
2 CROSSTALK The Journal of Defense Software Engineering February 1998

Letter to the Editor

From the Publisher

Ronald Starbuck’s article, “Software
Configuration Management: Don’t Buy
a Tool First” (CROSSTALK, November
1997), raised several interesting points.
But there are three additional concerns
that are key to finding the right soft-
ware configuration management (CM)
tool and for the successful implementa-
tion of a sound CM process that is
valued for its benefits rather than de-
spised for its perceived obstacles.

First, too often, organizations will
purchase a CM tool based on its “bells
and whistles” without examining
whether those features are desirable
and, more important, whether the tool

rests on a sound CM process founda-
tion. Second, the tool purchase deci-
sion makers may fail to view CM as a
discipline that involves not only soft-
ware engineers or developers but also
program managers, test engineers, qual-
ity assurance specialists, and the
customer(s). In so doing, they fail to
evaluate a CM tool in light of the com-
prehensive needs of the organization
and of those involved with or impacted
by CM.

And third, organizations frequently
find themselves purchasing a CM tool
from a vendor who does not know
CM. Organizations can reap crucial

value-added CM expertise when they
work with a vendor who has firsthand
knowledge of CM and can apply that
“lessons-learned” experience to an
organization’s unique culture and pro-
cess, as indicated by Starbuck. Teaming
with a CM tool vendor who knows and
understands CM—the process and the
people—can make the purchase of a
CM tool one of the most crucial and
ultimately successful steps an organiza-
tion can take.

Debbie J. Stack
Progressive Software Solutions, Inc.

(PROSOFT)

More Advice on CM Tool Acquisition

To address the configu-
ration management
(CM) theme of this
issue, I will first state
unequivocally that
documentation is good.

A recent experience serves as a vivid
demonstration of this point.

I just returned from a trip to Denver
that was arranged entirely by electronic
means. I had contacted my travel agents,
given them my travel plans, and paid
with my credit card. All I had to do was
go to the airport. No paper was neces-
sary—my ticket was electronic.

There was just one problem. As I
entered the terminal, I thought I had
stepped into a time warp. All the com-
puters were down, as if the year 2000
problem had just struck. I could not get
a boarding pass or seat assignment at the
check-in counter. I was sent to the gate
with the hope that the computer prob-
lems would be solved before I got there.
I checked in at the gate, but since the
computers were still down, I could not
get a seat assignment.

When it was time to board the plane
they followed a peculiar process: First, all
passengers with seat assignments on their
paper boarding passes were invited to

board the plane. Then, all passengers
with paper boarding passes and no seat
assignment were invited to board. After
numerous checks to see if any seats were
left, those with electronic tickets were
invited onto the plane; as we boarded,
our names were written on a piece of
lined paper to keep a record of who
boarded the aircraft. I felt like a third-
class citizen (not second class, because
my ticket was coach). During this pro-
cess, it was not clear to us electronic
dependents if seating would ever be
available.

The moral of this story might be that
paper is superior to electrons, but that is
not the point I want to make; instead, I
intend to emphasize the necessity of
keeping track through CM. CM is an
important job, but apparently, few
people want to do it. CM has moved
beyond mere clerical work into a highly
technical realm, but those with suffi-
cient training to perform CM feel that
the job is too mundane and monotonous,
that it does not provide a creative outlet.
They would prefer to engage in the more
“glamorous” aspects of software produc-
tion, such as design and code.

But CM cannot be neglected; it can
mean the difference between chaos and

order, between good software and defec-
tive software, between precision and
error. The complexity of today’s software
demands that meticulous care be taken
to track and record all modifications,
deletions, and additions. No human
mind is equipped to remember what was
changed on dozens of versions.

But even if someone were able to
retain that much information, they
would not necessarily remain with the
project until completion. When people
leave organizations, their successors need
to pick up where they left off with little
delay. They need to know, by consulting
the documents left behind, what was
done and what was not. Duplication of
effort and omitted tasks waste valuable
time in projects that all too often are
hurtling toward a deadline.

Just as the absence of written records
nearly left me waving goodbye to my
flight, poor CM in software projects
could leave you bidding farewell to
months of hard work as you spend an
enormous amount of time backtracking,
retesting, and recoding to discover why
the modification you made did not turn
up in the final product. This month’s
collection of articles will provide assis-
tance to improve any CM effort. u

Today’s Software Complexity Demands Good CM
Reuel S. Alder, Publisher

CROSSTALK The Journal of Defense Software Engineering 3February 1998

This article describes the most
vital steps to bring essential
aspects of the formal configura-

tion management (CM) discipline to a
project that has had none. This is emer-
gency information—triage, pure and
simple. If you use this information, the
probable reason is that you are having a
CM emergency. The typical condition
in which a project finds itself at this
point is something like this:
• The schedule is already extremely

tight.
• The resources are barely adequate

for the basic tasks, let alone “extras”
like CM activities.

• No one on the project has extensive
formal CM training or experience.

• The need for CM has just become
apparent due to a big CM blunder
on this or another project, a man-
agement CM mandate, or a mile-
stone looming in the near future,
and CM controls do not exist.
To team members in this situation,

CM may appear big and scary. How-
ever, the essentials activities of CM are
probably already being carried out in
the project—albeit in an informal man-
ner.

The suggestions and steps outlined
here will in no way fulfill the require-
ments of a complete, coordinated CM
plan. But they will go a long way to-
ward establishing core processes and
will mitigate the risks posed by a loss or
lack of configuration control.

The following sections describe the
important items and concepts for stop-
gap configuration management.

Establish Version Control of
the Code
Your primary goal must be to control
the actual code: source, object, and
executable. The following concepts will
help you gain version control.
• Baseline the current code at some

meaningful point in the develop-
ment.

• Define what your computer soft-
ware configuration items (CSCIs)
are: individual modules, subsystems,
etc.

• For each CSCI, determine its lowest
level of decomposition, i.e., configu-
ration units (CUs). This decomposi-
tion sets the granularity or resolu-
tion of configuration control.

• Determine an ironclad method to
identify your CUs and their revision
level. (Filename, date, and time will
work if there is nothing else; if you
have PVCS or a source code control
system, use it.)

• Document your baseline with a
version description document. This
document should identify the base-
line to which it refers (baselines
need to be uniquely identified and
catalogued), the CSCI it docu-
ments, and every CU in the CSCI
and its revision level.

• Assign ownership of modules to
specific developers—document the
ownership and hold to it.

Establish Formal Control
Establish a formal method of change
control for all changes to the code—
accept no other method to propose

Stop-Gap Configuration Management
Ted Gill

Puget Sound Naval Shipyard

changes. “Formal” means “with a form”
and with a specific review and approval
process. A change request form must
include the following fields:

Submitter fields
• Project.
• Type (problem or enhancement).

(May include more detail.)
• Severity.
• Date submitted.
• Description.
• Reporter or submitter.
• Unique identifying number.

Change control board fields
• Action (approve/disapprove/

defer[until when]).
• Date acted on.
• Justification for disapprove/defer

actions (optional).

Fields for those who act on the
change request
• Date changed.
• CSCIs and CUs affected.

Additional Change Control Issues
• Always provide feedback to the

submitter.
• Always document and save change

requests, even if disapproved.
• When code is modified in response

to change requests, developers
should always document the change
request number(s) on which they
are working.

• The configuration control board
(CCB) (see following section) must
review and approve all changes to
baselined CSCIs.

Configuration management can be highly difficult to implement at a site where the software development
effort has been at the ad hoc level. Particularly for pre-existing development projects, to attempt to start a
full-blown configuration management process is likely to be a lethal cure. This article outlines an excep-
tionally simple, goal-oriented “stop-gap” configuration management plan. The purpose of the plan is to
gain immediate control of the most critical aspects of a development project and build a foundation of
methods and understanding upon which a more complete configuration management plan can be built.

Configuration Management

4 CROSSTALK The Journal of Defense Software Engineering February 1998

Establish a Project CCB
The CCB is responsible to approve all configuration changes
to baselined configuration items. This ensures that all pro-
posed changes receive a technical analysis and review and that
they are documented for tracking and auditing purposes. The
board also has final responsibility for release management,
e.g., establishing new baselines.

The elements of the CCB already exist in a project that
does any amount of formal change control. The goal must be

to officially establish the board to gain formal control over the
change approval process as it affects configuration control.

The basic tasks of the CCB are to declare baselines on
CSCIs (promotions, releases, etc.), to review changes to base-
lined CSCIs, and approve, disapprove, or defer their imple-
mentation.

The above is a short but extremely important task list.
The CCB must have a stranglehold on the project. Nothing
can be changed without their approval—end of discussion.
For this reason, board members must be chosen carefully.
The board must be composed of representatives from all
affected organizations or concerns (stakeholders) such as
• Functional or user community.
• Developers.
• Test group.
• Hardware design and operation personnel.
• Interface groups.
• Database administrators.

Although every member of the CCB may not be excited
about every change, be certain that some change will affect
every member of the board at some time. It should not be
difficult to recall past experiences when an unwise or costly
mistake could have been avoided if the right people had
known about a proposed change.

The chair of the CCB must be from project manage-
ment—a person who can unambiguously resolve conflicts
within the board and enforce the board’s decisions on the
project. Decisions on change implementation and CSCI
promotion translate directly to fundamental project cost,
schedule, and quality issues. The CCB will find that their
efforts are an infuriating exercise in futility if their decisions
are continually reversed or ignored by an outside entity with
the real decision-making authority. Do not let this happen;
put that entity in charge of the board. By doing so, those
who have decision authority are directly coupled to those
who have expertise on the details. Decisions of the CCB
should be reached by consensus whenever possible. The
group dynamic must reflect the cooperative nature of a devel-
opment project. The chair must nurture this cooperative
vision and take unilateral action only when all other methods
have been exhausted.

Document What You Do
As a treatise on triage, this article does not suggest elaborate
plans. Beyond the specific documents required above, a writ-
ten record is needed of what you are doing or plan to do.
These plans do not need to be more formal than memoran-
dums to all project team members—memorandums are ad-
equate if they convey the plan and its execution.

There are two essential attributes of the documentation
portion of stop-gap CM:
• The documents must describe what to do and how to do it.
• The documents must be published and disseminated so

that all involved know the project status and what is ex-
pected of them.

Configuration Management

Software Configuration Management
What to Do When You Know You Are in Trouble

Software configuration management (CM) is a task
often left until last. Consequently, motivation to do
CM often comes from a fear of a project disaster rather
than from faith in the control and visibility CM pro-
vides. This management by fear is akin to battlefield
triage. Triage is a system to assign medical treatment
priority to battlefield casualties based on urgency and
chance for survival.

In the software battle, what will keep your project
from bleeding to death? The answer is “stop-gap CM.”
Ted Gill’s article is careful to point out that although
stop-gap CM increases your project or organization’s
odds of survival over the short term, stop-gap CM will
not produce the vibrant and healthy project or organi-
zation you need to compete for scarce Department of
Defense funding year after year.

The Software Technology Support Center (STSC)
does triage to see you through a CM crisis by assessing
your situation, working with your leadership to plan a
solution, and doing the necessary “hand holding” at
the project level. And we do it with an eye toward the
long-term health, stamina, and resilience your organi-
zation needs. On a cost-recovery basis, the STSC sees
the job through to your desired state in which
• A CM organizational entity has been established.
• All CM policies and procedures are fully docu-

mented and implemented.
• The CM polices and procedures are tailorable to the

size and scope of specific software development or
maintenance projects.

• All software development or maintenance projects
are conducted in compliance with CM policies and
procedures.

The STSC – A practical approach to CM.

For more information, call
Paul Hewitt
Voice: 801-775-7775 ext. 3039
DSN 775-7775 ext. 3039
Reed Sorensen
Voice: 801-775-5555 ext. 3049
DSN 775-5555 ext. 3049
E-mail: scm@software.hill.af.mil

CROSSTALK The Journal of Defense Software Engineering 5February 1998

Everything beyond this level of
documentation is window dressing. An
easy way to approach documentation is
to assemble the appropriate project
team members (possibly with the soft-
ware engineering process group [SEPG]
CM process lead) and decide how to
attack a particular part of the process.
Once you have a method, create a
memorandum that details the decisions
and send it to all project members.
Keep a copy of these memorandums in
a CM process notebook. That is it—
nothing fancy.

If a method does not work as it
should, do not be afraid to change it.
Just be sure to document the process
change.

Following are examples of topics
that should be documented:

CSCIs
• Lists of CSCIs and their baseline

status.
• Levels of decomposition of CSCIs

(what constitutes a configuration
unit).

• Naming conventions and standards
and version and revision identifica-
tion.

• Configuration unit ownership lists
and policies.

Changes
• Forms to be used and guidance on

filling them out.
• Process flow descriptions for change

submission and processing.
• Points of contact.

CCB
• Members.
• Duties and tasks, process flow de-

scriptions.
• Meetings schedules.
• Record of actions (minutes).

Conclusion
This set of processes is not intended for
the mature software development envi-
ronment. It is aimed primarily at the
organization that is taking those first
difficult steps toward software process
improvement. These processes serve as a
consciousness-raising device as much as
anything else. At the early stages, I have
found that the two most essential ingre-
dients to initiate process improvement
were education aimed at people not
steeped in the vocabulary and dogma of
the Capability Maturity Model (CMM),
and a plan of action that could be
achieved by beginners. If you are in a
situation where you have no configura-
tion management, these processes pro-

vide the subject matter for education
and a simple plan to execute. u

About the Author
Ted Gill is currently
employed by the U.S.
Navy at Puget Sound
Naval Shipyard. He was
the configuration man-
agement key process
lead in the shipyard’s

SEPG. As a charter member of the group,
he was involved with the initial efforts of
assessing software practice, educating
developers, and moving the shipyard’s
software development processes toward
CMM Level 2. He served as project man-
ager for the shipyard’s training and quali-
fication tracking system development
project and has developed propulsion
plant demonstrator software for the
shipyard’s nuclear training division. He
now works in database administration
and as a general process consultant for
the shipyard’s information resources
management department.

Puget Sound Naval Shipyard
Code 1233
1400 Farragut Avenue
Bremerton, WA 98314-5000
Voice: 360-476-2072
Fax: 360-476-2275
E-mail: gillt@psns.navy.mil

Stop-Gap Configuration Management

On Sept. 19, 1997, The Naval Surface Warfare Cen-
ter (NSWC) Port Hueneme Division (PHD), Dam Neck
Detachment completed its external assessment to earn a
Software Engineering Institute (SEI) Capability Maturity
Model (CMM) Level 3 rating. NSWC PHD, Dam Neck
is the first U.S. Navy tactical real-time program devel-
oper to attain Level 3.

The road to CMM Level 3 began in 1987 with an
association between NSWC PHD, Dam Neck and the
SEI, whereby the former served as a CMM development
beta test site and an internal software process assessment
reviewer. In 1992, NSWC PHD, Dam Neck continued
down the software process improvement path by con-
ducting a benchmark assessment using CMM as a guide.
This assessment resulted in the development of a Soft-
ware Process Improvement Plan, and training was pro-

NSWC PHD Dam Neck Receives CMM Level 3 Rating

vided to introduce all employees to CMM. The next step
was completed in 1994 with the chartering of a full-time
software process engineering group, which established a
process asset library and developed the Standard Software
Process Definition.

In 1995, NSWC PHD, Dam Neck reorganized along
product lines, which allowed the new departments to
focus on quality, process, and training. As a result, pro-
cess improvement was institutionalized at the organiza-
tional level. NSWC PHD, Dam Neck continued with
periodic internal assessments and achieved CMM Level 2
status in 1996. The final stop on the road to CMM Level
3 was achieved on Sept. 19, 1997 when an external as-
sessment rated the directorate CMM Level 3. Through-
out this entire evolution, NSWC PHD, Dam Neck has
maintained its affiliation with the SEI.

