top of this police car up here and continue on our merry way.
E:E:E:E:E: That’’’’’s the can-do attitude I need to see! Well,,,,, what are you waiting for? Do it!
C:C:C:C:C: Aw,,,,, the light turned green. Now I’’’’’ll never get to bunk with my cousin Larry at the state pen.
E:E:E:E:E: That’’’’’s not my fault. And you–stop hitting those red lights. A competent driver should know how to avoid
them. I’’’’’m calling my client to tell her we’’’’’ll be there at 5:01,,,,, thanks to you.
C:C:C:C:C: Blow it out your ear,,,,, buddy.
(30 seconds later)
E:E:E:E:E: Hold it! Why are we turning? My map shows the street we were on is the most direct! Turn around!
C: C: C: C: C: We’’’’’re takin’’’’’ the parkway. And stop micromanagin’’’’’ me,,,,, ya chump. I know what I’’’’’m doin’’’’’.
E:E:E:E:E: And I know you’’’’’re not the one paying for this cab fare–stop wasting time and get back on that road.
CCCCC (turning cab around): Tell ya what: You give the directions,,,,, and I’’’’’ll charge by the minute–I can use the
extra dough. But shut yer yap,,,,, or I’’’’’m adding a surcharge for not beatin’’’’’ ya with that briefcase.
(At 5:00)
E:E:E:E:E: It’’’’’s 5:00! Why aren’’’’’t we there?
C:C:C:C:C: ’’’’’Cuz ya didn’’’’’t hail a cab at 4:30,,,,, ya nitwit.
E: E: E: E: E: How did you ever keep this job,,,,, missing deadlines like this? And look,,,,, another red light! I’’’’’m losing
patience with you!
C:C:C:C:C: YOU’’’’’RE losing patience? Gimme that briefcase–
E:E:E:E:E: I’’’’’m calling my client to tell her we’’’’’ll be there at 5:05. Your tip is shrinking by the minute!
C:C:C:C:C: So’’’’’s your life expectancy! Shaddap!
(Much later)
C:C:C:C:C: Well,,,,, Mr. I’’’’’m-Paying-So-I’’’’’m-Right,,,,, thanks to your brilliant navigation,,,,, we made it by 6:04.
E E E E E (getting out)::::: I wasn’’’’’t the one stopping at all those red lights! Here’’’’’s 10 bucks. Keep the change.
C:C:C:C:C: Whoa,,,,, pal! Your fare is $$$$$83.50!
E:E:E:E:E: Wrong–that fare is completely outside my cost plan. Plus,,,,, it’’’’’s over 57 times the cost of a subway fare,,,,, and
I’’’’’m assessing penalties for missing your deadline. A smarter cabbie would have gotten me here by 5:00.
C:C:C:C:C: A smarter cabbie would have run you over on sight,,,,, buddy. Gimme my fare before I get any smarter!
WWWWWoman Exiting Hotel oman Exiting Hotel oman Exiting Hotel oman Exiting Hotel oman Exiting Hotel (to executive): Oh,,,,, there you are. I was just on my way to dinner.
E:E:E:E:E: I would have been here at 5:00 if it weren’’’’’t for this incompetent cab driver.
W:W:W:W:W: Don’’’’’t worry about it. I work with software executives all the time,,,,, so I wasn’’’’’t expecting you until 7:00.
E:E:E:E:E: Let’’’’’s do a dinner meeting then. (To cabbie) I was at a great restaurant here in town the other night–
some kind of ethnic food. They had waiters and tablecloths and menus–the whole nine yards. Take us there.
C:C:C:C:C: You ain’’’’’t goin’’’’’ nowhere ’’’’’till I get my $$$$$83.50.
E:E:E:E:E: Fine,,,,, be that way. Here’’’’’s $$$$$100. On second thought,,,,, I think I know where it is. Just follow my directions.
C:C:C:C:C: If you’’’’’re navigating,,,,, forget it. I gotta have the cab in the garage by midnight. – Lorin May

Cabbies and Techies: Brothers in Pain

