
CROSSTALK The Journal of Defense Software Engineering 3November 1998

Software development models1 are gaining acceptance
in the software project estimating community, which is
always challenged to establish cost and schedule objec-

tives before projects begin. Predictive models can in fact be
further deployed into software projects to improve the quality
of development.

Developers implicitly understand the notion of software
quality; however, many ideas about quality unfortunately go
no farther than active prevention such as testing or walk-
throughs.

As critical as active quality control is, good planning will
multiply the effectiveness of any effort, saving both time and
money. But how can plans be laid without fully anticipating
the factors affecting quality? In the haze of battle surrounding
most development efforts, software development models pro-
vide the answer.

What Is Quality?
Discussions about software quality all too often focus on a
single measure: defects delivered. Indeed, this may be the most
significant measure of quality because software is useless—or
worse—if it suffers from too many bugs. However, as with any
other product, there are many dimensions to software quality.
• Correctness. Is the program correctly specified?
• Usability. Can users learn to use the software with reason-

able effort?
• Efficiency. Does the software minimize the use of hardware

resources?
• Reliability. Is the mean time between failures sufficiently

long?
• Adaptability. Can the software be easily adapted to new

uses?

• Robustness. Can the software be stressed without breaking?
Does it stand up to intentional or negligent user abuse?

• Maintainability. Once delivered, how challenging is it to
maintain the software?
Software development models can directly account for

many of these quality factors, either directly through estimates,
i.e., defects delivered, or via parameter settings that in turn
drive estimates.

An Overview of Parametric Models
Parametric models allow developers to specify software project
variables and to receive in return estimates of effort (cost),
schedule, and defects. Variables typically include complexity of
the software to be developed, specification and test level, qual-
ity of the development staff and tools, complexity of the devel-
opment language, and software size. Vendors of more mature
tools have had a longer opportunity to collect data and per-
form enhancements, so more variables are generally available
for their models.

Parametric models have several advantages over other
methods of prediction. First, vendors work continuously to
assure that their tools are accurate. The better tools also can be
substantially calibrated to the specifics of an organization while
retaining the essential sensitivities of key parameters. These
tools give rapid, elaborate feedback and therefore can be used
for realistic trade studies, even in a collaborative mode with
“heads up” conferencing features.

For the concurrent engineering necessary to simulta-
neously satisfy cost, schedule, requirements, and quality
goals, the benefit of parametrics is clear. No other method
permits such rapid, elaborate interaction between varied

In this article, we show how prediction models are used to improve delivered quality. We
further show that if you can anticipate and plan for the factors that affect quality, you
can leverage quality management activities to improve the entire development effort.

Driving Quality Through Parametrics
Daniel D. Galorath, Lee Fischman, and Karen McRitchie

Galorath Incorporated, The SEER Product Developers

Table 1. Cost / schedule/defect trade-off report.

Figure 1. Defects delivered vs. length of development.

Software Quality Assurance

gnitseTeroM gnitseTsseL ecnereffiD

shtnoMeludehcStnempoleveD 45.13 98.92 %6

shtnoMtroffEtnempoleveD 93.224,1 51.012,1 %81

tsoCraeYesaBtnempoleveD $ 00.260,909,02 $ 00.342,987,71 %81

noitciderPtcefeD 33 06 %54-

stniartsnoC EMITNIM EMITNIM

ffatSkaeP 95.36 01.75 %11



4 CROSSTALK The Journal of Defense Software Engineering November 1998

interests. Once development goals are set, parametric esti-
mates can be used by developers to ensure that quality goals
are achieved at least cost.

Defect Prediction
Of the many different aspects of quality, delivered defects are
among the most obvious and quantifiable. A number of defect
prediction methods are in use that rely on gross volume and
complexity metrics such as size,2 Halstead Software Science
Volume, McCabe Cyclomatic Complexity, or other composite
measures.3 An “integrated” defect model allows defect predic-
tions to be evaluated alongside of staffing and cost consider-
ations, which opens up a world of comparative scenarios.

The most useful prediction for a quality model is delivered
defects, meaning those that escape detection and are delivered
to the end user. A defect prediction allows you to plan for
acceptable magnitudes and take corrective actions—follow a
better process, lay on further testing, reduce scope, lengthen
schedule—when predictions are too high.

Table 1 illustrates a trade study driven by defect predic-
tions. For the testing effort required to halve delivered defects,
costs will rise somewhat, and schedule less so.

An alternative to predicting delivered defects is modeling
potential defects. Doing this allows developers to engage in
explicit defect-related “what-if” scenarios, such as illustrated in

Figure 1. The dashed line shows the defect level given an opti-
mal schedule that minimizes development effort. If the prod-
uct is delivered earlier, defects will rise above this level, but if
they are delivered later, defects will be lower. Note how the
defect penalty decreases as the development schedule stretches.
This is a powerful tool for managers to have to plan schedules
to specific defect targets.

Modeling Promotes Active Quality Control
It makes sense not only to predict defect levels but also to
predict adequate levels of quality control. Parametric models
offer developers the advantage of a database of completed
projects and industry wisdom. They show in concrete terms
exactly how many employees are required to deliver a product
of certain quality.

Models provide insight into quality control activities by
parsing effort and staffing estimates into individual labor cat-
egories and activities. These parsing factors can often be ad-

Figure 2. Activity allocation chart.

Figure 3. Development and maintenance effort as quality assurance
increases.

Figure 4. Staffing profile for a large project.

justed to the organization and the development process. This
not only makes staffing estimates more suitable to specific
development environments but also allows organizations to
better promulgate desired levels of quality control.