6 CROSSTALK The Journal of Defense Software Engineering February 1998

In the beginning, there were
rocks, dinosaurs, Fred Flintstone,
and of course, classical CM, which

was good for its time. But its time is now
up. Its replacement is what I call “effec-
tive” CM. Effective CM is not your
grandfather’s CM. Effective CM is a
nonadministrivia, nonclerical, inte-
grated, cost-effective approach to
implementing CM. In summary, effec-
tive CM is
• Cost-effective project insurance, i.e.,

product-integrity focused.
• A manager’s and developer’s best

friend.
• A developer’s tool, i.e., developer

executed.
• A systems engineering function.
• Difficult to do right.
• No cost when done right (as part of

daily development activities).
Effective CM is not
• Just version management.
• Just change management.
• Just a build-and-release function.
• An administrivia function.
• A trivial task.

The Institute of Electrical and
Electronics Engineers (IEEE) definition
of configuration management includes
“a discipline applying technical and
administrative direction and surveillance
to. …” [1] The key words here are
technical, administrative, and surveillance.
Classical CM stresses administrative and
surveillance and minimizes technical,
which results in processes that developers
see as obstacles to getting their job done.
Effective CM stresses the technical while
using tools to minimize the obstacles
that can be caused by the administrative
and surveillance activities. The IEEE
definition further defines four functions
performed by configuration
management:
• Identification of configuration items.

Effective Software Configuration Management
Bob Ventimiglia

Lockheed Martin Aeronautical Systems

This article discusses effective software configuration management (CM) as the next step in the
evolution of the configuration management practice. Effective CM stresses the technical aspects of
CM, extends the concepts of classical CM, and meets the needs of both managers and developers.

• Change control of configuration
items.

• Audit of configuration items.
• Recording and reporting of informa-

tion needed to manage configuration
items.
The International Organization for

Standardization defines a configuration
item as “a collection of hardware, soft-
ware, and/or firmware, which satisfies an
end-use function and is designated for
configuration management.” [2] The
key part here is “which satisfies an end-
use function and is designated for con-
figuration management.” Classical CM
has typically defined configuration items
as hard-copy documents and collections
of completed source code. As this article
will demonstrate, effective CM treats all
files produced by the development pro-
cess as configuration items.1

Classical CM focuses on the admin-
istrative direction and surveillance as-
pects of CM and downplays—in some
cases ignores—the technical aspects of
CM. Because it is labor intensive, classi-
cal CM applies an after-the-fact, reac-
tive, “throw it over the wall when yer
done” approach to CM for a relatively
small number of configuration items.
To many developers, this is an obstacle
to the development process that adds
little value.

Because of the lack of tools with
which to manage configuration items,
classical CM practitioners were and are
highly detail-oriented people with a
“green-eye-shades” mindset. I always
envision Bob Cratchet in A Christmas
Carol sitting with quill pen in hand, eyes
protected by a green eye shade, slouched
over Scrooge’s account books, keeping
detailed records of Scrooge’s business
transactions. Cratchet would make an
excellent classical CM practitioner. Fur-
thermore, the configuration items man-
aged by classical CM are completed

products such as documents and collec-
tions of source code with little or no
support for in-process management of
evolving designs and configurations or
the environment used to generate them.

Businesses pressure us to do more
with less and to speed development and
change cycles. Changes in tool technol-
ogy and new standards that represent
world-class best practices (US 12207
and ISO 12207) require and support a
revised approach to CM implementa-
tion—effective CM. Effective CM
• Is a system engineering function

that is a pro-active, in-yer-face disci-
pline that stresses the technical as-
pects of CM.

• Satisfies the needs of management as
well as developers.

• Is unobtrusive to the point of being
100 percent developer executed.

• Is integral to the software develop-
ment process.

• Supports the definition and imple-
mentation of the software develop-
ment environment and process.

• Manages changes to all project com-
ponents as they move through their
development and approval cycles.

• Focuses on the “smallest work prod-
uct of significance” to the develop-
ment team.

• Follows the files and work products
produced by the developer’s tools.
Every file produced by the software

development process can now be con-
sidered a configuration item. The
number of objects managed by effec-
tive CM is orders of magnitude greater
than those managed by classical CM.
As a result, it carries the implicit re-
quirement that it must be auto-
mated—automated by using CM tools
that completely integrate process man-
agement (workflow), version, and
change management, and that can act

CROSSTALK The Journal of Defense Software Engineering 7February 1998

Ben-Menachem, Mordechai, Software Configuration
Management, McGraw-Hill, New York, 1994.

Berlack, Ronald, Software Configuration Management,
John Wiley & Sons, New York, 1991.

Buckley, Fletcher J., Implementing Configuration Man-
agement: Hardware, Software, and Firmware, IEEE
Computer Society Press, Los Alamitos, Calif., 1996.

Configuration Management Readings

Whitgift, David, Methods and Tools for Software or
Software Configuration, John Wiley & Sons, New
York, 1991.

Coordination for Team Productivity, Software Con-
figuration Management, Addison-Wesley, Read-
ing, Mass., 1986.

as the development environment and
software repository.

Effective CM incorporates a para-
digm shift that extends the concepts of
classical CM to in-process management
of software development work products,
objects, entities, and artifacts, not just
product-level documentation of
product-level configuration items. It
manages requirement identifications,
not just requirement specification docu-
ments; elements of models as opposed to
documentation that contains a com-
pleted model; interface messages instead
of interface documents. Production of
hard-copy documentation is avoided
whenever possible by using the managed
work products to document the system
design. The level of control applied to
each managed work product is based on
the maturity level of that work product.
As work products mature, change autho-
rization migrates from author to soft-
ware lead engineer to subsystem or sys-
tem lead to program manager to
customer. The level of control is kept to
the lowest level practical throughout the
products’ lifecycle.

The effective CM process
• Supports and is built into the soft-

ware development process.
• Is a core activity of the software de-

velopment process.
• Helps manage the evolution of the

software development work products.
• Focuses on management of the devel-

opment process and on the work of

Effective Software Configuration Management

and interactions between multiple
developers.

• Applies a systems engineering view of
CM to the software development
process. (It is interesting to note that
most industry and military standards
identify CM as part of systems engi-
neering.)

• Returns CM to its systems engineer-
ing roots and allows effective CM
practitioners to act as systems engi-
neers instead of clerks.

• Stresses the technical aspects of CM
through an understanding of the
development process and most im-
portant, by being part of the devel-
opment process, by building CM
into the development process, and by
implementing tools that allow the
developers to execute CM tasks with
minimal intrusion into the develop-
ment process.

Effective CM reinforces the belief that
CM is good and that it is part of the
solution, not part of the problem.

The systems integration approach
to implementing effective CM begins
with the development of a “living”
software development plan (SDP).
Effective CM practitioners participate
in the creation of the SDP and the
software development process to en-
sure that CM is built into the develop-
ment process—a significant paradigm
shift from the classical CM approach.
Development methods are defined and
a tool suite or system/software engi-

neering environment (S/SEE) is se-
lected that supports the development
methods. CM participants ensure that
the S/SEE includes tools to implement
effective CM, e.g., completely inte-
grated process, workflow, version, and
change management CM tools that
will be used by the developers. For
effective CM to be successful, the CM
practitioner must design for success by
making the “right way” an “easy way”
for developers to accomplish the tasks
outlined in the SDP. One must never
fail to recognize human nature. Devel-
opers will always take what they per-
ceive to be the path of least resistance.
Designed correctly, that way will be
the effective CM way.

Summary
Because it requires less time on the
clerical aspects than classical CM, effec-
tive CM allows a pro-active approach to
maintain product integrity. It ensures
the completeness and correctness of
configured work products. It provides a
stable environment in which to main-
tain the integrity of software develop-
ment throughout the evolution of the
project from concept to delivery to
customers to product retirement. Its
core focus is on problem avoidance and
does not have to be cumbersome or
complex. Effective CM eliminates the
build difference problem where the
engineering test build is different from
the CM build. It eliminates the “wrong

Worth a Look

For further information about configuration management, the following sources may be useful.

8 CROSSTALK The Journal of Defense Software Engineering February 1998

Yahoo configuration management (CM) links
http://wwwhttp://wwwhttp://wwwhttp://wwwhttp://www.yahoo.com/Computers_and_Internet/Soft.yahoo.com/Computers_and_Internet/Soft.yahoo.com/Computers_and_Internet/Soft.yahoo.com/Computers_and_Internet/Soft.yahoo.com/Computers_and_Internet/Soft-----
ware/Pware/Pware/Pware/Pware/Programming_Trogramming_Trogramming_Trogramming_Trogramming_Tools/Software_Engineering/ools/Software_Engineering/ools/Software_Engineering/ools/Software_Engineering/ools/Software_Engineering/
Configuration_ManagementConfiguration_ManagementConfiguration_ManagementConfiguration_ManagementConfiguration_Management

CM Yellow Pages (provided by André van der Hoek)
http://wwwhttp://wwwhttp://wwwhttp://wwwhttp://www.cs.colorado.edu/users/andre/.cs.colorado.edu/users/andre/.cs.colorado.edu/users/andre/.cs.colorado.edu/users/andre/.cs.colorado.edu/users/andre/
configuration_management.htmlconfiguration_management.htmlconfiguration_management.htmlconfiguration_management.htmlconfiguration_management.html

Brad Appleton’s home page and CM links
http://wwwhttp://wwwhttp://wwwhttp://wwwhttp://www.enteract.com/~bradapp.enteract.com/~bradapp.enteract.com/~bradapp.enteract.com/~bradapp.enteract.com/~bradapp

Software Technology Support Center (STSC) home page
http://wwwhttp://wwwhttp://wwwhttp://wwwhttp://www.stsc.hill.af.stsc.hill.af.stsc.hill.af.stsc.hill.af.stsc.hill.af.mil.mil.mil.mil.mil

Software Engineering Institute CM home page
http://wwwhttp://wwwhttp://wwwhttp://wwwhttp://www.sei.cmu.edu/technology/case/scm/.sei.cmu.edu/technology/case/scm/.sei.cmu.edu/technology/case/scm/.sei.cmu.edu/technology/case/scm/.sei.cmu.edu/technology/case/scm/
scmHomePscmHomePscmHomePscmHomePscmHomePage.htmlage.htmlage.htmlage.htmlage.html

CM frequently asked questions from the Usenet CM
group

http://wwwhttp://wwwhttp://wwwhttp://wwwhttp://www.iac.honeywell.com/P.iac.honeywell.com/P.iac.honeywell.com/P.iac.honeywell.com/P.iac.honeywell.com/Pub/Tub/Tub/Tub/Tub/Tech/CM/CMFech/CM/CMFech/CM/CMFech/CM/CMFech/CM/CMFAAAAAQ.htmlQ.htmlQ.htmlQ.htmlQ.html

file” in the build problem and other
problems related to process breakdowns
that manual (classical) CM systems
frequently have. Effective CM is pro-
gram management’s eyes and ears into
the project. It provides the who, what,
where, when, and how and provides
complete and accurate in-process soft-
ware configuration status, state, and
volatility of changes, and identifies areas
that need management attention. Effec-
tive CM is the next step in the evolu-
tion of CM practice. u

About the Author
Bob Ventimiglia is an internationally
recognized expert in state-of-the-science
CM. He is currently the environment,
tools, and CM lead for the software engi-
neering process department at Lockheed
Martin Aeronautical Systems in Marietta,

Ga. He leads the effort
to enhance and evolve
the Hercules C-130
program into an effec-
tive CM process. He has
been the F-22 environ-
mental control systems

and brake control systems software man-
ager, lead F-22 CM engineer, and chair-
man of the F-22 CM process configura-
tion management system working group.
Prior to joining Lockheed Martin, he held
key software management and engineering
positions with GE Aerospace Information
Technology, GE Corporate Engineering
and Manufacturing, Sanders Associates,
Inc., and Hamilton Standard Division of
United Technologies. He has a master’s
degree in engineering mechanics and a
bachelor’s degree in aeronautics and astro-
nautics from New York University School
of Engineering.

Lockheed Martin Aeronautical Systems
86 South Cobb Drive
Marietta, GA 30063-0685
Voice: 770-494-9791
Fax: 770-494-1345
E-mail: bventimi@hercii.mar.lmco.com (office)
bobev@technologist.com (home)

References
1. IEEE STD 610.12-1990, “IEEE Stan-

dard Glossary of Software Engineering
Terminology.”

2. ISO 10007:1995 (E), “Quality Man-
agement – Guidelines for Configura-
tion Management.”

Note
1. A more extensive list of definitions of

CM—including those by Susan Dart
that are coming close to a modern
redefinition of CM—can be found at
http://www.enteract.com/~bradapp/
acme/.

Configuration Management

Other Web Sites of Interest

CROSSTALK

http://wwwhttp://wwwhttp://wwwhttp://wwwhttp://www.stsc.hill.af.stsc.hill.af.stsc.hill.af.stsc.hill.af.stsc.hill.af.mil/CrossT.mil/CrossT.mil/CrossT.mil/CrossT.mil/CrossTalk/crostalk.htmlalk/crostalk.htmlalk/crostalk.htmlalk/crostalk.htmlalk/crostalk.html

Association for Configuration and Data Management
http://wwwhttp://wwwhttp://wwwhttp://wwwhttp://www.acdm.org.acdm.org.acdm.org.acdm.org.acdm.org

Electronic Industries Association
http://wwwhttp://wwwhttp://wwwhttp://wwwhttp://www.eia.org/gd.eia.org/gd.eia.org/gd.eia.org/gd.eia.org/gd

Managing Standards home page
http://wwwhttp://wwwhttp://wwwhttp://wwwhttp://www.airtime.co.uk/users/wysywig/wysywig.airtime.co.uk/users/wysywig/wysywig.airtime.co.uk/users/wysywig/wysywig.airtime.co.uk/users/wysywig/wysywig.airtime.co.uk/users/wysywig/wysywig.htm.htm.htm.htm.htm

Data Interchange Standards Association
http://wwwhttp://wwwhttp://wwwhttp://wwwhttp://www.disa.org.disa.org.disa.org.disa.org.disa.org

International Organization for Standardization
http://wwwhttp://wwwhttp://wwwhttp://wwwhttp://www.iso.ch/welcome.html.iso.ch/welcome.html.iso.ch/welcome.html.iso.ch/welcome.html.iso.ch/welcome.html

Software Productivity Research
http://wwwhttp://wwwhttp://wwwhttp://wwwhttp://www.spr.spr.spr.spr.spr.com.com.com.com.com

Official Department of Defense Stock Point
http://wwwhttp://wwwhttp://wwwhttp://wwwhttp://www.dodssp.daps.mil.dodssp.daps.mil.dodssp.daps.mil.dodssp.daps.mil.dodssp.daps.mil

Configuration Management Web Sites

CROSSTALK The Journal of Defense Software Engineering 9February 1998

Release
The release process is the interface
between the development process and
the deployment process. It encompasses
all activities needed to prepare and
advertise a system so that it can be
assembled correctly at another site. The
result of this activity is a package that
contains the system components, the
systems dependencies and constraints,
and information needed for the other
deployment steps. In addition, this
package is advertised.

Install
The installation activity covers the initial
insertion of a system onto a site. It is
usually the most complex of the deploy-
ment activities because all the necessary
resources must be found and assembled.
In the installation process, the package
created in the release process is used,
then the encoded knowledge is inter-
preted and the target site is examined to
determine how to properly configure the
software system.

The management of software
systems after they have been
deployed is an emerging prob-

lem that manifests itself in numerous
places. Software on the Mars Pathfinder
rover Sojourner was regularly changed
by mission control to give it new behav-
ior in the exploration of Mars. During
the Persian Gulf war, software on Patriot
missiles stationed in Israel and Saudi
Arabia was updated with U.S.-imple-
mented patches to increase their ability
to intercept hostile Iraqi missiles. Also,
software for on-board military aircraft
computers is continually adapted to
compensate for the various missiles car-
ried on each mission.

All these activities are part of the
software deployment process, which is
defined as

The delivery, assembly, and mainte-
nance of a particular version of a
software system at a site.

The elements of the above definition
can be illustrated in more detail using
the Mars Pathfinder as an example. The
site in this case is the rover, whereas the
software system is the software that con-
trols the movement of the rover over the

planet as well as the operation of its
measuring instruments. The delivery is
the transmission from Earth of new code
or new data to the Pathfinder, whereas
the assembly process ensures consistency
in the inclusion of new code or data in
the system already present at the rover.
This results in multiple versions of the
software system to be present at the
rover, which need to be maintained by
ground control.

At first sight, the software deploy-
ment processes for the Mars Pathfinder,
Patriot missiles, and military aircraft
seem vastly different. However, a signifi-
cant amount of commonality exists
among these and many other deploy-
ment processes. This article examines
this commonality. We first define the
software deployment lifecycle, which
consists of the series of activities nor-
mally carried out during the deployment
of a software system. We then examine
some existing solutions and demonstrate
why these solutions are not sufficient to
solve all deployment problems. We con-
clude with a brief look at two research
prototypes we have been constructing
that provide a radically different ap-
proach to software deployment.

Software Deployment Lifecycle
A software system’s general deployment
process is composed of a variety of
subprocesses or activities. Figure 1 lists
these activities and organizes them into
an overall deployment lifecycle. Follow-
ing is a more detailed discussion of each
activity.

Software Deployment
Extending Configuration Management Support into the Field

André van der Hoek, Richard S. Hall, Antonio Carzaniga,
 Dennis Heimbigner, and Alexander L. Wolf

University of Colorado

Traditionally, configuration management has only addressed the needs of the software development process.
Once a software system leaves the development environment and enters the field, however, there still is a signifi-
cant role for configuration management. Activities such as release, installation, activation, update, adaptation,
deactivation, and de-release constitute the “deployment lifecycle”; these activities need careful coordination and
planning in their own right. This article discusses the dimensions of software deployment, argues why current
solutions are not sufficient, and presents two research systems that specifically address software deployment.

Figure 1. Software deployment lifecycle.

This work was supported in part by the Air Force
Materiel Command, Rome Laboratory, and De-
fense Advanced Research Projects Agency (DARPA)
under contract number F30602-94-C-0253, and
in part by DARPA and the Office of Naval Re-
search (ONR) under ONR contract number
N66001-95-D-8656, delivery order 0001. The
content of the information does not necessarily re-
flect the position or the policy of the U.S. govern-
ment and no official endorsement should be inferred.

10 CROSSTALK The Journal of Defense Software Engineering February 1998

Activate
Activation refers to starting up those
components of a system that must ex-
ecute for the system to be usable. For
large systems in particular, activation can
be especially complex because it involves
the start-up of servers, clients, database
systems, etc.

Deactivate
Deactivation is the inverse of activation,
and refers to shutting down any execut-
ing components of a system. Deactiva-
tion is often required to perform other
deployment activities, e.g., a software
system may need to be deactivated be-
fore an update can be performed.

Update
The update process involves modifying a
software system that has been previously
installed on a site. An update is a new
version of a software system that fixes a
bug or adds new functionality. Updates
are normally less complex than installa-
tions because many of the needed re-
sources have already been obtained dur-
ing the installation process. Although a
system is usually deactivated before an
update, this is not always the case. For
some systems, there is a stringent re-

quirement that they continue to operate
while being updated. In such cases, the
update process can be quite complex.

Adapt
The adapt process involves modifying a
software system that has been previously
installed at a site. Adapt differs from
update in that updates are instigated by
remote events, whereas adaptations are
instigated by local events. For example, if
the configuration of a site changes in a
way that affects the deployed system, it
may be necessary for the deployed soft-
ware system to take corrective action.

De-install
At some point, a system as a whole is no
longer required at a site and can be de-
installed. De-installation is not necessar-
ily a trivial process. Special attention has
to be paid to shared resources such as
data files and libraries to prevent dan-
gling references.

De-release
Ultimately, a system may be marked
obsolete, and support by its producer is
withdrawn. De-release is distinct from
de-installation in the sense that the soft-
ware system becomes unavailable for

further installation at sites, but it is not
removed from sites that are using the
software.

Classification
The recent emergence of Internet-based
deployment systems has created a re-
newed interest in software deployment.
However, solutions for software deploy-
ment problems have been around for
decades, and many deployment systems
exist that support one or more activities
of the deployment lifecycle. These exist-
ing systems can be categorized into some
combination of the four classes discussed
below.

Content Delivery
In this class of systems and technologies,
the information being deployed is
merely transferred from one or more
sources to a number of receiving sites.
No customization is carried out once
this information has been placed at a
site. In essence, content delivery systems
provide a replication mechanism be-
tween source and target sites.

System Install and Update
These systems deal with the localization
of a software system to the environment

Configuration Management

Table 1. Evaluation of software deployment lifecycle support coverage. The release, install, and update activities have been split into two subactivities to
better highlight system features. “o” indicates some support, “•” is better-than-average support.

Co
nt

en
t D

eli
ve

ry
In

sta
ll

an
d U

pd
at

e
St

an
da

rd
s

Ne
tw

or
k M

gt
.

Release Install Activate

Package

Update Adapt Deactivate De-install De-release

Advertise

Transfer

Configure

Transfer

Reconfigure

Castanet o • •
PointCast • •
Rsync • •
Rdist •
NetInstall o o o •
NetDeploy o o o o o •
InstallShield o • •
RPM • o • o • o •
HP-UX SD • • • o •
MIF
AMS
Autoconf o o
TME-10 • • • • • o • •
Platinum • • • • • o • •
Nebula • • • • • • •
Novadigm • • • • •

CROSSTALK The Journal of Defense Software Engineering 11February 1998

In
sta

ll
an

d U
pd

at
e

St
an

da
rd

s
Ne

tw
or

k M
gt

.

Castanet
PointCast
Rsync
Rdist
NetInstall o
NetDeploy o
InstallShield o
RPM o • o
HP-UX SD o • o
MIF • o
AMS • •
Autoconf o
TME-10 • • •
Platinum • •
Nebula • • •
Novadigm • • •

provided by a site. Both an initial localization and incremen-
tal updates are supported. Most deployment systems fall into
this class.

Standardization
Because of the large amount of information that needs to be
managed during deployment of a software system, it is not
surprising that some efforts for standardization have taken
place. Standards generally focus on creating a standard tem-
plate to describe software systems and deployment sites. These
templates are used by deployment systems to manage the de-
ployment process.

Network Management
In the past, these systems have dealt with managing hardware
systems in a heterogeneous network. Over time, they have
grown to include some deployment activities, such as installa-
tion, update, and de-installation. The systems in this class
often operate in a centralized notion; they assume “dumb”
target sites.

Current Solutions
We have examined a representative set of systems from each of
the above classes with respect to coverage of the deployment
lifecycle. The results of this evaluation can be found in Table 1.
However, such a simple examination is not sufficient to fully
characterize deployment systems. We also have to look at sev-
eral other characteristics of deployment systems.

We strongly emphasize the importance of the changeability
and parameterization of the deployment process embodied in
deployment systems. This requires deployment systems to
operate at a certain level of abstraction. The primary abstrac-
tions are the target site, the system to be deployed, and the
process. As more powerful modeling capabilities for these
abstractions are included in a deployment system, two benefits
arise. First, simple systems can be deployed using generic pro-
cesses. Second, more complex software systems can be success-
fully deployed. For example, content delivery systems often do
not model the software system to be deployed, whereas system
installers have knowledge about the composition of a software
system. Therefore, updates done by content delivery systems
are often based on an algorithmic difference, but updates done
by systems installers are mostly based on a firsthand under-
standing of the components that need to be changed.

Another important aspect to examine is support for the
coordination of distributed, cooperating software systems.
These systems contribute to the growing complexity of soft-
ware deployment because their architectures have inherently
complex, unreliable relationships and dependencies. Such
architectures require special support to deploy successfully
because coordination among servers, peers, and clients may be
necessary. These coordination issues complicate the activities of
the software deployment lifecycle.

Table 2 presents the results of the second part of our exami-
nation. The table reflects the ability of each examined deploy-
ment system to model, change, and parameterize the target

site, the system to be deployed, and its embodied process. It
also presents each system’s ability to support the deployment of
distributed, coordinated systems.

University of Colorado Approach
As Tables 1 and 2 show, none of the existing deployment sys-
tems support the entire software deployment lifecycle. More
important, support for appropriate abstraction and coordina-
tion is lacking in most systems. What is needed is an all-en-
compassing, highly parameterized, unifying approach to soft-
ware deployment. Because it is unlikely that ad hoc
combinations of existing systems would yield the desired re-
sult, the Software Engineering Research Laboratory (SERL) at
the University of Colorado at Boulder, funded by the Defense
Advanced Research Projects Agency (DARPA)-sponsored
Evolutionary Design of Complex Software (EDCS) program is
researching software deployment systems. Two prototype sys-
tems have been created, each of which is briefly described
below.

SRM – A Software Release Manager
Software Release Manager (SRM) focuses on the release activ-
ity of the deployment process. It supports the release of systems
of systems from multiple, geographically distributed organiza-
tions. In particular, SRM tracks dependency information to
automate and optimize the retrieval of components. Both
developers and users of software systems are supported by
SRM. Developers are supported by a simple release process
that hides distribution. Users are supported by a simple re-
trieval process that allows the retrieval, via the Web, of a system
of systems in a single step as a single package.

Software Deployment: Extending Configuration Management Support into the Field

Co
nt

en
t D

eli
ve

ry

Site Abstraction

Process Abstraction
Coordination

System Abstraction

Table 2. Evaluation of abstraction and coordination capabilities.“o”
indicates some support, “•” is better-than-average support.

12 CROSSTALK The Journal of Defense Software Engineering February 1998

SRM is freely available and supported on most UNIX
platforms. It has been used extensively by our research labora-
tory to release our software and is currently being deployed to
the approximately 50 participants in the EDCS program. This
will provide the EDCS program with a single location from
which all technology created by EDCS can be browsed and
retrieved, despite that the technology is created by organiza-
tions spread over the United States.

Software Dock – A Software Deployment Architecture
Extending the ideas of SRM, the Software Dock constructs an
architecture that supports all of the activities in the software
deployment process. The Software Dock relies not only on a
standard available release dock at a producer site (similar to
SRM), but also on a standard available field dock at a target site
(see Figure 2). Between these docks, agents accompany software
systems as they are being deployed. The agents represent the
various deployment activities and operate on the semantic data
(available in the registries of the release and field docks) to
properly deploy a software system. Standard agents are avail-
able that model most common deployment activities. These
agents can be parameterized to carry out more specific deploy-
ment activities as required.

Central to the Software Dock approach is that all dimen-
sions are customizable. In particular, the release dock is the
abstraction for a software system to be deployed, the field dock
is the abstraction for the target site, and the agents are the
abstraction for the deployment process activities.

A prototype of the Software Dock is currently being imple-
mented. Previous incarnations have been created, evaluated,
and constructed based on a collaboration with Lockheed Mar-
tin, wherein an existing 6,000-line Perl-based installation script
was reduced to a small installation agent derived from a ge-
neric installation template.

Conclusion
Although software deployment is an ever-present activity as
software systems are being developed, structured support for
the deployment process has been remarkably lacking until now.
Various deployment systems have been created, but no system
comes close to providing a single solution that can “do it all.”
Based on a well-defined deployment lifecycle, we have high-
lighted some of the complex issues, partial solutions, and re-
search to define and build the software deployment systems of
tomorrow. u

Further Reading
Space limitations do not allow us to treat all issues in as much
depth as they deserve. Please visit the following Web sites for
further information on deployment issues, existing deployment
solutions, and the prototypes discussed in this article.
• SRM http://www.cs.colorado.edu/serl/cm/SRM.html.
• Software Dock http://www.cs.colorado.edu/serl/cm/

dock.html.
• The Configuration Management Yellow Pages http://

www.cs.colorado.edu/users/andre/
configuration_management.html.

• The Software Deployment Information Clearinghouse
http://www.cs.colorado.edu/users/rickhall/deployment/.

• SERL http://www.cs.colorado.edu/serl.

About the Authors
André van der Hoek is a computer science doctoral candidate at
the University of Colorado at Boulder. He has a bachelor’s degree
and a master’s degree in business-oriented computer science from

Figure 2. Software Dock architecture.

Configuration Management

The Software Engineering Research Laboratory at
the University of Colorado at Boulder invites you to
subscribe to a new, noncommercial mailing list for the
software engineering community:
SEWORLD@cs.colorado.edu.

SEWORLD will serve as a central place for relevant
announcements of software engineering conferences,
workshops, symposiums, special journal issues, calls for
papers, research and educational systems, etc.

The list is moderated to avoid junk E-mail, duplica-
tion, and other misuses. In addition, all E-mail addresses
are registered privately to the list, are not published, and
will not be given to anyone requesting them.

Simple instructions on how to subscribe or contribute
to SEWORLD are on the SEWORLD Web site at

http://www.cs.colorado.edu/serl/seworld

New Software Engineering Mailing List

CROSSTALK The Journal of Defense Software Engineering 13February 1998

the Erasmus University
Rotterdam, the Nether-
lands. His research inter-
ests include configura-
tion management,
software architecture,
and distributed systems.

He is a member of the program committee
of the Eighth International Symposium on
System Configuration Management.

Richard Hall is a computer science doc-
toral candidate at the University of Colo-
rado at Boulder. He has a bachelor’s degree
in computer engineering from the Univer-
sity of Michigan and a master’s degree in
computer engineering from the University
of Colorado at Boulder. His research inter-
ests include software deployment and
distributed systems. He currently works on
a distributed, agent-based framework to
support software deployment.

Antonio Carzaniga has a laurea degree in
electronic engineering from Politecnico di
Milano and a master’s degree in informa-
tion technology from CEFRIEL, Milano,
Italy. He was a junior researcher with

CEFRIEL before enter-
ing the doctorate pro-
gram in software engi-
neering at Politecnico
di Milano. Currently,
he is a visiting research
assistant in the com-

puter science department of the University
of Colorado at Boulder. His interests
include software process as well as generic
distributed systems technology. His cur-
rent research concerns scalable event ob-
servation and notification mechanisms.

Dennis Heimbigner
has a bachelor’s degree in
mathematics from the
California Institute of
Technology and a
master’s degree and a
doctorate in computer

science from the University of Southern
California. He is a former member of the
technical staff for TRW Defense and Space
System Group in Los Angeles, Calif. He is
currently a research associate and assistant
professor in the computer science depart-

ment of the University of Colorado at
Boulder.

Alexander Wolf is a
faculty member in the
computer science de-
partment of the Univer-
sity of Colorado at Boul-
der. Previously, he was
employed at AT&T Bell

Laboratories. His research interest is the
discovery of principles and development of
technologies to support the engineering of
large, complex software systems. He has
published papers on software engineering
environments and tools, software process,
software architecture, and configuration
management. He is vice chairman of the
Association for Computing Machinery
Special Interest Group on Software Engi-
neering.

Software Engineering Research Laboratory
Department of Computer Science
University of Colorado
Boulder, CO 80309
Voice: 303-492-5263
Fax: 303-492-2844
E-mail: {andre, rickhall, carzanig, dennis,
alw}@cs.colorado.edu

Software Deployment: Extending Configuration Management Support into the Field

Coming Events
Second Workshop on Software Architectures in
Product Line Acquisitions

Dates: June 8-10, 1998
Location: Salem, Mass., Hawthorne Hotel
Subject: Adoption of an architecture-driven approach

to acquiring a line of software-intensive products.
Call for Position Papers: Submissions due: March 6,

l998. Notification of acceptance: April 1, 1998.
For submission guidelines, visit the Production
Line Issues Action Team Web site.

Sponsor: Product Line Issues Action Team
Contact: Edward Addy, NASA/WVU Software Re-

search Laboratory
Voice: 304-367-8353
Fax: 304-367-8211
E-mail: eaddy@wvu.edu
Internet: http://columbia.ivv.nasa.gov:6600/pliat

Relationship of DoD Architecture-Driven
Standards to Product Line Acquisition Business
Model

Dates: March 17-18, 1998
Location: Burlington, Mass.