Is it necessary to rigorously follow the testing level indi-
cated? The answer is that they are benchmarks only, indica-
tions of what past development teams have required in order to
achieve defect efficiencies along the lines of those envisioned.
Maybe, quality targets can be achieved with different test staff-
ing from that indicated; maybe, they cannot.

Accounting for Other Quality Factors Through
Specification
The relationship in modeling is “many to few”—many param-
eters are available in a parametric model to specify factors from
the development environment to the final product. The pre-
dictions that result are usually limited to the trinity of cost,
staffing, and defects.

This mix of estimates and parameters allows developers to
account for many quality factors, as indicated by estimates or
as specified by parameters. With parameters, the analyst is not
predicting quality, as in the case of defects, but rather is specify-
ing quality, then judging the impact on cost, schedule, and
defects. Aspects of quality handled via parameters include
efficiency, adaptability, robustness, and maintainability.

Software Quality Assurance



CROSSTALK The Journal of Defense Software Engineering 5November 1998

As an example, maintainability is strongly correlated with
maintenance costs, which can be modeled by varying other
parameters. Figure 3 shows how reliability levels, for example,
impact not only upfront development costs but also eventual
maintenance costs. As specified reliability increases, defects
decline, but development costs increase. Maintenance costs
may also decline with increasing reliability, but soon the speci-
fication for a system becomes so rigorous that maintenance
costs also rise.

Some quality-related attributes are not specified with pa-
rameters but can be accounted for in other ways. For example,
usability may impact size, which is a prime input to a develop-
ment model. Cost and schedule estimates will vary in direct
proportion to software size, matching the intuitive result that
greater quality comes only at a higher price. Development
models tell you exactly how high that price will be.

Improving Quality by Modeling the Development
Process
The sheer utility of development models’ planning features
offers other avenues toward improving quality. With insight
into your project, as Figure 4 suggests, you are much closer to
engineering quality into your development process.

All too often, quality slips when staffing requirements are
poorly anticipated. Knowing the optimal staffing profile for a
project improves planning, lessens staffing-related volatility,
and therefore permits the timely application of testing activi-
ties. This particular chart also makes explicit the proper mix
between early requirements work vs. coding and testing; as is
well known, sufficient requirements definition does more to
determine quality than testing.

Development models simulate reality by incorporating
known development dynamics. For instance, it is less expensive
to do good work first than to apply more stringent testing
later. Figure 5 illustrates such a trade-off between the three P’s
of “people, process, product” vs. the alternative of increased
testing. The impact on defects delivered is shown; either curve
is drawn holding the other factor constant. Notice how there is
a disproportionate return on improvements in the develop-

Figure 5. Impact on defects: team quality vs. testing.

ment team, whereas there is only a linear return on improve-
ments in testing.

Conclusion
Although parametric models have long been used to establish
cost targets, they can be used for much more. Modern software
development models have years of analysis support invested in
them so that they can address such dynamic management
issues as quality. If your organization uses parametric modeling
for its estimates, see your estimators to see what they and their
tools can do for you. u

About the Authors
Daniel D. Galorath is president of Galorath Incorporated. He
has worked in all aspects of software development and software
management and is one of the principal developers of the SEER-
SEM software evaluation model. His published works include
software cost modeling, testing, error prediction and reduction,
and systems requirements definition.

Lee Fischman is special projects manager at
Galorath Incorporated. He is a frequent con-
sultant on estimating projects, and he also
conducts core research and development of
SEER software tools. He wrote the Software
Evaluation Guide for the Office of the Secre-
tary of Defence, Program Analysis and Evalua-

tion, and he has explored software economics and estimating in
numerous papers over the past several years, all available at http://
www.galorath.com.

Karen McRitchie is vice president of develop-
ment at Galorath Incorporated, responsible for
design and development of SEER tools. She
has nearly 10 years experience in software and
hardware cost-estimating and hardware reliabil-
ity modeling. She has been a lead member of
several Air Force cost-estimating teams for

major Department of Defense programs and has taught dozens of
estimation methodology courses for costing professionals.

Galorath Incorporated, The SEER Product Developers
Voice: 310-414-3222
E-mail: support@galorath.com

Notes
1. Mathematical estimation models are known to the cost estimat-

ing community as “parametric models.” As understood in math-
ematical English, this implies that functional forms are pre-
specified. However, to costing personnel, parametric means only
that these models have parameters to modify; no comment is
being made about functional form.

2. Lines of code, function points, and object-based metrics are the
most commonly used size measures.

3. For a description of how SEER-SEM handles defect prediction,
refer to the “SEER-SEM Defect Prediction” technical note avail-
able at http://www.galorath.com.

Driving Quality Through Parametrics


	Contents
	Factoring Process Improvement into the Awarding … 
	of Sustainment Contracts… 
	Lt. Col. Joe Jarzombek… 
	ESIP Director… 
	Driving Quality Through Parametrics… 
	Daniel D. Galorath, Lee Fischman, and Karen McRitchie… 
	Galorath Incorporated, The SEER Product Developers… 
	Using the Cost of Quality Approach for Software… 
	Herb Krasner… 
	Krasner Consulting… 
	 The Software Quality Certification Triangle… 
	Jeffrey Voas … 
	Reliable Software Technologies… 
	Smart Buying with the Federal Aviation Administration's Integrated Capability Maturity Model… 
	Linda Ibrahim… 
	Federal Aviation Administration… 
	Need Information on… 
	Software Quality Engineering?… 
	Metrics for Visual Software Development Initial Research and Findings… 
	Paul A. Szulewski, Mercury Computer Systems… 
	Faye C. Budlong, Draper Laboratory… 
	A Model to Assess Testing Process Maturity… 
	Ilene Burnstein, Ariya Homyen, Robert Grom, C.R. Carlson… 
	Illinois Institute of Technology… 