Sponsor: System Resources Corporation
Subject: Meeting participants will discuss the applicabil-

ity of Department of Defense (DoD) architecture
initiatives to software architecture-based acquisitions
of a product line and produce a short point paper
discussing how product line acquisition organiza-
tions can effectively apply DoD standards in the
acquisition of a family of software-intensive systems.

Contact: Harry Joiner
E-mail: hjoiner@world.std.com

International Information Technology Quality
Conference

Dates: April 13-17, 1998
Location: Orlando, Fla.
Theme: “Providing Proven Solutions for the New

Millenium”
Keynote Speakers: Phillip Crosby, Tom DeMarco,

William Perry, Howard Rubin
Sponsor: Quality Assurance Institute
Contact: 407-363-1111
Fax: 407-363-1112
Internet: http://www.qaiusa.com

14 CROSSTALK The Journal of Defense Software Engineering February 1998

The first issue to be addressed in any improvement
program is “Why should we improve?” Regardless of
how logical the improvement is and regardless of grow-

ing evidence of its benefits, organizations do not launch suc-
cessful process improvement programs until they have a com-
pelling business reason.

One of the most effective improvement motivators is cus-
tomer pressure. In the case of the CMM, the U.S. Air Force
asked the Software Engineering Institute (SEI) to devise an
improved method to select software vendors. When we re-
sponded with the CMM, the defense industry then had a
compelling business reason to improve their software processes.
As the CMM became more widely used, the business logic for
improvement also evolved. Now, many software organizations
desire to establish and maintain a strong competitive position
as quality suppliers of software-intensive systems.

Once the “why” question is answered, the next immediate
question is “What must we do to achieve a superior software
capability?” This is the principal question addressed by the
CMM. The maturity-level framework and related evaluation
system help organizations understand their capabilities. They
can then compare their current practices with the CMM
model and see what activities they need to add or improve.

Once an organization knows what to do to improve, the
next question is “How do we make these improvements?” This
question involves several organizational levels. At the manage-
ment level, a software engineering process group (SEPG)
helps establish the definition, control, and improvement tasks
needed to launch an improvement program. At the next level,
the TSP guides project teams and their management in apply-
ing process principles to meet project objectives. Finally, the
PSP addresses the way engineers develop products. For the
organization to meet its objectives, the engineers and managers

at all these levels must perform their tasks with skill and com-
petence. In the last analysis, to do superior software work,
organizations must have high-performance software engineers
working on well-managed and high-performing project teams.

Figure 1 shows the relationships among these management,
team, and engineering layers. Organizational capability is built
from the inside out while project support and engineering
motivation are provided from the outside in. Effective work in
all three layers is required for a fully productive software orga-
nization. The balance of this article describes why we devel-
oped the CMM, PSP, and TSP, and how they work.

Why Software Projects Fail
There are many ways to botch up a software project: have
ineffective management, execute poor engineering, or create a
confusing design. To be consistently successful, competent
work must be done in all important technical and manage-
ment areas. If only one area is not addressed—requirements
management, for example—that area could easily become the
Achilles heel that results in the project’s failure. (Not to say
that requirements management is more important than all the
things done correctly, just that through neglect it became the
cause of the failure). The next time around, requirements may

Three Dimensions of Process Improvement
Part I: Process Maturity

Watts S. Humphrey
Software Engineering Institute

This is the first part of a three-part article on methods of software process improvement that were developed at
the Software Engineering Institute (SEI): the Capability Maturity Model (CMM)® for software, the Personal
Software Process (PSP)SM, and the Team Software Process (TSP)SM. The CMM provides an overall framework
to describe the activities software organizations need to do to consistently produce effective results; the PSP
helps engineers use process principles in their personal work; the TSP shows integrated product teams how to
use these processes to consistently produce quality products on aggressive schedules and for their planned costs.
Each method provides important benefits; organizations will get the best results by using all three. Part I
describes the CMM. Parts II and III (to appear in subsequent issues) will cover the PSP and TSP.

The SEI’s work is supported by the Department of Defense.

Capability Maturity Model and CMM are registered with the U.S. Patent
and Trademark Office. Personal Software Process, PSP, Team Software Pro-
cess, and TSP are service marks of Carnegie Mellon University.

Figure 1. Process improvement dimensions.

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 15February 1998

be managed properly but the design
botched, and another project fails.

Although the cause of failure may
not matter to the ultimate user, the
reasons are important from a process
improvement perspective. If the causes
are managerial or administrative, im-
proved organizational and project man-
agement will usually solve the problems.
If the causes are purely technical, how-
ever, the solutions are generally more
complex.

A careful examination of failed
projects shows that they often fail for
nontechnical reasons. The most com-
mon problems concern poor scheduling
and planning or uncontrolled require-
ments. Poorly run projects also often
lose control of changes or fail to use even
rudimentary quality practices.

The SEI Process Improvement
Approach
The SEI started its process improvement
work by first attacking project manage-
ment problems, because poor manage-
ment practices are the most frequent
cause of software project failure. When
the project is poorly managed, it is hard
to improve anything else.

Again, it is important to remember
that all aspects of the project are impor-
tant, and any omitted area could be
fatal. Thus, while an organization’s
improvement work focuses on manage-
ment issues, the development groups
must continue to do their best to ad-
dress all the important facets of their
work.

Focusing the Improvement Effort
Process change is behavioral change and
behavioral change takes a great deal of
time. Behavior involves long-held habits
and practices that people will not
readily abandon. If change is imposed
by force, people will resist what they
perceive to be a threat to their stability.
The most effective way to avoid resis-
tance is to convince people that the
change is in their best interest; however,
it may take a long time for some people
to be persuaded. Further, to have any
hope of a lasting change, only a few
changes should be addressed at a time.
With several dozen critical issues, for

example, making them all high priority
would be confusing, and when con-
fused, people are much less likely to
change the way they work.

The only way to initiate process
improvement is to look at the problems
in your organization. No two organiza-
tions are identical, and you need to
determine where your group can most
productively focus its improvement
energies. Figure out which of these prob-
lems are fundamental and which will
make the most difference. Then, select
those few changes that will most directly
address the current needs of your busi-
ness and people.

The CMM process maturity road
map and the CMM-based appraisal for
internal process improvement (CBA-
IPI) helps organizations evaluate their
particular weaknesses [1]. By doing a
CBA-IPI assessment, organizations can
both identify the most important areas
for improvement and establish an orga-
nizational consensus on the need for
improvement. This helps organizations
set improvement priorities and reduces
resistance to change [2, 3].

The Motivation for the CMM
When I arrived at the SEI in 1986, I was
asked to work on a high-priority Air
Force project. The military’s experience
with software acquisition had been, in
summary, less than satisfactory. This
“software crisis” was the principal reason
the U.S. Department of Defense (DoD)
established the SEI in the first place.
Thus, one of our first projects was to
devise a method the DoD acquisition
community could use to identify compe-
tent software contractors.

We knew from many years of soft-
ware experience that management atten-
tion is the key to process improvement.
Without sufficient management priority,
not much improvement work gets ac-
complished, at least not for a long time.
Management, however, is generally sen-
sitive to their customers’ demands. Thus,
if the DoD acquisition community
required improved software processes
from their suppliers, we were sure man-
agement would give the subject a high
priority. The original motivation for the

CMM was thus to address DoD’s prob-
lems with software acquisition.

The Birth of the CMM Concept
The original concept behind the CMM
started to gel in my mind many years
ago when I was put in charge of a large
software development organization. This
group had several thousand engineers
working on many large and small
projects in 15 laboratories in the United
States and Europe. Almost all the
projects were in trouble and nothing was
on schedule.

My first step was to visit several of
the largest of these development labora-
tories. Nobody had plans or schedules.
They all agreed that to deliver products
on time, they needed to have schedules
and plans. They also agreed that if they
did not make plans, they could never
make sensible commitments. And with-
out sensible commitments, they could
not start delivering on schedule. They
said the reason they could not make
plans and schedules was that if they put
anyone on the planning work, they
would have to take them from develop-
ment, which would delay the projects.

So none of the laboratories made
plans and schedules. Their commitments
were pure guesses, and they were almost
never met. This had been going on since
the laboratories were formed, and it
appeared likely to continue unless some-
thing happened to cause change. My
question was if everybody agreed that
planning was essential, why didn’t they
do it?

It Was My Fault
The answer was that I was not doing my
job. These laboratories had so much to
do and they were under so much pres-
sure that they could only do what they
absolutely had to do to ship the prod-
ucts. In simplest terms, that meant
coding and testing; everything else was
considered unnecessary and could be
skipped. As long as the laboratories
could announce and ship products
without planning, they would con-
tinue to do so.

Merely telling the laboratories to
make plans would not work. So I put
out a directive that henceforth, no prod-

Three Dimensions of Process Improvement: Part I: Process Maturity

16 CROSSTALK The Journal of Defense Software Engineering February 1998

uct would be funded, committed, or shipped unless I first had
a documented plan on my desk. This plan had to be signed by
all the managers whose groups were involved in the work. I
gave the laboratories 60 days to complete the first plans. Once
we had plans for the work, we announced the new schedules,
and we did not miss a single shipment date for the next two
and one-half years.

The First Important Lesson
Effective software process improvement will not start until
management insists that product development work be
planned and properly managed. Senior management must
then continue to insist that all the projects be planned, even
in a crisis. They not only must insist on aggressive plans, they
must respect the plans and ensure that the engineers own and
defend them. Since the schedules engineers initially make are
almost always too tight, management must review and cri-
tique these plans to look for holes and oversights. While
management should push as hard as they can for aggressive
schedules, once the engineers have defended their plans, they
should respect these plans and not override them with sched-
ule edicts.

We had to start at the top with a management commit-
ment to planning. The engineers could not take that step
themselves. As long as senior management let them slide by
without plans, they would continue to do so. Of course it was
not quite that simple. The engineers needed a lot of help with
their first plans, and we had to develop a project management
training program. Over the next three years, we put 1,000
managers through a one-week project management course.

Building the CMM Model
When I arrived at the SEI, we started to think about the im-
provement process in a more orderly way. We realized that
process improvement must be taken in steps not only because
people can change just a few things at a time but also because
some steps are prerequisites for others. Since poor project
management generally blocks good engineering, the first prior-
ity must be effective project management.

In addition to planning and scheduling, other tools that
aid process improvement are quality assurance, configuration
management, subcontract management, and requirements
management. Quality assurance provides the management
eyes and ears to ensure that the plans are properly made and
that commitment ground rules are followed. Configuration
management and subcontract management track and manage
the products as they are developed, and effective requirements
management maintains control of job scope. As shown in
Figure 2, these are the CMM Level 2 practices [2, 3]. In es-
sence, they establish a planned and managed environment that
enables good engineering.

The Higher Maturity Levels
Beyond basic management, the next step is to address organi-
zational learning and growth. As long as organizations learn
only from their own mistakes, they can expect to make a lot
more mistakes. Most software organizations have many good
practices that are only used by a few projects. An organization
can make rapid improvement when these practices are more
widely used. The objective is to capture those effective prac-
tices so others can use them, which leads to what we call pro-
cess definition. Although there are many more parts to CMM
Level 3, its essence is to facilitate organizational learning by
getting good practices defined and into use.

The next steps focus on process measurements, quality
management, and quality control. Organizations also need to
introduce advanced methods and technologies. Finally, the

Figure 2. CMM maturity levels.

Figure 3. State of software practice 1987-1997.

1
2

3
4

5

1987

1997

0

20

40

60

80

100

Pe
rce

nt

Maturity Level

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 17February 1998

software business is new, and we can
expect it to continue to grow and
evolve. Since any static process will
soon be outdated, software organiza-
tions need to continue to improve. This
calls for a continuing focus on technol-
ogy change and process improvement.
In total, these are the practices of
CMM Levels 4 and 5.

Introducing and Using the CMM
Once management is convinced of the
business need for process improve-
ment, the most effective way to start is
to achieve a broad consensus on the
need for and potential benefits of pro-
cess improvement, which is the role of
the CBA-IPI assessment. The SEI
trains people on how to conduct such
assessments, and many organizations
now offer commercial assessment ser-
vices. These offerings are described
more fully on SEI’s Web pages http://
www.sei.cmu.edu.

Conclusion
A large number of organizations have
used the CMM framework, and a great
deal has been published on its benefits
[4,5,6,7,8,9,10,11]. Table 1 shows a
brief summary of improvement data
from one SEI study [12]. These 13
organizations had worked on software
process improvement for an average of
three and one-half years, and they all
gained substantial cost, schedule, and
quality benefits. Figure 3 shows the
improvement in CMM levels between

1987—when SEI gathered initial data
on a few dozen groups—and the most
recent 1997 canvass of about 600 orga-
nizations. Although much more re-
mains to be done, the CMM helps
organizations improve. u

About the Author
Watts S. Humphrey is
a fellow at the SEI of
Carnegie Mellon Uni-
versity, which he joined
in 1986. At the SEI, he
established the Process
Program, led initial

development of the CMM, introduced the
concepts of Software Process Assessment
and Software Capability Evaluation, and
most recently, the PSP and TSP. Prior to
joining the SEI, he spent 27 years with
IBM in various technical executive posi-
tions, including management of all IBM
commercial software development and
director of programming quality and
process.

He has master’s degrees in physics from
the Illinois Institute of Technology and in
business administration from the Univer-
sity of Chicago. He is the 1993 recipient
of the American Institute of Aeronautics
and Astronautics Software Engineering
Award. His most recent books include
Managing the Software Process (1989), A
Discipline for Software Engineering (1995),
Managing Technical People (1996), and
Introduction to the Personal Software Process
(1997).

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
Voice: 412-268-6379
E-mail: watts@sei.cmu.edu

References
1. Dunaway, Donna and Steve Masters,

“CMM-Based Appraisal for Internal
Process Improvement (CBA-IPI):
Method Description,” Technical Report
CMU/SEI 96TR-007, April 1996.

2. Humphrey, W. S., Managing the Software
Process, Addison-Wesley, Reading, Mass.,
1989.

3. Paulk, Mark C., et al., The Capability
Maturity Model: Guidelines for Improving
the Software Process, Addison-Wesley,
Reading, Mass, 1995.

4. Diaz, Michael and Joseph Sligo, “How
Software Process Improvement Helped
Motorola,” IEEE Software, Vol. 14, No.
5, Sept. 19, 1997, pp. 75-81.

5. Dion, Raymond, “Process Improvement
and the Corporate Balance Sheet,” IEEE
Software, July 1993, pp. 28-35.

6. Goldenson, Dennis R. and James D.
Herbsleb, “After the Appraisal: A System-
atic Survey of Process Improvement, Its
Benefits, and Factors that Influence
Success,” Technical Report CMU/SEI-
95-TR-009, August 1995.

7. Hayes, Will and Dave Zubrow, “Moving
On Up: Data and Experience Doing
CMM-Based Process Improvement,”
Technical Report CMU/SEI-95-TR-
008, August 1995.

8. Humphrey, W.S., T.R. Snyder, and R.R.
Willis, “Software Process Improvement
at Hughes Aircraft,” IEEE Software, July
1991, pp. 11-23.

9. Lawlis, P.K., R.M. Flowe, and J.B.
Thordahl, “A Correlational Study of the
CMM and Software Development
Performance.” CROSSTALK, STSC, Hill
Air Force Base, Utah, September 1995,
pp. 21-25.

10. Wohlwend, H. and S. Rosenbaum,
“Schlumberger’s Software Improvement
Program,” IEEE Transactions on Software
Engineering, Nov. 11, 1994, pp. 833-839.

11. Yamamura, George and Gary B. Wigle,
“SEI CMM Level 5: For the Right Rea-
sons,” CROSSTALK, STSC, Hill Air Force
Base, Utah, August 1997, pp. 3-6.

12. Herbsleb, J.D., D. Zubrow, D.
Goldenson, W. Hayes, and M. Paulk,
“Software Quality and the Capability
Maturity Model,” Communications of the
ACM, June 1997, Vol. 40, No. 6, June
1997.

Yearly cost of improvement $245,000
Years engaged in improvement 3.5
Yearly cost per software engineer $1,375
Productivity gain per year 35%
Yearly reduction in time to market 19%
Yearly reduction in post-release defects 39%
Business return per dollar invested $5

Table 1. Median results from an SEI study of 13
software organizations.

Three Dimensions of Process Improvement: Part I: Process Maturity

18 CROSSTALK The Journal of Defense Software Engineering February 1998

Figure 1. Process improvement team relationships.

Senior leaders of many organizations form PATs or
other similar working groups to improve processes.
These same leaders often believe that the business pro-

cesses at the heart of the organization must be meticulously
well defined and documented. It is often believed that all the
PAT must do is quickly analyze the process and make some
improvements.

Unfortunately, the opposite is usually true. Where any
process documentation exists, it is often sketchy. Frequently,
important information is not written down at all but instead
resides in the heads of a few people. Often, the disappointing
outcome is either a black hole—a PAT that goes on forever
collecting input and thrashing about without producing any
useful output—or a PAT that is terminated after management
tires of waiting for results.

Process improvement by definition is impossible without
defined and documented processes to improve. Unfortunately,
most PATs do not know how to define and document a pro-
cess. If there were a process that PATs could follow and assis-
tance to follow the process, PATs could become shining stars
that save significant amounts of time and effectively perform
the task of defining and documenting critical business pro-
cesses. The processes could then enter into the continuous
process improvement cycle.

Where Do PATs Fit?
A variety of groups are often formed within an organization to
improve processes, including a management steering commit-
tee (MSC), a software engineering process group (SEPG), and
PATs. Pilot projects are used to test the new processes to ensure
they are “fit for use” before the MSC publishes policies that
mandate the use of the new processes by other projects in the
organization. Figure 1 depicts a simplified view of some of the
most important relationships. This article focuses on the rela-
tionship between the PAT and the SEPG.

Unless PAT members have experience defining and docu-
menting processes, which is a specialized skill, the PAT will
need the help of a group with such expertise. As depicted in
Figure 1, the SEPG should have process documentation exper-

Process Action Teams
From “Black Holes” to “Shining Stars”

Douglas D. Orville
pragma Systems Corporation

Often because of unfortunate experiences, many people desperately avoid being selected for a process
action team (PAT). No one wants to waste scarce time participating on an unproductive “team.”
Participants want to know what they are expected to produce, when they must produce it, who wants
it and why, and how they are supposed to do whatever a PAT does. There is a better way to form
PATs. This article addresses where PATs fit in the big picture of process improvement, who should be
on a PAT, and how a PAT can create a defined and documented process. Results, such as the number
of PAT sessions required and the estimated time for PAT activities, are provided.

tise gained from working with PATS. If not, the SEPG needs
training and coaching in the use of such a process before they
can guide the PATs. When SEPG training and coaching is not
feasible, an outside organization with the required expertise
should be brought in.

Using a process to define processes, the PAT defines and
documents the new process and identifies valuable lessons
learned, under the guidance of the SEPG or an appropriate
outside group. Once the new process is documented, the em-
phasis turns to implementation via a pilot project aimed to-
ward eventual adoption throughout the organization, followed
by continuous process improvement. Because the group that
guides the PAT deals with the specifics of process definition
and documentation, what do the members of the PAT bring to
the table?

Who Should Be on a PAT?
The intent of the PAT is to codify (define and document) the
organization’s best practices, then continuously improve the
documented process. Therefore, the members of the PAT
should come from among the organization’s experts, those whoCopyright © 1997 Douglas D. Orville

CROSSTALK The Journal of Defense Software Engineering 19February 1998

best perform the existing process. For
example, a PAT that defines a configura-
tion management (CM) process should
consist of three or four of the top CM
managers or technologists from the
organization who are involved in process
improvement. A significant point to
keep in mind when selecting PAT mem-
bers is that they will codify what they
know. Carefully assemble a small PAT
(three or four members) from your
organization’s experts. Do not select
whomever happens to be available or
whomever you “can afford to lose.”
Selecting the proper team members is
the most important determinant of the
PAT’s success.

By nature of their abilities, experts
are in high demand throughout the
organization. The “process for PATs”
described later in this article employs a
key strategy to minimize the time PAT
members are away from their primary
duties.

PAT members should have no PAT
responsibilities outside of working ses-
sions. Process documentation activities
that take place between working sessions
are performed by the PAT facilitator and
administrative staff, not by the PAT
members. Therefore, PAT members are
only required to bring their knowledge
to the table, not their process documen-

tation skills. The PAT facilitator should
be available at least half time while facili-
tating a PAT.

One benefit of having experts on the
PAT is credibility. These experts are the
people who know, use, and refine the
current processes every day. Because they
represent the top performers in the orga-
nization, it is their processes that man-
agement should want to codify. They
also significantly improve buy-in from
everyone else in the organization, with-
out which the best processes will likely
fail to be adopted by an organization.

Experts also determine the degree of
improvement that should be incorpo-
rated into initial process definition and
documentation. Our experience at
pragma Systems Corporation indicates
that process definition and documenta-
tion is most effective when there is a mix
of as-is processes and should-be processes
in the documented process. Experts
from throughout the organization have
the experience with the current process
to ensure that as-is and best practices are
incorporated into the process. In addi-
tion, experts also are sensitive to how
much should-be process activity the orga-
nization can tolerate from a change
management perspective.

A Process for PATs

Before Forming a PAT
Senior management must make several
critical decisions before forming any
PATs. These decisions serve as the foun-
dation for all the PATs.
• Decide what artifacts must exist to

define and document a process; oth-
erwise, the PATs are left on their own
to determine what constitutes a
documented process. Several PATs
could go off in different directions,
documenting processes using differ-
ent methods and tools, which would
result in a morass of inconsistent
process artifacts.

• Decide which process(es) should be
defined and documented first.

• Decide on the purpose, scope, and
viewpoint for each process; other-
wise, each PAT will again be left to
its own discretion and may or may
not hit the mark on the purpose of
the process. The PAT may include
unnecessary process activities or
exclude important activities.

• Decide who will facilitate the PAT
(usually an SEPG member or an
outside group with the necessary
expertise). If chosen by default, the

Figure 2. Process artifact relationships.

Process Action Teams: From “Black Holes” to “Shining Stars”

20 CROSSTALK The Journal of Defense Software Engineering February 1998

SEPG may quickly become over-
whelmed with facilitating duties.
Once these decisions are made, se-

nior management must follow up by
providing the resources required to
implement the decisions. The most
important resources are the time of the
organization’s experts who will serve as
PAT members and the PAT facilitator.

Senior management must provide
funding or other resources to bring in an
outside group or individual if the SEPG
does not have the expertise to facilitate a
PAT through the activities in a process
to develop processes. This outside group
or individual will train and coach the
SEPG members or facilitate several PATs
or both. Once these issues are addressed,
PATs can be formed with the assurance
that they will produce similar and con-
sistent process artifacts that hit the mark
relative to the purpose and scope of each
process.

The PAT Kick-off Meeting
The purpose of the PAT kick-off meet-
ing, chaired by the PAT facilitator, is to
spend a day orienting the PAT team to
the task ahead. If the PAT is to define a
process that must be compliant with the
Capability Maturity Model (CMM) for
software, some time should be used to
become familiar with the CMM and its
structure and the key process areas the
PAT must address. And if the process is
CMM-related or is to be CMM-
compliant, each PAT member must have
a copy of the CMM. The PAT also
should learn the process that the PAT
will use to define and document their
process.

In the absence of a separate PAT
kick-off meeting, the first day of the
initial PAT working session should be
used for the same purpose.

Gathering Process Requirements
Just as with development of a software
system, requirements serve as the foun-
dation for the process to be defined.
Requirements for the process are gath-
ered via a half-day customer focus group
meeting and are extracted from any
applicable process standards such as the
CMM. The customer focus group meet-
ing is extremely important because it

involves the future users of the process
the PAT will produce. The customers of
the PAT go through several brainstorm-
ing exercises to identify the internal
requirements for the process. Some of
the internal requirements will overlap
the requirements extracted from a stan-
dard like the CMM; however, some
requirements will be unique to the orga-
nization and must be captured. Ensuring
that these unique requirements are cap-
tured and incorporated into the process
being developed dramatically aids pro-
cess adoption. This occurs because the
customers can see that the process will
specifically address their requirements.
The PAT facilitator conducts the cus-
tomer focus group meeting with the
PAT members observing. The facilitator
also extracts the requirements from any
applicable standards, then enters the
requirements into a tracking mechanism
such as a requirements matrix.

This activity should not be bypassed
for two important reasons. First, the
requirements are used by the PAT fa-
cilitator to guide the PAT through the
initial phases of the process model cre-
ation. The requirements are the founda-
tion of the process. Second, if compli-
ance with the CMM or some other
standard is important, such compliance
cannot be demonstrated unless the
requirements have been recorded and
subsequently traced to the process.
Demonstrating compliance later to an
evaluator or assessment team would be
much more difficult and open to sub-
jectivity on the part of the evaluator or
assessment team.

PAT Working Sessions
The first working session of the PAT
should occur about one and one-half to
two weeks after the customer focus
group meeting. The spacing between
subsequent working sessions should also
be about two weeks. Each working ses-
sion of the PAT should not exceed three
days and should be no less than one and
one-half days. To develop the required
process artifacts, the facilitator should
lead the PAT through a series of highly
structured and focused activities. Figure
2 illustrates the relationships between
several process artifacts.

Similar to the internal requirements,
external requirements are extracted from
applicable standards, such as the CMM,
and are also entered into the matrix by
the PAT facilitator.

All the requirements are translated
into activities, inputs, outputs, stan-
dards, and resources in a process model.
The Integrated Definition method is
recommended; however, a number of
other graphical process modeling meth-
ods may be used. The process model
provides a graphical representation of
the structure and flow of the process.
The process model is not detailed
enough to execute, however, unless the
process activities are decomposed to the
point that the visual model is useless
because of extreme complexity. There-
fore, the facilitator stops the PAT’s pro-
cess modeling activities when the process
model reaches the point where each
individual, or lowest-level, activity box
in the process model can be described in
roughly six to 10 steps in a procedure
table. The procedure tables contain the
detail necessary to execute the process.
PAT members provide the detailed steps
for each procedure table to be docu-
mented by the PAT facilitator.

By necessity, the process model must
have short, clear labels to aid in model
readability. To capture the more detailed
meaning behind those labels, a process
glossary is created to define all the pro-
cess model terms.

Any time after the process model and
procedure tables are created, the PAT
spends some time during each working
session to map the process requirements
to the process model and add this infor-
mation to the requirements matrix.

When a process is executed, it is
helpful to have forms to fill out or ex-
amples to follow of products that must
be produced. In most organizations,
many of these forms and examples
already exist. In the spirit of capturing
best practices within the organization,
the best of these forms and examples
are referred to in both the process
model and the procedure tables and are
physically or electronically collected
into a single reference location. As
subject matter experts, the members of
the PAT collect the forms and ex-

Software Engineering Technology

CROSSTALK The Journal of Defense Software Engineering 21February 1998

amples, which are then maintained as
part of the process by the SEPG or the
SEPG’s equivalent.

To ensure they develop processes for
typical projects within the organization,
each PAT is provided a description of
the purpose, scope, and viewpoint for
the process when they begin. As a result,
the PAT creates a process that is some-
what generic or standard with high-level
tailoring guidelines that help “real life”
projects determine which activities can
be eliminated or modified and under
what conditions.

Training provides a tremendous
boost to any effort to adopt a new pro-
cess. Therefore, the final set of process
artifacts produced by the PAT are train-
ing materials that generally consist of
overhead slides and instructor notes.

The number of working sessions that
each PAT needs varies depending on the
complexity of the process and on how
much time the MSC wishes to spend on
a process. pragma Systems’ past experi-
ence facilitating client PATs indicates
that the minimum number of three-day
working sessions should be four, with
nine sessions as the upper limit to ensure
timely results. The time between sessions
should be 10 working days to allow
sufficient time to generate the process
artifacts for use at the next working
session. As a guideline, a four-session
PAT should take about three months,
and a nine-session PAT should take
about eight months.

Customer Focus Group Follow-up
Session(s)
If a PAT lasts longer than three months,
a follow-up meeting with the customer
focus group is recommended shortly
after the PAT dissolves and again at two
to three months thereafter. These follow-
up meetings help with the eventual
adoption of the process. Keeping people,
especially those who helped generate
requirements, informed about the status
of process development is critical.

Peer Review
The final meeting of the PAT is an all-
day peer review that involves one or

more PAT members and two or three
peers from within the software organiza-
tion. Copies of the process artifacts are
distributed to the reviewers several days
before the review. The process artifacts
are then reviewed during the meeting to
assess their readiness for pilot testing—
not to assess their level of perfection.
This distinction is important, since
many engineers tend to fall into the trap
of trying to engineer as perfect a process
as possible before letting others see it,
which results in a PAT that spends much
more time than necessary to produce a
process. Moreover, the process may
eventually be revised to account for an
issue the PAT did not consider.

Move the developed process artifacts
into pilot testing as soon as possible,
then make improvements based on ac-
tual lessons learned. Following the peer
review meeting, the process artifacts are
baselined as Version 1.0 and are available
for rollout to the organization, usually
via a pilot project approach.

Results
The process described above has been
used with excellent results by pragma
Systems Corporation to define and
document several processes. The longest
PAT to date defined and documented a
project management process. The PAT
required seven three-day working ses-
sions over a period of six months and
addressed three key process areas of the
CMM. The shortest PAT to date defined
and documented a process to roll out
processes into an organization and im-
prove them via lessons learned and pro-
cess improvement suggestions. Four two-
day working sessions over a period of
three months were required.

Intangible benefits include enthusias-
tic PAT members due to structured and
focused PAT activities that lead to a
well-defined conclusion, satisfied senior
management due to visible and signifi-
cant progress by the PATs toward well-
defined goals, and contagious enthusi-
asm for process improvement that
spreads from the PAT members to the
rest of the organization. This enthusiasm

often inspires the staff to begin early and
use informal or draft versions of process
artifacts produced by the PAT.

Summary
Serving as a member of a PAT can be a
highly rewarding shining star experience.
Successful PATs are small, three to four
people, and staffed with the
organization’s experts. They also exist in
an environment where the roles and
responsibilities of the various groups
involved in process improvement are
well understood. A highly skilled PAT
facilitator and a well-defined PAT pro-
cess ensures that the PAT, through
highly focused and structured activities,
creates the process artifacts identified by
the senior leaders of the organization. If
these conditions exist, a PAT more
quickly defines and documents a process
that can successfully enter the cycle of
continuous process improvement. u

About the Author
Doug Orville has been a senior consult-
ant with pragma Systems Corporation
since 1995, where he leads process im-
provement executive planning workshops,
consults with on-going MSCs and SEPGs,
facilitates PATs, and teaches customized
process improvement courses and work-
shops. He spent almost 17 years in the
U.S. Air Force in various software manage-
ment and process improvement positions.
His assignments included design, develop-
ment, and maintenance of software for
near real-time missile warning, command
and control, and intelligence systems;
planning, design, and implementation of a
major mainframe to client-server migra-
tion project; development of a successful
software metrics definition process; and
leadership of an SEPG for a software
organization of roughly 1,200 people.

Orville has a master’s degree in business
administration from the University of
North Dakota and a bachelor’s degree in
computer science from the University of
Wyoming.

8704 Lee Highway, Suite 303
Fairfax, VA 22031-2141
Voice: 703-560-4669
Fax: 703-849-8839
E-mail: dorville@pragmasystems.com

Process Action Teams: From “Black Holes” to “Shining Stars”

22 CROSSTALK The Journal of Defense Software Engineering February 1998

Like associating grades with
intelligence, too many organiza-
tions automatically equate the

Capability Maturity Model (CMM)
level of an organization with its ability
to produce high-quality software. As
those involved in software process im-
provement can attest, this assumption is
often far from true. In reality, organiza-
tions considered immature can and do
produce high-quality software just as
mature organizations can and do pro-
duce low-quality software. Organiza-
tional maturity is no guarantee of suc-
cess; it merely increases the likelihood
of success.

Before the feathers of software qual-
ity assurance get too ruffled, let me
define my view of quality software.
From a project manager’s perspective,
quality software meets or exceeds all
user requirements, is developed within
both cost and schedule, and is built to
be effectively maintained. I am familiar
with projects that have been praised by
their customer and user community,
have satisfied my definition of software
quality, and continue to struggle to
achieve CMM Level 2. If we merely
assume that a low CMM rating equals
low-quality software and that a high
CMM rating equals high-quality soft-
ware, the aforementioned organization’s
software would be suspect regardless of
user or customer satisfaction. Is it better
to modify software development pro-
cesses merely to satisfy various CMM
key process areas (KPAs) rather than to
improve the software development
process? That would be comparable to a
student who is more interested in get-
ting a good grade than in acquiring
knowledge.

If You Get Straight A’s, You Must Be Intelligent
Respecting the Intent of the Capability Maturity Model

David C. Klein
Lockheed Martin Federal Systems

Too often, organizations get caught up in the game of trying to achieve a particular
Capability Maturity Model (CMM) rating and do not respect either the intent of
the CMM or the positive aspects of a well-planned process improvement program.
This article discusses the drawbacks of such a process improvement approach.

What Is the Problem?
The problem is that the intent of the
CMM has been lost in the implementa-
tion. The CMM was designed to help
organizations improve their software
development capabilities and was not
intended as some type of awards pro-
gram or measuring stick. The more
process improvement programs (PIPs)in
which I participate, the more I am
convinced that this misuse of the
CMM is more about selling a capability
than improving a capability. As long as
an organization’s Software Capability
Evaluation (SCE) rating is good, the
process used to acquire the rating is
validated. For the same reason, the
processes created as part of the PIP are
assumed to be valid as well.

Why Is This a Problem?
Is this shift in an organization’s process
improvement focus a serious problem?
Emphatically, yes! A software PIP does
not come without a cost. From a soft-
ware engineering viewpoint, the cost of
a well-managed PIP has a justifiable
return on investment (ROI) if the PIP
increases the quality of the software
product being produced. Conversely, if
the goal of the PIP is merely to achieve
a good SCE rating, the cost of the pro-
gram is unnecessary overhead and will
detract from the overall quality of the
software.

Indicators That the SCE Rating
Is Valid
From participation in various software
process improvement activities, I have
identified several issues (explained in
the following sections) that can and do
influence the validity of the SCE rating.

Workers are highly sensitive to pertur-
bations that directly affect their work
environment. Therefore, a PIP must be
a planned activity that involves the
entire organization. PIP leaders and the
rest of the organization can only bring
about effective process improvement
through open communication and
diligent training. Otherwise, both apa-
thy and cynicism will create an environ-
ment in which a positive ROI can never
be realized.

I sincerely believe in the merits of
the CMM and believe that there are
definite benefits to a well-managed PIP.
Furthermore, when software personnel
are introduced to the CMM, the merits
of the model become self evident.

The bottom line is that many PIP
activities succeed or fail based on the
level of buy-in from the people in-
volved. It also is important to remem-
ber that process improvement is a jour-
ney, not a destination.

Proper Staffing of Process
Improvement Teams
A well-staffed process improvement
team is vital to initiate change within
an organization. A successful process
improvement team guides, trains, and
assists each project within the organiza-
tion and tracks the overall organiza-
tional improvement. Conversely, a
process improvement team that lacks
the authority to implement changes
and is not staffed with the best indi-
viduals the organization has to offer is
doomed to fail.

Another pitfall to avoid is to staff a
process improvement team with senior
personnel who mandate change rather
than stimulate cooperative change from

CROSSTALK The Journal of Defense Software Engineering 23February 1998

the bottom up. Additionally, a good
process improvement team should not
operate outside the mainstream projects
directly affected by the PIP. Care should
be taken that the process improvement
teams are not divorced from the inti-
mate problems and concerns of the
project. A well-managed process im-
provement team should garner com-
plete, genuine, and uncoerced support
and buy-in from each project affected.

Processes-Based Project or
Organizational Value
Creating and documenting processes
based strictly on satisfying KPA require-
ments can negatively impact PIP activi-
ties. When project personnel are tasked
to do activities with little or no visible
worth, it detracts from the overall orga-
nizational value and productivity. If a
KPA for a project is identified as non-
compliant, the worth of the KPA
should be discussed with the project
personnel and a cost-effective solution
to satisfy the area should be derived.
However, to merely develop and docu-
ment processes without regard to pro-
cess improvement or software products
is also a waste of time and resources.

Quantify the ROI of Process
Improvement
There is overwhelming evidence that
CMM compliance has an associated
positive ROI. However, the ROI will
vary based on a multitude of factors
unique to each organization. An organi-
zation working toward CMM compli-
ance should attempt to quantify what
its ROI should be. In essence, the ROI
becomes the fundamental reason for
CMM implementation. An ROI will
provide the project information that
shows how process improvement saves
the organization time, money, and
resources. Project managers need to
know the ROI prior to committing
resources to further PIP activities.

Use External Experts for the Right
Reasons
External experts can be a valuable re-
source in a well-managed PIP; however,
they should be brought in to aid pro-
cess improvement rather than to deter-

mine how to circumvent a deficient
KPA. In addition, external experts
should not coach project members in
CMM evaluator responses. This is a
detriment to genuine process improve-
ment and can quickly create cynicism
within a project.

Define Process Improvement in
Statement of Work
Rather than merely define an arbitrary
CMM level, the government must
precisely define what they expect to see
as part of a contract organization’s soft-
ware development process. To define a
CMM level as a goal can still be done
but the definition should detail specific
expectations. Therefore, the focus is on
mature software processes without
regard to a previous or future CMM
level. In addition, the government cus-
tomer is provided the opportunity to
show that they are intimate with the
CMM and its KPAs. Detailed process
improvement requirements can also be
used to determine the relative ROI
when the statement of work paragraphs
are rated during contract performance
periods. In this way, the government
can give credit for improvement even
though the specific CMM goal has not
yet been achieved.

Conclusion
Fundamentally, if an organization does
not believe in the merits of process
improvement, the PIP activities become
self defeating. This further erodes confi-
dence in PIP activities, and may culmi-
nate in complete dismissal of further
attempts to improve the organization’s
business practices. u

About the Author
David C. Klein has worked for Lockheed
Martin as a staff software engineer for
more than six years. He supports various
software test, maintenance, and develop-
ment projects for the Department of
Defense. He has a bachelor’s degree in
electronic engineering and a master’s
degree in computer science.

Voice: 719-590-4437
Fax: 719-590-4437
E-mail: David.klein@lmco.com

References
1. Paulk, M., B. Curtis, M. Chrissis, C.

Weaver, “Capability Maturity Model
(CMM v.1.1),” Technical Report
CMU/SEI-93-TR-24, September
1993.

2. Fife, D., B. Brykczynski, D. Heystek,
R. Knapper, B. Springsteen, “Conduct-
ing Software Capability Evaluations,”
Institute for Defense Analysis, IDA
Paper P-2771, October 1994.

If You Get Straight A’s, You Must be Intelligent: Respecting the Intent of the Capability Maturity Model

Systems
Engineering
Capability

Maturity Model

The Software Technology Sup-
port Center now offers informa-
tion services in a new area: the
Systems Engineering Capability
Maturity Model (SE-CMM). Visit
our Web page for quick access to
some general data, or contact
Randy Wright for more details.
Also, we will soon offer fee-for-
service briefings, training, and
assessments as well as follow-on
consulting services.

The SE-CMM describes the
essential elements of an
organization’s processes that must
exist to ensure good systems engi-
neering. Reports indicate returns
on investment similar to those for
implementing the Software CMM.
Several companies and government
agencies have embraced this con-
cept to successfully translate cus-
tomers’ needs into an effective
product.

Randall R. Wright
Voice: 801-777-9732 DSN 777-9732
Fax: 801-777-8069 DSN 777-8069
E-mail: wrightr@software.hill.af.mil
Internet: http://www.stsc.hill.af.mil

24 CROSSTALK The Journal of Defense Software Engineering February 1998

A developer of software or
software-related products wants
to stay in business—which is

strongly tied to customer satisfaction.
Customer satisfaction can be expressed
in many ways. First and most impor-
tant, a product should do what the cus-
tomer wants it to do. In addition, when
a customer pays a developer to develop
software products, the customer wants
these products to be delivered according
to some established schedule and for
some established amount of money. In
this article, we fold considerations such
as these into our concept of “product
goodness.”

For us, then, product goodness is a
multidimensional concept that in this
article is called integrity. One dictionary
definition of integrity is “completeness,”
which can be tied to multiple perspec-
tives represented by product attributes.
Often, people think of goodness from
one perspective, e.g., manager or devel-
oper, or in terms of an attribute, e.g.,
budget, schedule, or requirements. Our
integrity concept allows for blending of
multiple perspectives. For example, a
manager may think of product goodness
as the product being delivered on time
or within budget or both. A developer
may think of product goodness as the
product doing what the customer wants.
We think of product goodness as prod-
uct integrity that folds in all the perspec-
tives.

As shown in Figure 1, we use the
notion of displacement (length of a line)

in space to derive the idea of a product
integrity index that combines all per-
spectives into a single number. The space
of interest is product attribute space;
that is, the axes in product integrity
space are product attributes. Figure 1
illustrates this notion of displacement for
the case of three attributes.

We recognize that the attributes we
may choose to fold into our notion of
“product integrity” would not necessarily
be the same as the attributes you would
choose. Consequently, the measurement
approach we discuss in this article allows
you to mold the product integrity con-
cept to the needs of your organization.

This article provides an example set
of attributes to define an example prod-
uct integrity index, a general formula to
compute the index, and a summary of
how the integrity index concept has been
applied in the real world of software
systems development.

Measuring Product Integrity
To illustrate the generality of our mea-
surement approach, we now consider a
product integrity space that consists of

Measurement in Everyday Language
Scott E. Donaldson and Stanley G. Siegel

SAIC

The measurement concept presented is a general
approach to quantifying almost any object. We call
this approach Object Measurement®, which is a
registered trademark owned by Scott E. Donaldson
and Stanley G. Siegel.

Equation 1. Five-dimensional measure.

Emerging Ideas

the following five attributes (vs. the three
attributes already introduced):

at
1

Fulfills specified customer needs. The
product does what it is supposed to
do as recorded and agreed to by the
customer and the seller.

at
2

Can be easily and completely traced
through its lifecycle. The product is
“maintainable”—it can be easily
updated to incorporate new things,
revise existing things, and get rid of
things no longer deemed needed by
the customer.

at
3

Meets specified performance criteria.
How many? How often? How
long? These criteria are sometimes
considered special cases of the first
attribute (at

1
).

at
4

Meets cost expectations. The product
costs what the customer and the
seller agreed.

at
5

Meets delivery expectations. The
product is delivered in accordance
with schedules agreed to by the
customer and the seller in a project
plan or updates to the plan.

To understand how we can use the
idea of a length of a line in space to
quantify the concept of product integ-
rity as a means for measuring customer
satisfaction, consider the following five-
dimensional vector.

Measurement for measurement’s sake is a waste of time and money. Measurements need to be expressed
in everyday terms that are familiar to the organization; otherwise, they may be of little value. We present
a measurement technique that enables you to measure software products (which can be extended to
software systems development processes) in everyday terms familiar—and therefore meaningful—to your
organization. This article presents a software product measurement concept that we label product integ-
rity. We illustrate how to measure a software product in terms of attributes and attribute value scales. We
briefly describe the application of the measurement approach in the real world.

Figure 1. Object Measurement® uses the notion of
a vector length to combine multiple perspectives
into a single quantity called a Product Integrity
Index.

CROSSTALK The Journal of Defense Software Engineering 25February 1998

In Equation 1, product integrity (PI)
is a vector in five-dimensional product
integrity space whose components, at

i
,

are the example product integrity at-
tributes defined earlier. The quantity N
is a normalization factor that establishes
a “product goodness scale.” As we subse-
quently explain, we choose N so that the
length of PI is restricted to the range
from zero to one.

To turn Equation 1 into a measure-
ment tool, consider the following ques-
tions:
• How can a five-dimensional quantity

be converted into a single quantity to
simplify measurement interpretation?

• What scales should be established for
the attributes?

• What relative weights should be
assigned to the attributes?

• How can a scale of values be assigned
for the single quantity?
Clearly, there are many sensible ways

to address the above questions. The first
question deals with simplifying measure-
ment. As Equation 1 indicates, multidi-
mensional expressions of product integ-
rity are possible. Each product attribute
dimension contributes to the “length” of
the vector PI. To convert the five-
dimensional quantity in Equation 1 into
a single quantity (to represent “quality”
or “completeness”), we calculate the
“length” of the vector. We call the length
of PI the Product Integrity Index, or
PIindex. As subsequently explained, this
product integrity vector length, PIindex,
is simply the square root of the sum of
the weighted (wi

) squares of the at-
tributes at

i
 divided by the normalization

factor N.
The second question deals with

attribute value scales. Many people
find it useful and convenient to quan-
tify things in terms of percentages.
Thus, a convenient range for an at-
tribute value scale goes from zero to one.
Again, for simplicity, we take the ap-
proach of limiting the attribute value
scales to the range zero to one.

The third question deals with relative
weights for product attributes. If we
assign the same scale to each attribute
(namely, zero to one), we are weighting
each attribute equally. For simplicity, we
will take this approach. However, you

may wish to emphasize one attribute
more than the others. For example, if
you wanted to give “delivering on time”
double the importance of any of the
other attributes, you could set its scale to
run from zero to two and set the scales
of the other attributes to run from zero
to one. Equivalently, you can keep all the
scales the same and give prominence to
selected attributes through the use of
weighting factors (wi

).
The fourth question deals with estab-

lishing a value scale for the length of PI.
We select a scale for the magnitude of
this vector by choosing a value for the
normalization factor N. Arguing as we
did before, we merely select a scale that
ranges from zero to one. For equally
weighted attributes, the value of N then
becomes the square root of the sum of
the squares of the maximum values that
the attributes at

i
 can take on. For the case

where a product has five attributes each
with a maximum value of one, the value
of N thus becomes the square root of 5.

Defining a PIindex
Based on the four questions intro-
duced above, we can now define a
product integrity index, PIindex, that
ranges from zero to one as shown in
Equation 2.

The PIindex is normalized to one,
i.e., restricted to the range of zero to one.
If you want to remove this normaliza-
tion, remove the denominator.

To illustrate how Equation 2 works,
we define value scales for each example
software product attribute (ati

). There is
a multiplicity of ways such assignments
can be made. This example provides
insight into ways that you can make
such assignments that are relevant to
your organization.

Fulfills Customer Needs (atatatatat 1)
For at

1
, set up a three-value scale based

on an Acceptance of Deliverable Form1

as follows:
at

1
 = 1 if the customer returns the form
indicating “accepted as delivered.”

at
1
 = 0.5 if the customer returns the
form indicating “accepted with mi-
nor changes.”

Measurement in Everyday Language

Equation 2. The PIindex.

where at
i
 = product integrity attribute

n = number of product integrity attributes
w

i
 = weighting factor for attribute at

i

maximum [at
i
] = maximum value of at

i
.

at
1
 = 0 if the customer returns the form
indicating “changes to be negoti-
ated.”
If we wanted to provide more insight

into the percentage of requirements
fulfilled, we could count such require-
ments that appear in the product and
compare them against some ground
truth showing what this number of
requirements should be (“shalls” in the
language of requirements analysis).

Can Be Easily and Completely
Traced Through Its Lifecycle (atatatatat 2)
For at

2
, the situation can become com-

plicated. Depending on the product,
traceability may involve more than the
product. For example, if the product is
computer code, traceability involves the
existence of predecessor products such as
design and requirements specifications.
If the product is a requirements specifi-
cation, traceability typically involves
documents that a customer may supply
such as congressional legislation or cor-
porate policies. More generally, traceabil-
ity involves such things as product deci-
sions recorded at change control board
(CCB)2 meetings, internal project meet-
ings, and recorded seller and customer
management conversations and E-mail
between these two parties. To keep
things simple, we set up a three-value
scale based on the existence of records
showing how the product evolved as
follows.
at

2
 = 0 if nothing other than a cus-
tomer-prepared statement of work
exists that calls for the development
of the product.

at
2
 = 0.5 if written records exist for
some part of the project’s lifecycle
that show how the product contents
are what they are.

26 CROSSTALK The Journal of Defense Software Engineering February 1998

at
2
 = 1 if detailed written records exist
throughout the life of the project
showing how the product contents
are what they are.

Meets Specified Performance
Criteria (atatatatat 3)
For at

3
, merely set at

3
= at

1
 since perfor-

mance criteria are often lumped together
with customer needs. If this is not the
case in your environment, follow the
suggestions offered above for the at-
tribute at

1
.

Delivered within Budget (atatatatat 4)
For at

4
, set up a three-value scale.

at
4
 = 1 if the product was delivered for
less than the cost specified in the
project plan or as modified in CCB
minutes.

at
4
 = 0.9 if the product was delivered
for the cost specified in the project
plan or as modified in CCB minutes.

at
4
 = 0 if the product was delivered for
more than the cost specified in the
project plan or as modified in CCB
minutes.
Clearly, the above scale places a slight

premium on delivering for less than
planned cost. The scale also ranks a
deliverable delivered for one dollar more
than planned cost the same as a deliver-
able delivered for $3,000 more than
planned cost. Again, in your environ-
ment you may not wish to place a pre-
mium on delivery below cost—but the
above gives the idea for how you can
establish such premiums (this also ap-
plies to the attribute at

5
 below).

Delivered on Time (atatatatat 5)
For at

5
, we set up a scale as follows.

at
5
 = 1 if the product was delivered
before the delivery date specified in
the project plan or before the delivery
date as modified in CCB minutes.

at
5
 = 0.9 if the product was delivered
with no more than a 10 percent
schedule slippage. Here, “percent
slippage” is calculated by taking the
length of time allocated in the
project plan for preparing the prod-
uct or as modified in CCB minutes,
dividing that time into the slippage
time, and multiplying by 100. For
example, if the product was sched-

uled to be delivered 10 weeks after
project start but was delivered 11
weeks after project start, then at

5
 =

0.9 because the slippage was (1/10) x
100 = 10 percent.

at
5
 = (1 - X), where X is the fraction of
schedule slippage as calculated above.
For example, if the product was
scheduled to be delivered 10 weeks
after project start but was delivered
13 weeks after project start, then at

5

= (1 - 3/10) = 0.7. For all schedule
slippages greater than or equal to the
original length of time to produce
the deliverable, at

5
 = 0 (for example,

if a deliverable was to be developed
over a 10-week period, any delays
greater than or equal to 10 weeks
result in at

5
 = 0).

The above scale places a slight pre-
mium on delivering early. The above
scale favors on-time product delivery
while allowing for some planning leeway.

Example: PIindex Calculation
for a Requirements
Specification
The product is a requirements specifica-
tion. After delivery, the customer sent
back the Acceptance of Deliverable
Form showing “accepted with minor
changes.” Thus, at

3
= at

1
 = 0.5. The

product was delivered on time, so at
5
=

0.9. The project plan called for 300
hours to be expended on the task to
produce the document, but only 275
hours were expended. Thus, at

4
= 1.

Written records consisting of CCB min-
utes that show decisions underlying the
document’s content exist for some part
of the project. Thus, at

2
 = 0.5. The PIin-

dex for this requirements specification is
therefore the following:

PIindex =
0 . 5

2 + 0 . 5
2 + 0 . 5

2 + 1
2 + 0 . 9

2

5
= 0 . 72 .

Benchmarks
It is easy to measure, for example, our
weight. However, the resultant measure-
ment is generally of little value if our
objective is to gain or lose weight. We
need weight benchmarks to know
whether we are underweight or over-
weight. Similarly, we need benchmarks
for PIindex. For example, we can use
PIindex to establish norms for “product

Emerging Ideas

quality” or “completeness.” As you gain
experience with this index, you can
establish goals for various types of prod-
ucts, projects, and seller periods of per-
formance. For example, you can estab-
lish goals such as the following:
• Legacy system releases for which little

or no documentation exists shall
have a PIindex not less than 0.75.

• Deliverables for projects whose ulti-
mate objective is to produce a new
software system shall have a PIindex
not less than 0.85.
For this reason and others, it takes

time to institute a measurement process.
Keep the measurement process simple—
otherwise, it will die quickly. “Simple”
means “easy-to-collect data and easy-to-
interpret information resulting from
these data.”

Application in the Real World
In this section we highlight how the
ideas described above have been applied
in the real world of software systems
development. This discussion may offer
you some ideas for instituting a measure-
ment program in your organization if
you do not currently have one or for
adjusting an existing measurement pro-
gram. Reference [1] elaborates on these
ideas.

For over five years, we have partici-
pated in the development and operation
of a software systems development cen-
ter that could be termed a “software
factory.” We use the notion of a factory
here to suggest that the center manufac-
tures, in a consistent fashion, software
products for a diverse customer base.
Some customers want minor repairs to
existing legacy systems, some want major
enhancements, while others require an
entirely new software system. The center
services from 30 to 50 customers. Cus-
tomer project sizes range from one per-
son to approximately 50. Typically, cus-
tomers fund projects for a period not
exceeding 12 months, and project bud-
gets range from tens of thousands of
dollars to several million dollars. The
center produces approximately 100
contract deliverables a month. These
deliverables span a broad range of soft-
ware and software-related products and
supporting services.

CROSSTALK The Journal of Defense Software Engineering 27February 1998

For each deliverable provided to a customer, we calculate
the deliverable’s product integrity using the following two
attributes: at

1
 = “fulfills customer needs,” and at

2
 = “meets

delivery expectations.” As each deliverable is provided to the
customer, the center uses a Customer Acceptance of Deliver-
able Form to collect, in part, customer feedback on the prod-
uct integrity attribute “fulfills customer needs,” i.e., at

1
. The

customer fills out the acceptance form by selecting one of the
following choices on the form.
• Deliverable is “accepted as delivered” (at

1
 = 1.0).

• Deliverable is “accepted with minor changes” (at
1
 = 0.5).

• Deliverable is “not accepted and changes need to be negoti-
ated” (at

1
 = 0.0).

In addition, as each deliverable wends its way through the
center’s product development process, it is tracked by a form
that we call the Deliverable Tracking Form. This form has en-
tries on it tied to the activities that make up the center’s prod-
uct development process. These activities include such things
as peer reviews, product assurance support, technical editing
(for deliverables that are documents), and project-level and
organization-level management reviews and sign-offs. Two
pieces of data that are captured on this form are the customer’s
required deliverable due date and the date the deliverable is
provided to the customer. From this data, we can assign a value
to the product integrity attribute for meeting delivery expecta-
tions as follows:
• Deliverable is “delivered on time” (at

2
 = 1.0).

• Deliverable is “delivered late” (at
2
 = 0.0).

The resulting PIindex provides insight into the fulfillment
of a customer’s needs and meeting a customer’s delivery expec-
tations. With a 100 deliverables a month, this simple PIindex
helps point out areas where there may be (we stress, may be)
potential problems.

To complement a deliverable’s PIindex, we also calculate an
integrity index for the product development process used to
produce the deliverable. The process integrity index is an ex-
tension of the PIindex concept. Again, to keep our measure-
ment activities simple, we use the back of the Deliverable
Tracking Form to capture the data we need to calculate the
process integrity index. The back of the form contains a set of
six value scales that are tied to the product development pro-
cess activities on the front of the form. The responsible person,
e.g., principal author of a product, technical editor, or product
assurance reviewer, circles the appropriate value on the value
scale. These circled values are then used to calculate a process
integrity index for the process used to produce the deliverable.

We store the product integrity data and process integrity
data in a centralized data base. This data base is accessed by a
tool that helps us answer questions such as the following:

What is the center’s average PIindex for the last three months?
The answer to this question provides global insight into how
well the center is doing with respect to giving its customers
what they asked for on time. An average product integrity
value close to 1 means that the center is consistently delivering
“good” products, where goodness means “on-time delivery”
and “products that do what they are supposed to do.”

What has been the PIindex trend over the past two months?
The answer to this question provides insight into whether the
center’s products are improving, staying the same, or declining
with respect to on-time delivery and content.

Which projects have deliverables with PIindex values less
than 0.5? The answers to this question help senior center
management turn its attention to projects that may need
extra attention.

What is the center’s average process integrity index for the last
three months? The answer to this question provides global in-
sight into how well the center is following the systems engi-
neering environment documented practices. An average pro-
cess integrity value close to 1 means that the center is

Measurement in Everyday Language

STSC Measurement Assistance
The product integrity index (PIindex) can be useful to

organizations that already collect and use measurements.
However, if an organization does not have a measurement
program in place and management merely wants to check a
box, the PIindex should not be used as a “silver bullet.” In
this article, the authors did not discuss the importance of
unfolding the data that make up the PIindex or how to
unfold it because of space limitations (see reference [1] for a
complete explanation). An organization may want to use
the PIindex to see an overall trend or use the PIindex as a
trigger for action, but to use the PIindex solely to analyze
and interpret data hides information many organizations
need to know. It is important that organizations continue to
look at their raw data and the extremes in that data for the
messages and trends they contain.

If you are just starting a measurement program, begin
with simple measures that address your organization’s issues
and let the program evolve as you learn. Choose measure-
ments that are important to you, that help you reach your
immediate goals and address your issues. As Donaldson and
Siegel state, the attributes they chose might not necessarily
be the attributes you would choose. If you find it difficult to
decide what you want from a measurement program, a good
start might be the basics of size, effort, cost, schedule, de-
fects, and rework. Once you find a set of measurements that
work for you, you can then combine related information to
create your composite metric.

If you want help to determine what measurements your
organization needs or want help to get a measurement pro-
gram running, the Software Technology Support Center
(STSC) can help you. We can perform a measurement capa-
bility evaluation of your organization, then use the data to
return information about your measurement strengths and
weaknesses and recommend steps for improvement. We can
also support you with training and hands-on coaching while
you develop your organizational measurement program.

Beth Starrett, STSC
OO-ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205
Voice: 801-775-5555 ext. 3059 DSN 775-5555 ext. 3059
Fax: 801-777-8069 DSN 777-8069
E-mail: starretb@software.hill.af.mil

28 CROSSTALK The Journal of Defense Software Engineering February 1998

consistently following stated practices.
An average process integrity value close
to 0.5 means that the practices are not
being done as documented. There are
multiple reasons why this may be the
case. For example, some of the practices
just do not make good sense given the
type of products being produced. Conse-
quently, the practices may need to be
rethought. Perhaps employees are simply
ignoring the practices. Whatever the
case, the process integrity index helps to
highlight those areas of the product
development process that may need to
be improved.

What if the average product integrity
score is near 0.5 and the average process
integrity score is 0.95? The answer to this
question may be that the project teams
are following the documented practices
but are producing products the custom-
ers are not accepting.

From a review of the above measure-
ment observations, decision makers,
product developers, and others can focus
their attention (and potentially, re-
sources) on those activities that may
need improvement. The decision might
be to take more measurements and
review them carefully. Perhaps the
software development process needs to
be more closely followed, maybe the
process needs to be changed, or maybe
the management or the product devel-
opment staff are overcommitted. Re-
gardless, product and process integrity
measurements can be expressed in
everyday terms to help achieve cus-
tomer satisfaction.

Summary
This article describes and illustrates an
approach for measuring the “goodness”
of software-(related) products. For us,
“product goodness” is a multidimen-
sional concept. The label we put on this
concept is integrity. The following five
steps capture the essence of our product
measurement approach.
• Decide on the questions that you

want or need to address, e.g., are we
producing “good” products?

• Select the products from your soft-
ware systems development process
that you want to measure, e.g., re-
quirements specification.

• Identify the product attributes that
you want to measure, e.g., for a re-
quirements specification, you might
identify an attribute as “at

4
, meets

cost expectations.”
• For each identified attribute, e.g., at

4
,

define a value scale in everyday terms
that are familiar to the organization
e.g., delivered for more than the cost
estimate = 0.0, delivered for cost
estimate = 0.9, and delivered for less
than cost estimate = 1.0.

• Using Equation 2, calculate the PIin-
dex value. For simplicity, use the
formula to restrict values between
zero and one. Select weighting fac-
tors to reflect your perception of the
relative importance of your product
attributes.
The measurement approach de-

scribed in this article can be extended to
measure almost any object. In particular,
we have introduced how it can be used
to measure your software systems devel-
opment process. This extension, as well
as a more in-depth discussion of the
ideas presented in this article, are given
in reference [1]. u

About the Authors
Scott Donaldson, a corporate vice presi-
dent with Science Applications Interna-
tional Corporation (SAIC), has been in
the computer field since 1974. He has a
broad range of software engineering
experience in the public, private, and
commercial industries, including the
design, development, implementation,
technical management, and evaluation
of computer systems application. He is
the director of an SEPG that helps a
350-person organization achieve SEI
Level 3. He is also the deputy program
manager for this more than $28 million
business. He received a bachelor’s degree
in operations research from the U.S.
Naval Academy and a master’s degree in
systems management from the Univer-
sity of Southern California.

SAIC
200 North Glebe Road, Suite 300
Arlington, VA 22203
Voice: 703-516-0603
Fax: 703-516-0618

Stanley Siegel, an assistant vice president
with SAIC, has been in the computer field

Emerging Ideas

since 1970. Since 1976, he has specialized
in the area of software product assurance
and co-wrote a textbook on the subject
that appeared in 1987. He is a co-author
of the first textbook on software configura-
tion management. Together with Scott
Donaldson, he wrote a book on software
process improvement that was published
in March 1997. He is a member of an
SEPG in an organization working on
approximately 40 software projects of
various sizes. He holds a doctorate in
theoretical nuclear physics from Rutgers
University.

SAIC
200 North Glebe Road, Suite 300
Arlington, VA 22203
Voice: 703-516-0608
Fax: 703-516-0618

Reference
1. Donaldson, S.E. and S.G. Siegel, Culti-

vating Successful Software Development: A
Practitioner’s View, Prentice-Hall PTR,
Upper Saddle River, N.J., 1997.

Notes
1. As part of our software systems develop-

ment process, we use an Acceptance of
Deliverable Form to obtain, in part,
customer feedback. When the product is
delivered to the customer, the customer
reviews the delivered product, decides
the product’s status, signs the form, and
returns the form to the seller. For this
example, we have assigned discrete values
for the three possible customer evalua-
tions.

2. The CCB is a management support tool
that provides a forum for discussing
management, development, and product
assurance activities. Our concept of a
CCB extends far beyond the traditional
configuration management control
board concept. Simply stated, no matter
how well the customer articulates what is
needed to be done, no matter how well
the seller writes a corresponding project
plan, and no matter how well the cus-
tomer and the seller negotiate the final
agreement, once the project begins,
things start to change. Furthermore,
changes persist throughout the project.
Therefore, the CCB is a business forum
where the customer and the seller can
discuss how to deal with this unknown
but anticipated change.

CROSSTALK The Journal of Defense Software Engineering 29February 1998

The Tenth Annual Software
Technology Conference (STC
’98) will be held in Salt Lake

City, Utah, April 19-23, 1998.
The U.S. Air Force, Army, Navy,

Marine Corps, and the Defense Infor-
mation Systems Agency (DISA), have
again joined forces to co-sponsor STC
’98, the premier Software Technology
Conference in the Department of De-
fense. Once again, Utah State University
Extension is the conference nongovern-
ment co-sponsor.

The government co-sponsors are Lt.
Gen. David J. Kelley (DISA), Lt. Gen.
William Campbell (U.S. Army), Dr.
Helmut Hellwig (U.S. Air Force), Rear
Adm. George Wagner (U.S. Navy), and
Maj. Gen. Joseph Anderson (U.S.
Marine Corps).

The theme for STC ’98, “Knowl-
edge Sharing – Global Information
Networks,” is shaping up to be a transi-
tion conference that reflects the conver-
gence of the Defense Department’s
tactical and nontactical information

It’s Time to Register for the
Tenth Annual Software Technology Conference

Dana Dovenbarger
Software Technology Conference

systems, processes, people, and policy in
support of our war fighters. This theme
reflects the broader role of software
within the domain of knowledge shar-
ing. Going beyond mere transmission of
data elements, knowledge sharing identi-
fies the need for contextual exchange of
situational awareness within the dis-
persed, rapid-paced battlespace in which
modern U.S., allied, and coalition forces
operate. STC ’98 showcases more than
just a “software technology conference”;
it sharpens the focus of the ubiquitous

Abacus Technology Corporation
Abelia Corporation
Ada Core Technologies, Inc.
aimware
Anteon Corporation
Aonix
Army Reuse Center
ATA – DocEXPRESS
Attachmate Corporation
AXENT Technologies, Inc.
Battelle
BMC Software, Inc.
Bookstore
Boole & Babbage, Inc.
COGNOS Corporation
Computer Data Systems, Inc.
Cryptological Support Group
Data Focus, Inc.
DDC-I
Defense Automated Printing Service
Defense Information Systems Agency
Distributive Data Systems
EDS
FedSoft Corporation
Galorath/SEER
Government Computer News
Green Hills Software, Inc.
Hewlett-Packard Company
HQ USACECOM, SEC, ISSC
Hughes Aircraft Company
IBM Corporation

Infodata Systems, Inc.
Informix
Institute for Software Process Improvement
Integrated Chipware, Inc.
Integrated System Diagnostics, Inc.
International Function Point Users Group
Intrinsa Corporation
Lockheed Martin
Logicon, Inc.
Lotus Development
Lucent Technologies
McCabe & Associates, Inc.
MCR Federal, Inc.
Microsoft Corporation
National Security Agency
Naval Undersea Warfare Center
New Dimension Software
Novell
NPLACE
OAO Corporation
Objective Interface Systems, Inc.
OO-ALC/Software Engineering Division
Oracle Corporation
PeopleSoft, Inc.
PMS500 TC
Practical Software Measurement
pragma Systems Corporation
Progressive Software Solutions, Inc. (PROSOFT)
Quality Checked Software
Quantitative Software Management, Inc.
Rational Software

Robbins-Gioia, Inc.
SAIC
SAS Institute, Inc.
SIGNAL Corporation
Software Engineering Institute
Software Program Managers Network
SPAWAR SYSCEN San Diego
SQL Software, Inc.
SRA International, Inc.
Software Technology Support Center (STSC)
Sun Microsystems
Software Technology Process & People (STPP)
Thomas & Herbert Consulting LLC
Tivoli Systems
Tofs
TQL Office HQMC
TRI-COR Industries, Inc.
Tri-Pacific Software
TRW, Inc.
TYX Corporation
U.S. Air Force
U.S. Navy
USA AMCOM
USA AMCOM/CIC
USAF AMC CPSS
Utah State University Extension
VERILOG, Inc.
Viasoft, Inc.
Vitech Corporation
Z Microsystems

STC ’98 Vendors – Preliminary List

30 CROSSTALK The Journal of Defense Software Engineering February 1998

out the form in your registration bro-
chure or call fax-on-demand 435-797-
2358 for a housing reservation form. As
soon as possible, fax it to the SLCVB
Housing Bureau at 801-355-0250.
Government-rate rooms go quickly.
Buses will be provided to help with
transportation between the conference
center and city center hotels during
conference hours. Be sure to read the
instructions on the housing form
closely.

The conference fee structure for
STC ’98 is

Discounted registration fee paid by March 30, 1998

Active Duty Military/Government $465*
Business/Industry/Other $585

Regular registration fee paid after March 30, 1998

Active Duty Military/Government $515*
Business/Industry/Other $635

* Military rank (active duty) or government
GS rating or equivalent is required to
qualify for this rate.

The official STC ’98 registration
brochure was mailed in early January.
We have made it easier to register early
this year. Send in your registration
forms with your credit card number
now, and it will not be charged until
March 30, 1998. You no longer have to
wait until April to register.

If this issue of CROSSTALK was mailed
to you, you are on our mailing list. If
you had to borrow a copy, please con-
tact us to be added to our mailing list.

You may use our Web site at http://
www.stc98.org for further information
about STC ’98.

If we can be of further assistance,
please call or E-mail. This is one confer-
ence that you do not want to miss. We
will see you in April! u

Dana Dovenbarger, Conference Manager
Lynne Wade, Assistant Conference Manager
Software Technology Support Center
OO-ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205
Voice: 801-777-7411 DSN 777-7411
Fax: 801-775-4932 DSN 775-4932
E-mail: dovenbar@oodis01.hill.af.mil

wadel@software.hill.af.mil

role of software, information technology,
and information warriors as they sup-
port our military capabilities.

We anticipate over 3,500 participants
from the military services, government
agencies, contractors, industry, and
academia.

The Opening General Session will be
held on Monday afternoon. In addition
to the general session, the co-sponsors
have agreed to host a Question-and-
Answer General Session on Tuesday
morning, where they will answer ques-
tions from conference participants. Con-
ference attendees are encouraged to turn
in their questions to conference manage-
ment prior to the conference or to the
on-site control room on Monday of the
conference week. This is a good chance
to get answers from senior leaders on
important issues.

Over 500 great abstracts were sub-
mitted this year by potential speakers,
which made the choice of just over 100
speakers extremely difficult. Participants
will be pleased with the selection of
speakers and topics. Topics will include
but are not limited to
• Capability Maturity –

Models, Assessments, Evaluation.
• Client/Server.
• Configuration Management.
• Risk Management.
• DoD Software Policies.
• Outsourcing and Privatization.
• Quality Assurance.
• Embedded Software.
• Open Systems and Architecture.
• Software Engineering.
• Global Information Issues.
• Object-Oriented Technology.
• Measure/Metrics.
• Process Improvement.
• Education and Training.
• Internet/Intranet.
• Project Management.
• Software Acquisition.
• Cost Estimation.
• Technology Adoption.
• Security.
• Data Administration.
• Product Line Engineering.
• Year 2000.
• Knowledge-Based Systems.

There will be special tracks pre-
sented by the joint services, the Soft-
ware Program Managers Network, the
Software Engineering Institute, and
other organizations.

There will also be a special intelli-
gence meeting held in conjunction with
the conference on Wednesday. Top
Secret clearances will be necessary for
this one-day track. Details are in the
registration brochure.

Our exhibit area has grown to over
336 vendor booths. At press time, lim-
ited space is still available. Registration
information is in the registration bro-
chure. For current vendor information,
please check the Web site at http://
www.stc98.org. A preliminary list of
pre-registered vendors (as of Dec. 10,
1997) include those listed on page 29.

Space rental rate is $1,175 per 10-
foot square booth. Late registration
received after Feb. 17, should space be
available, will rent for $1,275 per
booth. A copy of the exhibitor registra-
tion brochure with a full layout of the
exhibition area is available on the Inter-
net at http://www.stc98.org. For more
information concerning the exhibition,
E-mail a request to
exhibits@LSLP1.usu.edu, use fax-on-
demand at 435-797-2358, or call 435-
797-0047.

Conference management is coordi-
nating Military Air flights to the confer-
ence from the San Diego and Washing-
ton, D.C. areas. If interested, please
contact conference management at 801-
777-7411 DSN 777-7411 or E-mail at
wadel@software.hill.af.mil.

One of the greatest benefits of STC
is that it provides great networking
opportunities. Side meetings and Birds-
of-a-Feather meetings are already being
scheduled. If you are interested in re-
serving a time for one of these meetings,
please call Carie Kessel at 435-797-
0089, and she will be glad to schedule a
meeting for you.

Hotel guest room reservations are
being taken through the Salt Lake Con-
vention and Visitors Bureau (SLCVB).
To reserve your hotel guest room, fill

STC ’98

CROSSTALK The Journal of Defense Software Engineering 31February 1998

Sponsor Lt. Col. Joe Jarzombek
801-777-2435 DSN 777-2435
jarzombj@software.hill.af.mil

Publisher Reuel S. Alder
801-777-2550 DSN 777-2550
alderr@software.hill.af.mil

Managing Editor Tracy Stauder
801-777-9239 DSN 777-9239
staudert@software.hill.af.mil

Senior Editor Sandi Gaskin
801-777-9722 DSN 777-9722
gaskins@software.hill.af.mil

Graphics and Design Kent Hepworth
801-775-5555 ext. 3027
hepwortk@software.hill.af.mil

Associate Editor Lorin J. May
801-775-5555 ext. 3026
mayl@software.hill.af.mil

Editorial Assistant Bonnie May
801-775-5555 ext. 3023
mayb@software.hill.af.mil

Features Coordinator Heather Winward
801-775-5555 ext. 3028
winwardh@software.hill.af.mil

Customer Service Barbara McDonald
801-777-8045 DSN 777-8045
mcdonalb@software.hill.af.mil

Fax 801-777-8069 DSN: 777-8069
STSC On-Line http://www.stsc.hill.af.mil

CROSSTALK On-Line http://www.stsc.hill.af.mil
Crosstalk/crostalk.html

ESIP On-Line http://www.esip.hill.af.mil

Subscriptions: Send correspondence concerning subscriptions and changes
of address to the following address:

Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT 84056-5205

E-mail: custserv@software.hill.af.mil
Voice: 801-777-8045, DSN 777-8045
Fax: 801-777-8069, DSN 777-8069

Editorial Matters: Correspondence concerning Letters to the Editor or other
editorial matters should be sent to the same address listed above to the
attention of CROSSTALK Editor or send directly to the senior editor via the E-mail
address also listed above.

Article Submissions: We welcome articles of interest to the defense soft-
ware community. Articles must be approved by the CROSSTALK editorial board
prior to publication. Please follow the Guidelines for CROSSTALK Authors, available
upon request. We do not pay for submissions. Articles published in CROSSTALK

remain the property of the authors and may be submitted to other publications.

Reprints and Permissions: Most material in CROSSTALK may be reprinted at no
charge. Coordinate reprint requests with CROSSTALK.

Trademarks and Endorsements: All product names referenced in this issue
are trademarks of their companies. The mention of a product or business in
CROSSTALK does not constitute an endorsement by the Software Technology
Support Center (STSC), the Department of Defense, or any other govern-
ment agency. The opinions expressed represent the viewpoints of the authors
and are not necessarily those of the Department of Defense.

Coming Events: We often list conferences, seminars, symposiums, etc., that
are of interest to our readers. There is no fee for this service, but we must
receive the information at least 90 days before registration. Send an announce-
ment to the CROSSTALK Editorial Department.

STSC On-Line Services: STSC On-Line Services can be reached on the In-
ternet. World Wide Web access is at http://www.stsc.hill.af.mil.
The STSC maintains a Gopher server at gopher://gopher.stsc.hill.af.mil/. Its ftp
site may be reached at ftp://ftp.stsc.hill.af.mil. The Lynx browser or gopher
server can also be reached using telnet at bbs.stsc.hill.af.mil or by modem at
801-774-6509 or DSN 775-3602. Call 801-777-7989 or DSN 777-7989 for
assistance, or E-mail to portr@software.hill.af.mil.

Publications Available: The STSC provides various publications at no charge
to the defense software community. Fill out the Request for STSC Services
card in the center of this issue and mail or fax it to us. If the card is missing, call
Customer Service at the numbers shown above, and we will send you a form
or take your request by phone. The STSC sometimes has extra paper copies
of back issues of CROSSTALK free of charge. If you would like a copy of the
printed edition of this or another issue of CROSSTALK, or would like to subscribe,
please contact the customer service address listed above.

The Software Technology Support Center was established at Ogden Air
Logistics Center (AFMC) by Headquarters U.S. Air Force to help Air Force
software organizations identify, evaluate, and adopt technologies that will im-
prove the quality of their software products, their efficiency in producing
them, and their ability to accurately predict the cost and schedule of their
delivery. CROSSTALK is assembled, printed, and distributed by the Defense Print-
ing Service, Hill AFB, UT 84056. CROSSTALK is distributed without charge to
individuals actively involved in the defense software development process. Got an idea for BACKTALK? Send an E-mail to mayl@software.hill.af.mil

Your Effectiveness – A Quiz
Gauge your on-the-job effectiveness by checking the answer that best describes your
habits, circumstances, and interactions at work.
1. Nothing primes me for work each morning better than
__A. a brisk five-mile jog followed by a hearty, nutritious breakfast.
__B. ingesting so much caffeine I can jump-start dead car batteries with my hands.
__C. a 10:05 a.m., expletive-laden wake-up call from a superior.
2. The first thing I do when I arrive at the office is
__A. review my weekly master schedule and prioritize the day’s activities.
__B. tell everyone the story about the guy who parked his car in a bad part of town
with two Dallas Cowboys tickets on the seat. (When he came back his window was
broken, his stereo was missing, and there were two more tickets on the seat.)
__C. read my E-mail, first deleting any message with a subject heading that contains
the words “urgent,” “deadline,” “meeting,” “project,” “work,” “complaint,” “disci-
plinary hearing,” or any message from my boss.
3. For me, a workday typically consists of
__A. three or four cycles of design, coding, and unit testing interspersed with brief,
effective peer reviews.
__B. (in descending order of volume) coma-inducing meetings, gripe sessions about
what was said during the meetings, general organizational/managerial criticism,
distractions, lunch, bathroom breaks, trips to vending machine, actual work.
__C. The Dilbert Zone.
4. One week before an important deadline, you will usually find me
__A. at a party, receiving a bonus check for finishing ahead of schedule.
__B. working frantically to ensure that everything will be ready, i.e., a scapegoat has
been chosen, excuses are coordinated, etc.
__C. at the shredder, destroying evidence.
5. When working on a team, I usually
__A. am looked to for advice and am persuaded by other team members to be the
leader, after which I conduct brief, yet highly effective working sessions.
__B. gripe that no one will listen to my advice, and with the help of others, manage
to turn at least one tiny issue per meeting into a drawn-out power struggle.
__C. N/A. I was barred from human interaction following the bean dip incident.
6. When a colleague criticizes my work, my first reaction is to
__A. take it at face value, then make a conscious effort to improve. No hard feelings.
__B. pretend to care, then call him “Weasel Lips” under my breath.
__C. listen in stone silence, then carve a rebuttal on his desk with a screwdriver.
7. When someone starts to make a request that I consider unreasonable, I
__A. listen quietly, then calmly present my concerns and an alternate approach.
__B. titter nervously while listening, obviously choking back a bitter retort, then
break out into a guffaw when they finish speaking; I then feign surprise at their grim
expression and exclaim, “You mean you weren’t telling a joke?”
__C. N/A—hasn’t happened for a long time (see question 6, answer C).
8. When championing an idea that I care deeply about, I
__A. calmly, openly try to persuade others as well as I can, then live with the result.
__B. occasionally try persuasion, but usually resort to massaged data and behind-the
scenes maneuvering that would make a campaign manager blush.
__C. usually calm down once the security guards start applying pain holds.
HOW TO SCORE: Count two points per A, one point per B, zero points per C.
13-16 points: Great! You are anybody’s dream worker. But verify your answers with
your co-workers—some people score high only because they are delusional goobers.
5-12 points: Congratulations: you’re an engineer!
0-4 points: Pay no attention to some arbitrary scale that can’t account for intangible
assets, such as your ability to draw more pay per unit of completed work than any of
your colleagues. Emphasize this point on your résumé, which I’m sure you will be
updating soon. There’s probably something about it in your E-mail.

—Lorin May

BACKTALK

